The last heuristic wasn't quite smart enough and had a few
false positives in Mario Kart: Double Dash and Metroid prime 2.
Now we only activate if the game is rendering a 16:9
projection to a 4:3 viewport.
Someone suggested on IRC that we should make a database of memory
locations in GameCube games which contain the 'Widescreen' setting
so we can automatically detect if the game is in 4:3 or 16:9 mode.
But that's hardly optimal, when the game actually tells the gpu
what aspect ratio to render in. 10 min and 6 lines of code later,
this is the result. Not only does it detect the correct aspect ratio
it does so on the fly.
I'm a little suprised nobody thought about doing this before.
When calculating the size of the undisplayed margin in the case where
fbWidth != fbStride for RealXFB for displaying in the output window,
we do not scale by IR - RealXFB is implicitly 1x.
This bug has been reported to IMGTec at https://pvrsupport.imgtec.com/ticket/472
The basic idea of the bug is that if you're doing a bitwise and of a constant value vector with a constant scalar value, this causes PowerVR's shader
compiler to fail out with a very non-descriptive message.
Working around the issue by making the value a vector that it is being masked by.
In particular this fixes the 6666 colour format
We were loading from the wrong location and it was causing /terrible/ colour changes.
This also fixes a bug in the all the colour formats(except 888) where the unaligned path was loading in to the wrong register.
- Fixes remaining lighting issues (Mario Tennis, etc)
- Apply same fixes to Software Renderer
- Corrected zero length light direction vector to resolve with normal direction (essentially becomes LIGHTDIF_NONE which was what I was after)
The new implementation has 3 options:
SyncGpuMaxDistance
SyncGpuMinDistance
SyncGpuOverclock
The MaxDistance controlls how many CPU cycles the CPU is allowed to be in front
of the GPU. Too low values will slow down extremly, too high values are as
unsynchronized and half of the games will crash.
The -MinDistance (negative) set how many cycles the GPU is allowed to be in
front of the CPU. As we are used to emulate an infinitiv fast GPU, this may be
set to any high (negative) number.
The last parameter is to hack a faster (>1.0) or slower(<1.0) GPU. As we don't
emulate GPU timing very well (eg skip the timings of the pixel stage completely),
an overclock factor of ~0.5 is often much more accurate than 1.0
This fixes issue 6563:
https://code.google.com/p/dolphin-emu/issues/detail?id=6563
This PR adds a 2nd map to texture cache, which uses the hash as key. Cache entries from this new map are used only if the address matches or if the texture was fully hashed. This restriction avoids false positive cache hits. This results in a possible situation where safe texture cache accuracy could be faster than the fast one.
Small textures means up to 1KB for fast texture cache accuracy, 4KB for medium, and all textures for safe accuracy.
Since this adds a small overhead to all texture cache handling, some regression testing would be nice. Games, which use a lot of textures the same time, should be affected the most.
I tried to change messages that contained instructions for users,
while avoiding messages that are so technical that most users
wouldn't understand them even if they were in the right language.
Address static memory relative to a base register, analog to what we're
doing with PPCSTATE in the CPU JIT. This allows executable memory for
the vertex loader JIT to be allocated anywhere, not just within 2 GiB of
static data.
Fixes issue 8180.
Yet another story of games loading weird shit into registers.
For some reason, Burnout 2 would (in rare situations) load invalid
addresses into cp_state.array_bases. What would the real hardware
do in this situation? Who knows, Burnout 2 doesn't actually enable
the vertex array with the invalid address so nothing kinky happens.
But dolphin tries to optimise things and starts using the address
as soon as it is loaded into memory. This causes GetPointer (which is
now much more vocal) to throw an error.
The Fix: We don't call GetPointer until we are sure the vertex array
has been enabled.
- FileSearch is now just one function, and it converts the original glob
into a regex on all platforms rather than relying on native Windows
pattern matching on there and a complete hack elsewhere. It now
supports recursion out of the box rather than manually expanding
into a full list of directories in multiple call sites.
- This adds a GCC >= 4.9 dependency due to older versions having
outright broken <regex>. MSVC is fine with it.
- ScanDirectoryTree returns the parent entry rather than filling parts
of it in via reference. The count is now stored in the entry like it
was for subdirectories.
- .glsl file search is now done with DoFileSearch.
- IOCTLV_READ_DIR now uses ScanDirectoryTree directly and sorts the
results after replacements for better determinism.
Through just returning the last written value sounds better, this crashes Paper Mario.
In my opinion, gfx issues are fine on older GPUs, but crashes should not happen.
There is no nice way to correctly "detect" the "used" memory, so we just say
we're fine to use 50% of the physical memory for custom textures.
This will fix out-of-memory crashes, but we still might run into swapping issues.
This was causing a race condition where the "absurdly large aux buffer"
panic alert would be triggered in the last bit of fifo processing on the
CPU thread in deterministic mode (i.e. netplay). SyncGPU is supposed to
move the auxiliary queue data to the beginning of the containing buffer
so we don't have to deal with wraparound; if GpuRunningState is false,
however, it just returns, because it's set to false by another thread -
thus it doesn't know whether RunGpuLoop is still executing (in which
case it can't just reset the pointers, because it may still be using the
buffer) or not (in which case the condition variable it normally waits
for to avoid the previous problem will never be signaled). However,
SyncGPU's caller PushFifoAuxBuffer wasn't aware of this, so if the
buffer was filling at just the right time, it'd stay full and that
function would complain that it was about to overflow it. Similar
problem with ReadDataFromFifoOnCPU afaik. Fix this by returning early
from those as well; other callers of SyncGPU should be safe. A
*slightly* cleaner alternative would be giving the CPU thread a way to
tell when RunGpuLoop has actually exited, but whatever, this works.
This drops the "feature" to load level 0 from the custom texture
and all other levels from the native one if the size matches.
But in my opinion, when a custom texture only provide one level,
no more should be used at all.