Some widescreen hacks (see below) properly force anamorphic output, but
don't make the last projection in a frame 16:9, so Dolphin doesn't
display it correctly.
This changes the heuristic code to assume a frame is anamorphic based on
the total number of vertex flushes in 4:3 and 16:9 projections that
frame. It also adds a bit of "aspect ratio inertia" by making it harder
to switch aspect ratios, which takes care of aspect ratio flickering
that some games / widescreen hacks would be susceptible with the new
logic.
I've tested this on SSX Tricky's native anamorphic support, Tom Clancy's
Splinter Cell (it stayed in 4:3 the whole time), and on the following
widescreen hacks for which the heuristic doesn't currently work:
Paper Mario: The Thousand-Year Door (Gecko widescreen code from Nintendont)
C202F310 00000003
3DC08042 3DE03FD8
91EEF6D8 4E800020
60000000 00000000
04199598 4E800020
C200F500 00000004
3DE08082 3DC0402B
61CE12A2 91CFA1BC
60000000 387D015C
60000000 00000000
C200F508 00000004
3DE08082 3DC04063
61CEE8D3 91CFA1BC
60000000 7FC3F378
60000000 00000000
The Simpsons: Hit & Run (AR widescreen code from the wiki)
04004600 C002A604
04004604 C09F0014
04004608 FC002040
0400460C 4082000C
04004610 C002A608
04004614 EC630032
04004618 48220508
04041A5C 38600001
04224344 C002A60C
04224B1C 4BDDFAE4
044786B0 3FAAAAAB
04479F28 3FA33333
This stops the virtual method call from within the Renderer constructor.
The initialization here for GL had to be moved to VideoBackend, as the
Renderer constructor will not have been executed before the value is
required.
Keeps associated data together. It also eliminates the possibility of out
parameters not being initialized properly. For example, consider the
following example:
-- some FramebufferManager implementation --
void FBMgrImpl::GetTargetSize(u32* width, u32* height) override
{
// Do nothing
}
-- somewhere else where the function is used --
u32 width, height;
framebuffer_manager_instance->GetTargetSize(&width, &height);
if (texture_width != width) <-- Uninitialized variable usage
{
...
}
It makes it much more obvious to spot any initialization issues, because
it requires something to be returned, as opposed to allowing an
implementation to just not do anything.
This is mainly for potential Android fifoci usage, and thus is not
exposed anywhere in the UI. To enable, set DumpFramesAsImages under
Settings in GFX.ini.
This increase the performance of good backends a bit, but slows down the bads one a lot.
Let's fix those backends instead of forcing stupid memcpy in the common code.
Some OSD messages were displayed in RenderBase.cpp using global variables and some code duplicated
in OnScreeDisplay.cpp.
Now all messages are displayed using functions in the OSD namepace.
* OSDChoice and OSDTime global variables are gone
* All OSD logic is kept at the same place
* All messages are properly aligned
* Clean characters for all OSD messages
Original commit:
commit f0ec61c057
Author: Aestek <thib.gilles@gmail.com>
Date: Sun Aug 7 16:08:41 2016 +0200
This is needed because for some reason the WSI for NV Vulkan drivers
doesn't return VK_ERROR_OUT_OF_DATE_KHR, so there is no other way to know
that a resize has occured apart from polling, which is a poor solution for
X11 (since it is blocking).
We don't throttle by frames, we throttle by coretiming speed.
So looking up VI for calculating the speed was just very wrong.
The new ini option is a float, 1.0f for fullspeed.
In the GUI, percentual values are used.
Approximately three or four times now, the issue of pointers being
in an inconsistent state been an issue in the video backend renderers
with regards to tripping up other developers.
Global (ugh) resources are put into a unique_ptr and will always have a
well-defined state of being - null or not null
The only possible functionality change is that s_efbAccessRequested and
s_swapRequested are no longer reset at init and shutdown of the OGL
backend (only; this is the only interaction any files other than
MainBase.cpp have with them). I am fairly certain this was entirely
vestigial.
Possible performance implications: efbAccessReady now uses an Event
rather than spinning, which might be slightly slower, but considering
the slow loop the flags are being checked in from the GPU thread, I
doubt it's noticeable.
Also, this uses sequentially consistent rather than release/acquire
memory order, which might be slightly slower, especially on ARM...
something to improve in Event/Flag, really.
This class loads all the common PP shader configuration options and passes those options through to a inherited class that OpenGL or D3D will have.
Makes it so all the common code for PP shaders is in VideoCommon instead of duplicating the code across each backend.
This is undefined behavior in C++, and a clang warning suggests it is
actually producing bad code as a result:
../Source/Core/VideoCommon/BPFunctions.cpp:164:45: warning: comparison of constant 4294967295 with expression of type 'PEControl::PixelFormat' is always false [-Wtautological-constant-out-of-range-compare]
if (new_format == old_format || old_format == (unsigned int)-1)
This option was known to break every second game and only boost a bit.
It also seems to be broken because of streaming into pinned memory and buffer storage buffers.
v2: also remove dlc_desc