FRAGMENT_ID wasn't actually the fragment's ID (that's misleading, and
sounds like the tag). It's actually the layout resource ID. There's no point in making that a static constant.
Ideally Common.h wouldn't be a header in the Common library, and instead be renamed to something else, like PlatformCompatibility.h or something, but even then, there's still some things in the header that don't really fall under that label
This moves the version strings out to their own version header that doesn't dump a bunch of other unrelated things into scope, like what Common.h was doing.
This also places them into the Common namespace, as opposed to letting them sit in the global namespace.
If a SettingsFile had at least one section, it was assumed all sections
were correctly filled out. This caused crashes when opening the settings
menus if that was not the case - for example the GFX.ini settings empty
sections are removed by the main dolphin app, putting the .ini file in a
state that would crash the settings window if at least one setting was
changed in it from the default, some sections were left as default.
This adds a subclass of HashMap<String, SettingSection> that constructs a
new SettingSection instead of returning 'null' if the key isn't found,
so the mSettings.get(FILE).get(SECTION).get(SETTING) pattern can be
safely used.
It would fail on lines line "Value =" - IE a value set to emptystring.
This would cause the app to crash when trying to open the corresponding
settings window.
I don't know who thought it would be a good idea to put the Wiimote
connect code as part of the Host interface, and have that called
from both the UI code and the core. And then hack around it by having
"force connect" events whenever Host_ConnectWiimote is called
from the core...
Showing the Wii remote connection status leads to inconsistent UX,
because we don't do anything like that for GameCube controllers
or with Bluetooth passthrough.
It's also questionable how useful it is given that:
* it doesn't print the number of connected remotes, just that one
remote is connected, connecting or not connected, so the only info
it provides is actually wrong when using multiple remotes;
* this user-facing feature is actually broken in master and no one has
complained AFAIK, which means people don't really rely on it;
* the status bar isn't visible most of the time unless the user is
using render to main or deliberately keeping the main window's
status bar visible by moving the render window and they're not too
far away from their screen;
* emulated Wii remotes now reconnect on input, which means that there
is less of a need to actually know at all times whether a remote
is connected, since pressing any button will reconnect it and provide
immediate, visible feedback via OSD messages and the Wii remote
pointer appearing.
* Move out boot parameters to a separate struct, which is not part
of SConfig/ConfigManager because there is no reason for it to
be there.
* Move out file name parsing and constructing the appropriate params
from paths to a separate function that does that, and only that.
* For every different boot type we support, add a proper struct with
only the required parameters, with descriptive names and use
std::variant to only store what we need.
* Clean up the bHLE_BS2 stuff which made no sense sometimes. Now
instead of using bHLE_BS2 for two different things, both for storing
the user config setting and as a runtime boot parameter,
we simply replace the Disc boot params with BootParameters::IPL.
* Const correctness so it's clear what can or cannot update the config.
* Drop unused parameters and unneeded checks.
* Make a few checks a lot more concise. (Looking at you, extension
checks for disc images.)
* Remove a mildly terrible workaround where we needed to pass an empty
string in order to boot the GC IPL without any game inserted.
(Not required anymore thanks to std::variant and std::optional.)
The motivation for this are multiple: cleaning up and being able to add
support for booting an installed NAND title. Without this change, it'd
be pretty much impossible to implement that.
Also, using std::visit with std::variant makes the compiler do
additional type checks: now we're guaranteed that the boot code will
handle all boot types and no invalid boot type will be possible.
This file is pretty small now that it doesn't handle Wii
partitions anymore, so let's move its contents to Volume.cpp.
This is also more consistent with how blob creation works.
Since these button names are printed on all real controllers,
we should show them in the same way as they are printed on
the controllers, regardless of the user's language. It seems
like this was intended all along (except for "Start"), but the
_ markers in TASInputDlg.cpp (accidentally?) led to the button
names in the controller configs also becoming translatable.
I'm making exceptions for "L" and "R" because translators
may want to mark them in some way (for instance "L-Digital")
to clarify the difference from "L-Analog" and "R-Analog".
I'm also making an exception for START/PAUSE because it's
referred to as スタート in Japanese games.
I'm changing "Home" and "Start" to uppercase for consistency
with how Nintendo refers to those buttons, and because someone
who isn't familiar with the Latin script might not know the
connection between the lowercase and uppercase letters (most
users likely do know the connection, but we shouldn't assume it),
and because leaving "Start" as "Start" makes it "collide" with
unrelated strings, such as the string for the button that starts
a netplay session.
To rename "Start" and "Home" without breaking INI
compatibility, I added a ui_name variable like in f5c82ad.
Whenever the EmulationActivity crashes and the app gets back to the
TvMainActivity, dolphin will crash tring to restor the mBrowseFragment
since we don't save the adapter data in the bundle.
This is quick hack to avoid the crash. The proper fix would be to save the
adapter data in the bundle and restore it before restoring the fragment
when the activity gets recreated.
Crash Stacktrace:
Process: org.dolphinemu.dolphinemu.debug, PID: 30353
java.lang.RuntimeException: Unable to start activity ComponentInfo{org.dolphinemu.dolphinemu.debug/org.dolphinemu.dolphinemu.ui.main.TvMainActivity}: java.lang.IllegalArgumentException: Invalid position 1 requested
at android.app.ActivityThread.performLaunchActivity(ActivityThread.java:2691)
at android.app.ActivityThread.handleLaunchActivity(ActivityThread.java:2752)
at android.app.ActivityThread.-wrap12(ActivityThread.java)
at android.app.ActivityThread$H.handleMessage(ActivityThread.java:1461)
at android.os.Handler.dispatchMessage(Handler.java:102)
at android.os.Looper.loop(Looper.java:154)
at android.app.ActivityThread.main(ActivityThread.java:6120)
at java.lang.reflect.Method.invoke(Native Method)
at com.android.internal.os.ZygoteInit$MethodAndArgsCaller.run(ZygoteInit.java:865)
at com.android.internal.os.ZygoteInit.main(ZygoteInit.java:755)
Caused by: java.lang.IllegalArgumentException: Invalid position 1 requested
at android.support.v17.leanback.app.BrowseFragment.createMainFragment(BrowseFragment.java:509)
at android.support.v17.leanback.app.BrowseFragment.replaceMainFragment(BrowseFragment.java:1454)
at android.support.v17.leanback.app.BrowseFragment.setAdapter(BrowseFragment.java:764)
at org.dolphinemu.dolphinemu.ui.main.TvMainActivity.buildRowsAdapter(TvMainActivity.java:183)
at org.dolphinemu.dolphinemu.ui.main.TvMainActivity.onCreate(TvMainActivity.java:59)
at android.app.Activity.performCreate(Activity.java:6664)
at android.app.Instrumentation.callActivityOnCreate(Instrumentation.java:1118)
at android.app.ActivityThread.performLaunchActivity(ActivityThread.java:2644)
at android.app.ActivityThread.handleLaunchActivity(ActivityThread.java:2752)
at android.app.ActivityThread.-wrap12(ActivityThread.java)
at android.app.ActivityThread$H.handleMessage(ActivityThread.java:1461)
at android.os.Handler.dispatchMessage(Handler.java:102)
at android.os.Looper.loop(Looper.java:154)
at android.app.ActivityThread.main(ActivityThread.java:6120)
at java.lang.reflect.Method.invoke(Native Method)
at com.android.internal.os.ZygoteInit$MethodAndArgsCaller.run(ZygoteInit.java:865)
at com.android.internal.os.ZygoteInit.main(ZygoteInit.java:755)
Use Bitmap.setPixels() instead of Bitmap.copyPixelsFromBuffer() the former
use non pre-multiplied values of the colors which is what we expect to
come from the native code.
We can do this now that the x86-64 JIT supports PIE.
JITIL is deliberately excluded from the GUI because it
doesn't support PIE yet. (JITIL will be used if it's
set in the INI, though.)
Apparently the path was changed from using "/thump.png" to using
"/gameId-#.png". We will always use the first screenshot for the game
broswer wich will be "/gameId-1.png"
Saving screenshot was not working due to 2 problems. The first one is that
the view id of the save screenshot in the Android TV fragment doesnt match
the one declared inside the menu_emulation. Second Problem will be fixed
in another commit.
This commit chnage the code to not depend on reusing the ids of the menu
everywhere in the emulator inorder for the onMenuItemClicked to work.
Instead you need to call EmulationActivity.handleMenuAction passing
the action to handle regardless of the ids you are using in the view.
Compilers are very picky and don't use PCH when they have been compiled
with different flags. I even got some ICE in MSVC, so removing them for now.
Modules are the solution.
Load all the inis at once, choose which one to write to, and save them all
at the same time. This allows us to modify settings from different files
on the same settings page.
The usage of "Wii Remote" and "Wiimote" in the interface is inconsistent. "Wiimote" is also not a real word nor is it an official product name. Therefore I have changed instances of "Wiimote" in the UI to instead say "Wii Remote". I also made a couple of minor grammatical changes as well.
This is mostly a resubmission of #4338 but there are some minor other changes as well.
It's now possible to switch between a horizontal or vertical Wiimote
with no extension, a Wiimote with a Nunchuk, a Classic Controller,
or a GameCube Controller when running a Wii game.
This is needed because for some reason the WSI for NV Vulkan drivers
doesn't return VK_ERROR_OUT_OF_DATE_KHR, so there is no other way to know
that a resize has occured apart from polling, which is a poor solution for
X11 (since it is blocking).
These were made when the button images were first remade many months ago, but they were never committed since there was no use for them at the time (and laziness :P). BUT now there is a PR that finally has use for these images, so it's time to get this into Dolphin and available for use!
At first there weren't many enums in Volume.h, but the number has been
growing, and I'm planning to add one more for regions. To not make
Volume.h too large, and to avoid needing to include Volume.h in code
that doesn't use volume objects, I'm moving the enums to a new file.
I'm also turning them into enum classes while I'm at it.
EndPlayInput runs on the CPU thread so it can't directly call
UpdateWantDeterminism. PlayController also tries to ChangeDisc
from the CPU Thread which is also invalid. It now just pauses
execution and posts a request to the Host to fix it instead.
The Core itself also did dodgy things like PauseAndLock-ing
from the CPU Thread and SetState from EmuThread which have been
removed.
Fix Frame Advance and FifoPlayer pause/unpause/stop.
CPU::EnableStepping is not atomic but is called from multiple threads
which races and leaves the system in a random state; also instruction
stepping was unstable, m_StepEvent had an almost random value because
of the dual purpose it served which could cause races where CPU::Run
would SingleStep when it was supposed to be sleeping.
FifoPlayer never FinishStateMove()d which was causing it to deadlock.
Rather than partially reimplementing CPU::Run, just use CPUCoreBase
and then call CPU::Run(). More DRY and less likely to have weird bugs
specific to the player (i.e the previous freezing on pause/stop).
Refactor PowerPC::state into CPU since it manages the state of the
CPU Thread which is controlled by CPU, not PowerPC. This simplifies
the architecture somewhat and eliminates races that can be caused by
calling PowerPC state functions directly instead of using CPU's
(because they bypassed the EnableStepping lock).
Under failure conditions of the GC Adapter, When interface count is zero and we can't open the device.
Then there were race conditions on shutdown of the threads which could result in crashing.
Make adapter opening more robust like the Mayflash DolphinBar.
Make shutdown more robust by making the read thread control the write thread.
Make sure that there is actual data to be written when kicking the write thread. So it doesn't attempt a write a shutdown.
Make a toast on screen to tell the user that the adapter needs to be unplugged and plugged back in again for it to work.
This is the only way to get Wiimotes working under Android now.
This, just like the Wii U Gamecube Controller Adapter, completely goes around Android's limitations and talks with the device directly through USBManager.
Couple notes.
Continuous scanning must be enabled otherwise the Wiimotes won't be seen.
The UI doesn't expose support for this yet. One must change the Wiimote source and continuous scanning settings manually.
Testing up to two wiimotes in Taiko No Tatsujin, no reason to believe all four won't work.
No way to properly enable it from an end user perspective yet.
Doesn't require root.
This same sort of system can be used for the Dolphinbar in the future for real wiimote support.
Call finish() on parent (main/browser) activity after starting EmulationActivity if AutoStartFile was specified. This makes the experience more streamlined for users who want to start games from an external frontend, since they don't expect to return to the Dolphin main activity after they've played their game.
Lets the user set the following in intervals of 10 between 10 and 100;
- Stick/Radius (default 100,000000)
- Triggers/Threshold (default 90,000000)
- Tilt/Modifier/Range (default 50,000000) + mapped Tilt/Modifier button
to the configurations for wiimotes & nunchuks
Main Stick is changed to Control Stick and C-Stick is changed to C Stick.
A new ui_name variable is added to ControlGroup so that the UI strings
in DolphinWX can be updated without breaking backwards compatibility
with config INIs and other things that use names as IDs.
Activity Monitor can start activities by using adb to invoke it.
This will allow us to set the user directory and autostart file from adb.
adb shell am start -n org.dolphinemu.dolphinemu/.gamelist.GameListActivity -e AutoStartFile /sdcard/AC.gcz -e UserDir /sdcard/dolphin-emu2/
This allows more automated testing to be done with Dolphin on Android.
The UI should decide on where it wants the user directory, not our core system.
This is in anticipation of some upcoming work on Android which will need proper user directory setting.
We were eating /all/ button events except the back button. This would cause issues where Android wouldn't receive button press events for things like
volume rockers. So you couldn't change the audio ingame, even if that button isn't bound to an input.
Now we return to Android if we've handled that button press, so it works fine.
This was a fairly recent update that went unnoticed because it uses a cached variable.
When I previously updated Android cmake I didn't noticed this.
Basically the issue was that Android cmake was no longer setting ${LIBRARY_OUTPUT_PATH_ROOT}
and instead only setting it to ${CMAKE_SOURCE_DIR} if it was passed a variable.
Same PR is open on the android cmake repo here https://github.com/taka-no-me/android-cmake/pull/37
This menu allows us to configure the stereoscopy video settings if the device supports it.
This menu is only enabled if the hardware supports everything needed to use the feature.
We need to stop pretending that we "support" GLES 2.0 devices.
We are a high performance application that requires GLES 3.0, which was officially supported in Android 4.3.
The few Android phones that released with Android 4.2 and supported OpenGL ES 3.0 have already been updated to a later Android version.
This was '7' on all ARMv7 devices but was 'AArch64' on the Nexus 9.
Trying to cast to integer was causing a crash. We don't even use this so may as well as wipe it.
Also adds Nvidia to the CPU implementers list.
* Added country flags for games from Netherlands and Spain
* Added separate category for Region Free games (Uses European flag as placeholder)
* Added missing country filter options in "show regions" menu
* Rearranged country filters for readability
* Incremented CACHE_REVISION
Also fixed various country filters not showing up as options in the "Show regions" menu.
The ActionBar method of doing the tabular layout is deprecated on Android 5.0.
This method alleviates those deprecations while providing the same functionality.
I was mistaken and only changed one line previously which didn't enable them by default.
This changes the default configuration to enable EFB copies and EFB to texture.
apply() changes the in-memory instance of SharedPreferences and writes to the disk asynchronously, rather than synchronously, which commit() does. Since these are done on the UI thread, they should be asynchronous.
Only show the JIT cores on x86_64(Will have its own issues once we reach that point)
Show AArch64 JIT if running on a AArch64 device(Good luck with that for now. Future proofing though)
This is available in a PR here: https://github.com/taka-no-me/android-cmake/pull/23
The maintainer of the android toolchain cmake file seems to be AWOL for now.
I have tested this file personally and it works, it just isn't merged in yet
-In GameListAdapter.java, the existing scaling code is unnecessary and stops Android's built in scaling from doing its job.
-In gamelist...etc.xml, set the icon's width to 100 density-independent pixels (i.e. have android figure out how to make it the right size.)
Copies over the PP shaders to the APK's assets and installs them on run.
Exposes them via the video settings UI.
This is in anticipation of dropping the workaround for rotated blits on Adreno and instead forcing shader usage by the user.
Looking at the old code for the ButtonManager was a brainfsck. This fixes a ton of bugs I kept uncovering as I was moving along.
Fixes the gamepad configuration file being incorrect.
No longer treats touchscreen in a special way. Ends up as a regular device with a "Touchscreen" device name.
Was incorrectly converting a index from integer to ButtonType. Wouldn't work due to the addition of some unused(in JNI) enumerators in ButtonType.
Fixes an issue where a map had a key as an axis which was causing its binding to be overwritten for every axis that was used twice (eg main stick left and right);
Fixes Triggers not working at all.
Fixes DPad not working at all.
Fixes C-Stick only half working.
Removes touch screen specific nativelibrary types onTouchAxisEvent and onTouchEvent.
Adds a configuration version configuration option. Allows easy configuration overwriting if the options need to be changed during updating.
Supersedes github PR #291.
Now instead of the top left corner of the button snapping to your finger.
Remember where we clicked on the button initially so it moves from the same location you touched.
This is more intuitive than before of course.
Move EGLHelper to be local to the creation of the about GL/GLES tabs so we don't have 3 EGL contexts running at a time.
Fix issues with OpenGL context creation here so we show the correct information.
This requires adding an EGL function to the NativeLibrary since Android's JAVA bindings don't expose eglBindAPI.
This option was known to break every second game and only boost a bit.
It also seems to be broken because of streaming into pinned memory and buffer storage buffers.
v2: also remove dlc_desc
ARM only at the moment. Could potentially support x86 and MIPS if necessary.
Capable of parsing the manufacturer codes and part IDs of some (but not all part numbers). If anyone knows of part numbers that aren't in the list, please report them.
- Spaces -> Tabs | Consistency
- Javadoc everything that was added and not documented.
- Remove duplicated code regarding the adapter that used to reside in DolphinInfoFragment.java. Now it resides in AboutActivity.java without a second duplication of it.
- Properly retrieve all of the contexts in the EGL initialization in EGLHelper.java.
- Remove the attribute EGL_RENDERABLE_TYPE from the pbuffersurface attributes in EGLHelper.java. With this present, the EGL context will always fail to reinitialize if destroyed and attempted to be recreated.
- Break the inner class Limit within GLES2InfoFragment.java, GLES3InfoFragment.java, and GLInfoFragment.java into its own single class. Greatly reduces code duplication.
- Introduce a Type enum into Limit.java (one of the wildly rare cases in Java where an enum is actually an OK solution). Removes duplicated constants from the Java files stated in the previous bullet note.
- Add a copyright comment to the top of EGLHelper.java. Forgot to do this initially, my bad.
- Add some missing override annotations to GLES2InfoFragment.java, GLES3InfoFragment.java, and GLInfoFragment.java.
- Use StringBuilders in the previously mentioned three Java files. This is better than using a String in this instance, as the String object won't have to be recreated multiple times (ala concatenation).
- Fix some constant accessors in the previously mentioned three Java files.
- Added the 'final' modifier to the above three classes and to Limit.java. These classes serve a single purpose only, and are not intended to be inherited.
There is a /lot/ of information in these tabs, we may have to think about changing how the information looks
OpenGL isn't done yet since there are a million limits on desktop GL, may just show a few things and extensions there.