melonDS/src/NDS.cpp

3789 lines
99 KiB
C++
Raw Normal View History

/*
2020-02-14 19:18:08 +00:00
Copyright 2016-2020 Arisotura
This file is part of melonDS.
melonDS is free software: you can redistribute it and/or modify it under
the terms of the GNU General Public License as published by the Free
Software Foundation, either version 3 of the License, or (at your option)
any later version.
melonDS is distributed in the hope that it will be useful, but WITHOUT ANY
WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details.
You should have received a copy of the GNU General Public License along
with melonDS. If not, see http://www.gnu.org/licenses/.
*/
2016-05-16 15:48:40 +00:00
#include <stdio.h>
2016-12-03 12:42:27 +00:00
#include <string.h>
#include "Config.h"
2016-05-16 15:48:40 +00:00
#include "NDS.h"
#include "ARM.h"
2017-01-22 19:34:59 +00:00
#include "NDSCart.h"
#include "GBACart.h"
2017-01-18 00:33:06 +00:00
#include "DMA.h"
2017-01-17 00:58:25 +00:00
#include "FIFO.h"
2017-01-18 03:03:19 +00:00
#include "GPU.h"
2017-04-06 17:44:34 +00:00
#include "SPU.h"
#include "SPI.h"
#include "RTC.h"
2016-12-06 16:32:51 +00:00
#include "Wifi.h"
2020-02-14 18:26:52 +00:00
#include "AREngine.h"
2017-09-21 01:59:12 +00:00
#include "Platform.h"
#include "ARMJIT.h"
2016-05-16 15:48:40 +00:00
2016-05-16 15:48:40 +00:00
namespace NDS
{
// timing notes
//
// * this implementation is technically wrong for VRAM
// each bank is considered a separate region
// but this would only matter in specific VRAM->VRAM DMA transfers or
// when running code in VRAM, which is way unlikely
//
// bus/basedelay/nspenalty
//
// bus types:
// * 0 / 32-bit: nothing special
// * 1 / 16-bit: 32-bit accesses split into two 16-bit accesses, second is always sequential
// * 2 / 8-bit/GBARAM: (presumably) split into multiple 8-bit accesses?
// * 3 / ARM9 internal: cache/TCM
//
// ARM9 always gets 3c nonseq penalty when using the bus (except for mainRAM where the penalty is 7c)
// /!\ 3c penalty doesn't apply to DMA!
//
// ARM7 only gets nonseq penalty when accessing mainRAM (7c as for ARM9)
//
// timings for GBA slot and wifi are set up at runtime
u8 ARM9MemTimings[0x40000][4];
u8 ARM7MemTimings[0x20000][4];
ARMv5* ARM9;
ARMv4* ARM7;
2018-12-12 01:48:37 +00:00
u32 NumFrames;
u64 LastSysClockCycles;
u64 FrameStartTimestamp;
2018-12-12 01:48:37 +00:00
int CurCPU;
2019-06-25 00:05:48 +00:00
const s32 kMaxIterationCycles = 64;
u32 ARM9ClockShift;
// no need to worry about those overflowing, they can keep going for atleast 4350 years
u64 ARM9Timestamp, ARM9Target;
u64 ARM7Timestamp, ARM7Target;
u64 SysTimestamp;
SchedEvent SchedList[Event_MAX];
u32 SchedListMask;
u32 CPUStop;
u8 ARM9BIOS[0x1000];
u8 ARM7BIOS[0x4000];
2016-05-16 15:48:40 +00:00
u8 MainRAM[MAIN_RAM_SIZE];
2016-12-03 17:29:19 +00:00
u8 SharedWRAM[0x8000];
u8 WRAMCnt;
u8* SWRAM_ARM9;
u8* SWRAM_ARM7;
u32 SWRAM_ARM9Mask;
u32 SWRAM_ARM7Mask;
2016-12-03 12:42:27 +00:00
u8 ARM7WRAM[0x10000];
2017-01-22 19:34:59 +00:00
u16 ExMemCnt[2];
2020-02-24 17:31:44 +00:00
// TODO: these belong in NDSCart!
2017-01-22 19:34:59 +00:00
u8 ROMSeed0[2*8];
u8 ROMSeed1[2*8];
// IO shit
u32 IME[2];
u32 IE[2], IF[2];
u8 PostFlag9;
u8 PostFlag7;
2016-12-06 16:32:51 +00:00
u16 PowerControl9;
u16 PowerControl7;
u16 WifiWaitCnt;
u16 ARM7BIOSProt;
Timer Timers[8];
2017-04-24 23:14:26 +00:00
u8 TimerCheckMask[2];
u64 TimerTimestamp[2];
2017-01-18 00:33:06 +00:00
DMA* DMAs[8];
u32 DMA9Fill[4];
u16 IPCSync9, IPCSync7;
2017-01-17 00:58:25 +00:00
u16 IPCFIFOCnt9, IPCFIFOCnt7;
FIFO<u32>* IPCFIFO9; // FIFO in which the ARM9 writes
FIFO<u32>* IPCFIFO7;
u16 DivCnt;
u32 DivNumerator[2];
u32 DivDenominator[2];
u32 DivQuotient[2];
u32 DivRemainder[2];
2017-01-31 20:53:45 +00:00
u16 SqrtCnt;
u32 SqrtVal[2];
u32 SqrtRes;
u32 KeyInput;
u16 KeyCnt;
u16 RCnt;
bool Running;
2020-02-24 17:31:44 +00:00
bool RunningGame;
2016-05-16 15:48:40 +00:00
void DivDone(u32 param);
void SqrtDone(u32 param);
void RunTimer(u32 tid, s32 cycles);
void SetWifiWaitCnt(u16 val);
void SetGBASlotTimings();
bool Init()
2016-05-16 15:48:40 +00:00
{
ARM9 = new ARMv5();
ARM7 = new ARMv4();
2019-07-14 17:24:00 +00:00
#ifdef JIT_ENABLED
ARMJIT::Init();
2019-07-14 17:24:00 +00:00
#endif
2017-01-18 00:33:06 +00:00
DMAs[0] = new DMA(0, 0);
DMAs[1] = new DMA(0, 1);
DMAs[2] = new DMA(0, 2);
DMAs[3] = new DMA(0, 3);
DMAs[4] = new DMA(1, 0);
DMAs[5] = new DMA(1, 1);
DMAs[6] = new DMA(1, 2);
DMAs[7] = new DMA(1, 3);
IPCFIFO9 = new FIFO<u32>(16);
IPCFIFO7 = new FIFO<u32>(16);
2017-01-17 00:58:25 +00:00
if (!NDSCart::Init()) return false;
2019-12-08 20:30:56 +00:00
if (!GBACart::Init()) return false;
if (!GPU::Init()) return false;
2017-04-06 17:44:34 +00:00
if (!SPU::Init()) return false;
if (!SPI::Init()) return false;
if (!RTC::Init()) return false;
2017-05-11 17:57:49 +00:00
if (!Wifi::Init()) return false;
2020-02-14 18:26:52 +00:00
if (!AREngine::Init()) return false;
return true;
}
void DeInit()
{
delete ARM9;
delete ARM7;
2019-07-14 17:24:00 +00:00
#ifdef JIT_ENABLED
ARMJIT::DeInit();
2019-07-14 17:24:00 +00:00
#endif
for (int i = 0; i < 8; i++)
delete DMAs[i];
delete IPCFIFO9;
delete IPCFIFO7;
NDSCart::DeInit();
2019-12-08 20:30:56 +00:00
GBACart::DeInit();
GPU::DeInit();
2017-04-06 17:44:34 +00:00
SPU::DeInit();
SPI::DeInit();
RTC::DeInit();
2017-05-11 17:57:49 +00:00
Wifi::DeInit();
2020-02-14 18:26:52 +00:00
AREngine::DeInit();
2016-05-16 15:48:40 +00:00
}
2016-12-06 16:32:51 +00:00
void SetARM9RegionTimings(u32 addrstart, u32 addrend, int buswidth, int nonseq, int seq)
{
addrstart >>= 14;
addrend >>= 14;
if (addrend == 0x3FFFF) addrend++;
int N16, S16, N32, S32;
N16 = nonseq;
S16 = seq;
if (buswidth == 16)
{
N32 = N16 + S16;
S32 = S16 + S16;
}
else
{
N32 = N16;
S32 = S16;
}
for (u32 i = addrstart; i < addrend; i++)
{
ARM9MemTimings[i][0] = N16;
ARM9MemTimings[i][1] = S16;
ARM9MemTimings[i][2] = N32;
ARM9MemTimings[i][3] = S32;
}
2019-07-21 21:56:24 +00:00
ARM9->UpdateRegionTimings(addrstart<<14, addrend == 0x40000
? 0xFFFFFFFF
: (addrend<<14));
}
void SetARM7RegionTimings(u32 addrstart, u32 addrend, int buswidth, int nonseq, int seq)
{
addrstart >>= 15;
addrend >>= 15;
if (addrend == 0x1FFFF) addrend++;
int N16, S16, N32, S32;
N16 = nonseq;
S16 = seq;
if (buswidth == 16)
{
N32 = N16 + S16;
S32 = S16 + S16;
}
else
{
N32 = N16;
S32 = S16;
}
for (u32 i = addrstart; i < addrend; i++)
{
ARM7MemTimings[i][0] = N16;
ARM7MemTimings[i][1] = S16;
ARM7MemTimings[i][2] = N32;
ARM7MemTimings[i][3] = S32;
}
}
void InitTimings()
{
// TODO, eventually:
// VRAM is initially unmapped. The timings should be those of void regions.
// Similarly for any unmapped VRAM area.
// Need to check whether supporting these timing characteristics would impact performance
// (especially wrt VRAM mirroring and overlapping and whatnot).
// ARM9
// TODO: +3c nonseq waitstate doesn't apply to DMA!
// but of course mainRAM always gets 8c nonseq waitstate
SetARM9RegionTimings(0x00000000, 0xFFFFFFFF, 32, 1 + 3, 1); // void
SetARM9RegionTimings(0xFFFF0000, 0xFFFFFFFF, 32, 1 + 3, 1); // BIOS
SetARM9RegionTimings(0x02000000, 0x03000000, 16, 8, 1); // main RAM
SetARM9RegionTimings(0x03000000, 0x04000000, 32, 1 + 3, 1); // ARM9/shared WRAM
SetARM9RegionTimings(0x04000000, 0x05000000, 32, 1 + 3, 1); // IO
SetARM9RegionTimings(0x05000000, 0x06000000, 16, 1 + 3, 1); // palette
SetARM9RegionTimings(0x06000000, 0x07000000, 16, 1 + 3, 1); // VRAM
SetARM9RegionTimings(0x07000000, 0x08000000, 32, 1 + 3, 1); // OAM
// ARM7
SetARM7RegionTimings(0x00000000, 0xFFFFFFFF, 32, 1, 1); // void
SetARM7RegionTimings(0x00000000, 0x00010000, 32, 1, 1); // BIOS
SetARM7RegionTimings(0x02000000, 0x03000000, 16, 8, 1); // main RAM
SetARM7RegionTimings(0x03000000, 0x04000000, 32, 1, 1); // ARM7/shared WRAM
SetARM7RegionTimings(0x04000000, 0x04800000, 32, 1, 1); // IO
SetARM7RegionTimings(0x06000000, 0x07000000, 16, 1, 1); // ARM7 VRAM
// handled later: GBA slot, wifi
}
void SetupDirectBoot()
{
2016-12-06 16:32:51 +00:00
u32 bootparams[8];
memcpy(bootparams, &NDSCart::CartROM[0x20], 8*4);
2016-12-06 16:32:51 +00:00
printf("ARM9: offset=%08X entry=%08X RAM=%08X size=%08X\n",
bootparams[0], bootparams[1], bootparams[2], bootparams[3]);
printf("ARM7: offset=%08X entry=%08X RAM=%08X size=%08X\n",
bootparams[4], bootparams[5], bootparams[6], bootparams[7]);
MapSharedWRAM(3);
u32 arm9start = 0;
// load the ARM9 secure area
if (bootparams[0] >= 0x4000 && bootparams[0] < 0x8000)
{
u8 securearea[0x800];
NDSCart::DecryptSecureArea(securearea);
for (u32 i = 0; i < 0x800; i+=4)
{
ARM9Write32(bootparams[2]+i, *(u32*)&securearea[i]);
arm9start += 4;
}
}
// CHECKME: firmware seems to load this in 0x200 byte chunks
for (u32 i = arm9start; i < bootparams[3]; i+=4)
2016-12-06 16:32:51 +00:00
{
u32 tmp = *(u32*)&NDSCart::CartROM[bootparams[0]+i];
2016-12-06 16:32:51 +00:00
ARM9Write32(bootparams[2]+i, tmp);
}
for (u32 i = 0; i < bootparams[7]; i+=4)
{
u32 tmp = *(u32*)&NDSCart::CartROM[bootparams[4]+i];
ARM7Write32(bootparams[6]+i, tmp);
2016-12-06 16:32:51 +00:00
}
for (u32 i = 0; i < 0x170; i+=4)
{
u32 tmp = *(u32*)&NDSCart::CartROM[i];
ARM9Write32(0x027FFE00+i, tmp);
}
ARM9Write32(0x027FF800, NDSCart::CartID);
ARM9Write32(0x027FF804, NDSCart::CartID);
ARM9Write16(0x027FF808, *(u16*)&NDSCart::CartROM[0x15E]);
ARM9Write16(0x027FF80A, *(u16*)&NDSCart::CartROM[0x6C]);
ARM9Write16(0x027FF850, 0x5835);
ARM9Write32(0x027FFC00, NDSCart::CartID);
ARM9Write32(0x027FFC04, NDSCart::CartID);
ARM9Write16(0x027FFC08, *(u16*)&NDSCart::CartROM[0x15E]);
ARM9Write16(0x027FFC0A, *(u16*)&NDSCart::CartROM[0x6C]);
ARM9Write16(0x027FFC10, 0x5835);
ARM9Write16(0x027FFC30, 0xFFFF);
ARM9Write16(0x027FFC40, 0x0001);
ARM9->CP15Write(0x910, 0x0300000A);
ARM9->CP15Write(0x911, 0x00000020);
ARM9->CP15Write(0x100, ARM9->CP15Read(0x100) | 0x00050000);
ARM9->R[12] = bootparams[1];
ARM9->R[13] = 0x03002F7C;
ARM9->R[14] = bootparams[1];
ARM9->R_IRQ[0] = 0x03003F80;
ARM9->R_SVC[0] = 0x03003FC0;
ARM7->R[12] = bootparams[5];
ARM7->R[13] = 0x0380FD80;
ARM7->R[14] = bootparams[5];
ARM7->R_IRQ[0] = 0x0380FF80;
ARM7->R_SVC[0] = 0x0380FFC0;
2016-12-06 16:32:51 +00:00
ARM9->JumpTo(bootparams[1]);
ARM7->JumpTo(bootparams[5]);
PostFlag9 = 0x01;
PostFlag7 = 0x01;
PowerControl9 = 0x820F;
GPU::SetPowerCnt(PowerControl9);
// checkme
RCnt = 0x8000;
NDSCart::SPICnt = 0x8000;
SPU::SetBias(0x200);
SetWifiWaitCnt(0x0030);
ARM7BIOSProt = 0x1204;
SPI_Firmware::SetupDirectBoot();
2016-12-06 16:32:51 +00:00
}
2016-05-16 15:48:40 +00:00
void Reset()
{
FILE* f;
2017-01-18 00:33:06 +00:00
u32 i;
2016-05-16 15:48:40 +00:00
2020-02-24 17:31:44 +00:00
RunningGame = false;
2018-12-12 01:48:37 +00:00
LastSysClockCycles = 0;
f = Platform::OpenLocalFile("bios9.bin", "rb");
2016-05-16 15:48:40 +00:00
if (!f)
{
2016-05-16 15:48:40 +00:00
printf("ARM9 BIOS not found\n");
for (i = 0; i < 16; i++)
((u32*)ARM9BIOS)[i] = 0xE7FFDEFF;
}
2016-05-16 15:48:40 +00:00
else
{
fseek(f, 0, SEEK_SET);
fread(ARM9BIOS, 0x1000, 1, f);
2016-05-16 15:48:40 +00:00
2017-02-01 18:30:57 +00:00
printf("ARM9 BIOS loaded\n");
2016-05-16 15:48:40 +00:00
fclose(f);
}
f = Platform::OpenLocalFile("bios7.bin", "rb");
if (!f)
{
printf("ARM7 BIOS not found\n");
for (i = 0; i < 16; i++)
((u32*)ARM7BIOS)[i] = 0xE7FFDEFF;
}
else
{
fseek(f, 0, SEEK_SET);
fread(ARM7BIOS, 0x4000, 1, f);
2017-02-01 18:30:57 +00:00
printf("ARM7 BIOS loaded\n");
fclose(f);
}
2019-07-21 21:56:24 +00:00
// has to be called before InitTimings
// otherwise some PU settings are completely
// unitialised on the first run
ARM9->CP15Reset();
// TODO for later: configure this when emulating a DSi
ARM9ClockShift = 1;
ARM9Timestamp = 0; ARM9Target = 0;
ARM7Timestamp = 0; ARM7Target = 0;
SysTimestamp = 0;
InitTimings();
memset(MainRAM, 0, MAIN_RAM_SIZE);
2016-12-03 17:29:19 +00:00
memset(SharedWRAM, 0, 0x8000);
2016-12-03 12:42:27 +00:00
memset(ARM7WRAM, 0, 0x10000);
2016-12-06 16:32:51 +00:00
MapSharedWRAM(0);
2016-12-03 17:29:19 +00:00
2017-01-22 19:34:59 +00:00
ExMemCnt[0] = 0;
ExMemCnt[1] = 0;
memset(ROMSeed0, 0, 2*8);
memset(ROMSeed1, 0, 2*8);
SetGBASlotTimings();
2017-01-22 19:34:59 +00:00
IME[0] = 0;
IE[0] = 0;
IF[0] = 0;
IME[1] = 0;
IE[1] = 0;
IF[1] = 0;
PostFlag9 = 0x00;
PostFlag7 = 0x00;
2016-12-06 16:32:51 +00:00
PowerControl9 = 0x0001;
PowerControl7 = 0x0001;
WifiWaitCnt = 0xFFFF; // temp
SetWifiWaitCnt(0);
ARM7BIOSProt = 0;
IPCSync9 = 0;
IPCSync7 = 0;
2017-01-17 00:58:25 +00:00
IPCFIFOCnt9 = 0;
IPCFIFOCnt7 = 0;
IPCFIFO9->Clear();
IPCFIFO7->Clear();
2016-12-03 12:42:27 +00:00
DivCnt = 0;
2017-01-31 20:53:45 +00:00
SqrtCnt = 0;
ARM9->Reset();
ARM7->Reset();
CPUStop = 0;
memset(Timers, 0, 8*sizeof(Timer));
2017-04-24 23:14:26 +00:00
TimerCheckMask[0] = 0;
TimerCheckMask[1] = 0;
TimerTimestamp[0] = 0;
TimerTimestamp[1] = 0;
2017-01-18 00:33:06 +00:00
for (i = 0; i < 8; i++) DMAs[i]->Reset();
memset(DMA9Fill, 0, 4*4);
memset(SchedList, 0, sizeof(SchedList));
SchedListMask = 0;
KeyInput = 0x007F03FF;
KeyCnt = 0;
RCnt = 0;
2019-07-14 17:24:00 +00:00
#ifdef JIT_ENABLED
2019-07-14 02:33:36 +00:00
ARMJIT::InvalidateBlockCache();
2019-07-14 17:24:00 +00:00
#endif
2017-04-06 17:44:34 +00:00
NDSCart::Reset();
2019-12-08 20:30:56 +00:00
GBACart::Reset();
2017-04-06 17:44:34 +00:00
GPU::Reset();
SPU::Reset();
SPI::Reset();
RTC::Reset();
Wifi::Reset();
2020-02-14 18:26:52 +00:00
AREngine::Reset();
2017-03-19 18:07:39 +00:00
}
2017-09-21 01:59:12 +00:00
void Stop()
{
printf("Stopping: shutdown\n");
2017-10-01 01:19:39 +00:00
Running = false;
2017-09-21 01:59:12 +00:00
Platform::StopEmu();
GPU::Stop();
2017-09-21 01:59:12 +00:00
SPU::Stop();
}
bool DoSavestate_Scheduler(Savestate* file)
{
// this is a bit of a hack
// but uh, your local coder realized that the scheduler list contains function pointers
// and that storing those as-is is not a very good idea
// unless you want it to crash and burn
// this is the solution your local coder came up with.
// it's gross but I think it's the best solution for this problem.
// just remember to add here if you add more event callbacks, kay?
// atleast until we come up with something more elegant.
void (*eventfuncs[])(u32) =
{
GPU::StartScanline, GPU::StartHBlank, GPU::FinishFrame,
SPU::Mix,
Wifi::USTimer,
GPU::DisplayFIFO,
NDSCart::ROMPrepareData, NDSCart::ROMEndTransfer,
NDSCart::SPITransferDone,
SPI::TransferDone,
DivDone,
SqrtDone,
NULL
};
int len = Event_MAX;
if (file->Saving)
{
for (int i = 0; i < len; i++)
{
SchedEvent* evt = &SchedList[i];
u32 funcid = -1;
if (evt->Func)
{
for (int j = 0; eventfuncs[j]; j++)
{
if (evt->Func == eventfuncs[j])
{
funcid = j;
break;
}
}
2018-10-18 01:10:17 +00:00
if (funcid == -1)
{
printf("savestate: VERY BAD!!!!! FUNCTION POINTER FOR EVENT %d NOT IN HACKY LIST. CANNOT SAVE. SMACK STAPLEBUTTER.\n", i);
return false;
}
}
file->Var32(&funcid);
file->Var64(&evt->Timestamp);
file->Var32(&evt->Param);
}
}
else
{
for (int i = 0; i < len; i++)
{
SchedEvent* evt = &SchedList[i];
u32 funcid;
file->Var32(&funcid);
if (funcid != -1)
{
for (int j = 0; ; j++)
{
if (!eventfuncs[j])
{
printf("savestate: VERY BAD!!!!!! EVENT FUNCTION POINTER ID %d IS OUT OF RANGE. HAX?????\n", j);
return false;
}
if (j == funcid) break;
}
evt->Func = eventfuncs[funcid];
}
else
evt->Func = NULL;
file->Var64(&evt->Timestamp);
file->Var32(&evt->Param);
}
}
return true;
}
bool DoSavestate(Savestate* file)
{
2018-09-15 01:29:36 +00:00
file->Section("NDSG");
file->VarArray(MainRAM, 0x400000);
file->VarArray(SharedWRAM, 0x8000);
file->VarArray(ARM7WRAM, 0x10000);
file->VarArray(ExMemCnt, 2*sizeof(u16));
file->VarArray(ROMSeed0, 2*8);
file->VarArray(ROMSeed1, 2*8);
file->Var16(&WifiWaitCnt);
2018-09-15 01:29:36 +00:00
file->VarArray(IME, 2*sizeof(u32));
file->VarArray(IE, 2*sizeof(u32));
file->VarArray(IF, 2*sizeof(u32));
file->Var8(&PostFlag9);
file->Var8(&PostFlag7);
file->Var16(&PowerControl9);
file->Var16(&PowerControl7);
file->Var16(&ARM7BIOSProt);
file->Var16(&IPCSync9);
file->Var16(&IPCSync7);
file->Var16(&IPCFIFOCnt9);
file->Var16(&IPCFIFOCnt7);
2018-10-18 00:31:01 +00:00
IPCFIFO9->DoSavestate(file);
IPCFIFO7->DoSavestate(file);
2018-09-15 01:29:36 +00:00
file->Var16(&DivCnt);
file->Var16(&SqrtCnt);
file->Var32(&CPUStop);
for (int i = 0; i < 8; i++)
{
Timer* timer = &Timers[i];
file->Var16(&timer->Reload);
file->Var16(&timer->Cnt);
file->Var32(&timer->Counter);
file->Var32(&timer->CycleShift);
}
2018-09-15 01:29:36 +00:00
file->VarArray(TimerCheckMask, 2*sizeof(u8));
file->VarArray(TimerTimestamp, 2*sizeof(u64));
2018-09-15 01:29:36 +00:00
file->VarArray(DMA9Fill, 4*sizeof(u32));
if (!DoSavestate_Scheduler(file)) return false;
2018-09-15 01:41:09 +00:00
file->Var32(&SchedListMask);
file->Var64(&ARM9Timestamp);
file->Var64(&ARM9Target);
file->Var64(&ARM7Timestamp);
file->Var64(&ARM7Target);
file->Var64(&SysTimestamp);
file->Var64(&LastSysClockCycles);
file->Var64(&FrameStartTimestamp);
file->Var32(&NumFrames);
2018-09-15 01:41:09 +00:00
// TODO: save KeyInput????
file->Var16(&KeyCnt);
file->Var16(&RCnt);
2018-10-18 01:04:39 +00:00
file->Var8(&WRAMCnt);
2018-09-15 01:41:09 +00:00
2020-02-24 17:31:44 +00:00
file->Var32((u32*)&RunningGame);
2018-10-18 01:04:39 +00:00
if (!file->Saving)
{
// 'dept of redundancy dept'
// but we do need to update the mappings
MapSharedWRAM(WRAMCnt);
2018-09-15 01:41:09 +00:00
InitTimings();
SetGBASlotTimings();
u16 tmp = WifiWaitCnt;
WifiWaitCnt = 0xFFFF;
SetWifiWaitCnt(tmp); // force timing table update
}
2020-02-24 17:31:44 +00:00
for (int i = 0; i < 8; i++)
DMAs[i]->DoSavestate(file);
ARM9->DoSavestate(file);
ARM7->DoSavestate(file);
2018-09-15 01:29:36 +00:00
NDSCart::DoSavestate(file);
2019-12-08 20:30:56 +00:00
GBACart::DoSavestate(file);
2018-10-18 00:31:01 +00:00
GPU::DoSavestate(file);
2018-10-18 00:45:38 +00:00
SPU::DoSavestate(file);
2018-10-18 00:54:48 +00:00
SPI::DoSavestate(file);
2018-10-18 01:04:39 +00:00
RTC::DoSavestate(file);
2018-10-18 01:22:53 +00:00
Wifi::DoSavestate(file);
2018-10-18 00:31:01 +00:00
if (!file->Saving)
{
GPU::SetPowerCnt(PowerControl9);
}
2019-07-14 17:24:00 +00:00
#ifdef JIT_ENABLED
2019-07-14 02:33:36 +00:00
if (!file->Saving)
{
ARMJIT::InvalidateBlockCache();
}
2019-07-14 17:24:00 +00:00
#endif
2019-07-14 02:33:36 +00:00
2018-10-18 00:31:01 +00:00
return true;
}
bool LoadROM(const char* path, const char* sram, bool direct)
2017-03-19 18:07:39 +00:00
{
if (NDSCart::LoadROM(path, sram, direct))
2017-10-10 22:01:05 +00:00
{
2017-03-19 18:07:39 +00:00
Running = true;
2017-10-10 22:01:05 +00:00
return true;
}
else
2017-10-10 22:01:05 +00:00
{
printf("Failed to load ROM %s\n", path);
2017-10-10 22:01:05 +00:00
return false;
}
}
2019-12-08 20:30:56 +00:00
bool LoadGBAROM(const char* path, const char* sram)
{
if (GBACart::LoadROM(path, sram))
{
return true;
}
else
{
printf("Failed to load ROM %s\n", path);
return false;
}
}
void LoadBIOS()
{
Reset();
Running = true;
}
2018-10-23 22:24:36 +00:00
void RelocateSave(const char* path, bool write)
{
printf("SRAM: relocating to %s (write=%s)\n", path, write?"true":"false");
NDSCart::RelocateSave(path, write);
}
u64 NextTarget()
{
u64 ret = SysTimestamp + kMaxIterationCycles;
u32 mask = SchedListMask;
for (int i = 0; i < Event_MAX; i++)
{
if (!mask) break;
if (mask & 0x1)
{
if (SchedList[i].Timestamp < ret)
ret = SchedList[i].Timestamp;
}
mask >>= 1;
}
return ret;
}
void RunSystem(u64 timestamp)
{
SysTimestamp = timestamp;
u32 mask = SchedListMask;
for (int i = 0; i < Event_MAX; i++)
{
if (!mask) break;
if (mask & 0x1)
{
if (SchedList[i].Timestamp <= SysTimestamp)
{
SchedListMask &= ~(1<<i);
SchedList[i].Func(SchedList[i].Param);
}
}
mask >>= 1;
}
}
2019-07-14 02:33:36 +00:00
template <bool EnableJIT>
u32 RunFrame()
{
FrameStartTimestamp = SysTimestamp;
if (!Running) return 263; // dorp
if (CPUStop & 0x40000000) return 263;
2017-01-18 03:03:19 +00:00
GPU::StartFrame();
while (Running && GPU::TotalScanlines==0)
{
// TODO: give it some margin, so it can directly do 17 cycles instead of 16 then 1
u64 target = NextTarget();
ARM9Target = target << ARM9ClockShift;
CurCPU = 0;
if (CPUStop & 0x80000000)
{
// GXFIFO stall
s32 cycles = GPU3D::CyclesToRunFor();
ARM9Timestamp = std::min(ARM9Target, ARM9Timestamp+(cycles<<ARM9ClockShift));
}
else if (CPUStop & 0x0FFF)
{
DMAs[0]->Run();
if (!(CPUStop & 0x80000000)) DMAs[1]->Run();
if (!(CPUStop & 0x80000000)) DMAs[2]->Run();
if (!(CPUStop & 0x80000000)) DMAs[3]->Run();
}
else
{
2019-07-14 17:24:00 +00:00
#ifdef JIT_ENABLED
2019-07-14 02:33:36 +00:00
if (EnableJIT)
ARM9->ExecuteJIT();
else
2019-07-14 17:24:00 +00:00
#endif
2019-07-14 02:33:36 +00:00
ARM9->Execute();
}
RunTimers(0);
GPU3D::Run();
target = ARM9Timestamp >> ARM9ClockShift;
CurCPU = 1;
while (ARM7Timestamp < target)
{
ARM7Target = target; // might be changed by a reschedule
if (CPUStop & 0x0FFF0000)
{
DMAs[4]->Run();
DMAs[5]->Run();
DMAs[6]->Run();
DMAs[7]->Run();
}
else
{
2019-07-14 17:24:00 +00:00
#ifdef JIT_ENABLED
2019-07-14 02:33:36 +00:00
if (EnableJIT)
ARM7->ExecuteJIT();
else
2019-07-14 17:24:00 +00:00
#endif
2019-07-14 02:33:36 +00:00
ARM7->Execute();
}
RunTimers(1);
}
2018-12-12 01:48:37 +00:00
RunSystem(target);
if (CPUStop & 0x40000000)
{
// checkme: when is sleep mode effective?
//CancelEvent(Event_LCD);
//GPU::TotalScanlines = 263;
break;
}
}
#ifdef DEBUG_CHECK_DESYNC
printf("[%08X%08X] ARM9=%ld, ARM7=%ld, GPU=%ld\n",
(u32)(SysTimestamp>>32), (u32)SysTimestamp,
(ARM9Timestamp>>1)-SysTimestamp,
ARM7Timestamp-SysTimestamp,
GPU3D::Timestamp-SysTimestamp);
#endif
2018-12-12 01:48:37 +00:00
NumFrames++;
return GPU::TotalScanlines;
}
2019-07-14 02:33:36 +00:00
u32 RunFrame()
{
2019-07-14 17:24:00 +00:00
#ifdef JIT_ENABLED
2019-07-14 02:33:36 +00:00
if (Config::JIT_Enable)
return RunFrame<true>();
else
2019-07-14 17:24:00 +00:00
#endif
2019-07-14 02:33:36 +00:00
return RunFrame<false>();
}
void Reschedule(u64 target)
{
if (CurCPU == 0)
{
if (target < (ARM9Target >> ARM9ClockShift))
ARM9Target = (target << ARM9ClockShift);
}
else
{
if (target < ARM7Target)
ARM7Target = target;
}
}
void ScheduleEvent(u32 id, bool periodic, s32 delay, void (*func)(u32), u32 param)
{
if (SchedListMask & (1<<id))
{
printf("!! EVENT %d ALREADY SCHEDULED\n", id);
return;
}
SchedEvent* evt = &SchedList[id];
if (periodic)
evt->Timestamp += delay;
else
{
if (CurCPU == 0)
evt->Timestamp = (ARM9Timestamp >> ARM9ClockShift) + delay;
else
evt->Timestamp = ARM7Timestamp + delay;
}
evt->Func = func;
evt->Param = param;
SchedListMask |= (1<<id);
Reschedule(evt->Timestamp);
}
void CancelEvent(u32 id)
{
SchedListMask &= ~(1<<id);
}
void PressKey(u32 key)
{
KeyInput &= ~(1 << key);
}
void ReleaseKey(u32 key)
{
KeyInput |= (1 << key);
}
void TouchScreen(u16 x, u16 y)
{
SPI_TSC::SetTouchCoords(x, y);
}
void ReleaseScreen()
{
SPI_TSC::SetTouchCoords(0x000, 0xFFF);
}
void SetKeyMask(u32 mask)
{
u32 key_lo = mask & 0x3FF;
u32 key_hi = (mask >> 10) & 0x3;
KeyInput &= 0xFFFCFC00;
KeyInput |= key_lo | (key_hi << 16);
}
void SetLidClosed(bool closed)
{
if (closed)
{
KeyInput |= (1<<23);
}
else
{
KeyInput &= ~(1<<23);
SetIRQ(1, IRQ_LidOpen);
CPUStop &= ~0x40000000;
}
}
void MicInputFrame(s16* data, int samples)
{
return SPI_TSC::MicInputFrame(data, samples);
}
void Halt()
{
2016-12-06 16:32:51 +00:00
printf("Halt()\n");
Running = false;
}
2016-12-06 16:32:51 +00:00
void MapSharedWRAM(u8 val)
2016-12-03 17:29:19 +00:00
{
2016-12-06 16:32:51 +00:00
WRAMCnt = val;
2016-12-03 17:29:19 +00:00
switch (WRAMCnt & 0x3)
{
case 0:
SWRAM_ARM9 = &SharedWRAM[0];
SWRAM_ARM9Mask = 0x7FFF;
SWRAM_ARM7 = NULL;
SWRAM_ARM7Mask = 0;
break;
case 1:
SWRAM_ARM9 = &SharedWRAM[0x4000];
SWRAM_ARM9Mask = 0x3FFF;
SWRAM_ARM7 = &SharedWRAM[0];
SWRAM_ARM7Mask = 0x3FFF;
break;
case 2:
SWRAM_ARM9 = &SharedWRAM[0];
SWRAM_ARM9Mask = 0x3FFF;
SWRAM_ARM7 = &SharedWRAM[0x4000];
SWRAM_ARM7Mask = 0x3FFF;
break;
case 3:
SWRAM_ARM9 = NULL;
SWRAM_ARM9Mask = 0;
SWRAM_ARM7 = &SharedWRAM[0];
SWRAM_ARM7Mask = 0x7FFF;
break;
}
}
void SetWifiWaitCnt(u16 val)
{
if (WifiWaitCnt == val) return;
WifiWaitCnt = val;
const int ntimings[4] = {10, 8, 6, 18};
SetARM7RegionTimings(0x04800000, 0x04808000, 16, ntimings[val & 0x3], (val & 0x4) ? 4 : 6);
SetARM7RegionTimings(0x04808000, 0x04810000, 16, ntimings[(val>>3) & 0x3], (val & 0x20) ? 4 : 10);
}
void SetGBASlotTimings()
{
int curcpu = (ExMemCnt[0] >> 7) & 0x1;
const int ntimings[4] = {10, 8, 6, 18};
u16 curcnt = ExMemCnt[curcpu];
int ramN = ntimings[curcnt & 0x3];
int romN = ntimings[(curcnt>>2) & 0x3];
int romS = (curcnt & 0x10) ? 4 : 6;
// TODO: PHI pin thing?
if (curcpu == 0)
{
SetARM9RegionTimings(0x08000000, 0x0A000000, 16, romN + 3, romS);
SetARM9RegionTimings(0x0A000000, 0x0B000000, 8, ramN + 3, ramN);
SetARM7RegionTimings(0x08000000, 0x0A000000, 32, 1, 1);
SetARM7RegionTimings(0x0A000000, 0x0B000000, 32, 1, 1);
}
else
{
SetARM9RegionTimings(0x08000000, 0x0A000000, 32, 1, 1);
SetARM9RegionTimings(0x0A000000, 0x0B000000, 32, 1, 1);
SetARM7RegionTimings(0x08000000, 0x0A000000, 16, romN, romS);
SetARM7RegionTimings(0x0A000000, 0x0B000000, 8, ramN, ramN);
}
}
2019-06-08 20:16:51 +00:00
void UpdateIRQ(u32 cpu)
{
ARM* arm = cpu ? (ARM*)ARM7 : (ARM*)ARM9;
if (IME[cpu] & 0x1)
{
arm->IRQ = IE[cpu] & IF[cpu];
}
else
{
arm->IRQ = 0;
}
}
void SetIRQ(u32 cpu, u32 irq)
{
IF[cpu] |= (1 << irq);
2019-06-08 20:16:51 +00:00
UpdateIRQ(cpu);
}
2016-12-06 16:32:51 +00:00
void ClearIRQ(u32 cpu, u32 irq)
{
IF[cpu] &= ~(1 << irq);
2019-06-08 20:16:51 +00:00
UpdateIRQ(cpu);
}
2016-12-06 16:32:51 +00:00
bool HaltInterrupted(u32 cpu)
{
if (cpu == 0)
{
if (!(IME[0] & 0x1))
return false;
}
if (IF[cpu] & IE[cpu])
return true;
return false;
}
void StopCPU(u32 cpu, u32 mask)
{
if (cpu)
{
CPUStop |= (mask << 16);
ARM7->Halt(2);
}
else
{
CPUStop |= mask;
ARM9->Halt(2);
}
}
void ResumeCPU(u32 cpu, u32 mask)
{
if (cpu) mask <<= 16;
CPUStop &= ~mask;
}
void GXFIFOStall()
{
if (CPUStop & 0x80000000) return;
CPUStop |= 0x80000000;
if (CurCPU == 1) ARM9->Halt(2);
else
{
DMAs[0]->StallIfRunning();
DMAs[1]->StallIfRunning();
DMAs[2]->StallIfRunning();
DMAs[3]->StallIfRunning();
}
}
void GXFIFOUnstall()
{
CPUStop &= ~0x80000000;
}
void EnterSleepMode()
{
if (CPUStop & 0x40000000) return;
CPUStop |= 0x40000000;
ARM7->Halt(2);
}
u32 GetPC(u32 cpu)
{
return cpu ? ARM7->R[15] : ARM9->R[15];
}
2018-12-12 01:48:37 +00:00
u64 GetSysClockCycles(int num)
{
u64 ret;
if (num == 0 || num == 2)
2018-12-12 01:48:37 +00:00
{
if (CurCPU == 0)
ret = ARM9Timestamp >> ARM9ClockShift;
else
ret = ARM7Timestamp;
2018-12-12 01:48:37 +00:00
if (num == 2) ret -= FrameStartTimestamp;
2018-12-12 01:48:37 +00:00
}
else if (num == 1)
2018-12-12 01:48:37 +00:00
{
ret = LastSysClockCycles;
2018-12-12 02:09:48 +00:00
LastSysClockCycles = 0;
2018-12-12 01:48:37 +00:00
if (CurCPU == 0)
LastSysClockCycles = ARM9Timestamp >> ARM9ClockShift;
else
LastSysClockCycles = ARM7Timestamp;
2018-12-12 01:48:37 +00:00
}
return ret;
}
void NocashPrint(u32 ncpu, u32 addr)
{
// addr: u16 flags (TODO: research? libnds doesn't use those)
// addr+2: debug string
addr += 2;
ARM* cpu = ncpu ? (ARM*)ARM7 : (ARM*)ARM9;
u8 (*readfn)(u32) = ncpu ? NDS::ARM7Read8 : NDS::ARM9Read8;
char output[1024];
int ptr = 0;
for (int i = 0; i < 120 && ptr < 1023; )
{
char ch = readfn(addr++);
i++;
if (ch == '%')
{
char cmd[16]; int j;
for (j = 0; j < 15; )
{
char ch2 = readfn(addr++);
i++;
if (i >= 120) break;
if (ch2 == '%') break;
cmd[j++] = ch2;
}
cmd[j] = '\0';
char subs[64];
if (cmd[0] == 'r')
{
if (!strcmp(cmd, "r0")) sprintf(subs, "%08X", cpu->R[0]);
else if (!strcmp(cmd, "r1")) sprintf(subs, "%08X", cpu->R[1]);
else if (!strcmp(cmd, "r2")) sprintf(subs, "%08X", cpu->R[2]);
else if (!strcmp(cmd, "r3")) sprintf(subs, "%08X", cpu->R[3]);
else if (!strcmp(cmd, "r4")) sprintf(subs, "%08X", cpu->R[4]);
else if (!strcmp(cmd, "r5")) sprintf(subs, "%08X", cpu->R[5]);
else if (!strcmp(cmd, "r6")) sprintf(subs, "%08X", cpu->R[6]);
else if (!strcmp(cmd, "r7")) sprintf(subs, "%08X", cpu->R[7]);
else if (!strcmp(cmd, "r8")) sprintf(subs, "%08X", cpu->R[8]);
else if (!strcmp(cmd, "r9")) sprintf(subs, "%08X", cpu->R[9]);
else if (!strcmp(cmd, "r10")) sprintf(subs, "%08X", cpu->R[10]);
else if (!strcmp(cmd, "r11")) sprintf(subs, "%08X", cpu->R[11]);
else if (!strcmp(cmd, "r12")) sprintf(subs, "%08X", cpu->R[12]);
else if (!strcmp(cmd, "r13")) sprintf(subs, "%08X", cpu->R[13]);
else if (!strcmp(cmd, "r14")) sprintf(subs, "%08X", cpu->R[14]);
else if (!strcmp(cmd, "r15")) sprintf(subs, "%08X", cpu->R[15]);
}
else
{
if (!strcmp(cmd, "sp")) sprintf(subs, "%08X", cpu->R[13]);
else if (!strcmp(cmd, "lr")) sprintf(subs, "%08X", cpu->R[14]);
else if (!strcmp(cmd, "pc")) sprintf(subs, "%08X", cpu->R[15]);
2018-12-12 02:09:48 +00:00
else if (!strcmp(cmd, "frame")) sprintf(subs, "%u", NumFrames);
else if (!strcmp(cmd, "scanline")) sprintf(subs, "%u", GPU::VCount);
2018-12-12 01:48:37 +00:00
else if (!strcmp(cmd, "totalclks")) sprintf(subs, "%lu", GetSysClockCycles(0));
else if (!strcmp(cmd, "lastclks")) sprintf(subs, "%lu", GetSysClockCycles(1));
else if (!strcmp(cmd, "zeroclks"))
{
sprintf(subs, "");
GetSysClockCycles(1);
}
}
int slen = strlen(subs);
if ((ptr+slen) > 1023) slen = 1023-ptr;
strncpy(&output[ptr], subs, slen);
ptr += slen;
}
else
{
output[ptr++] = ch;
if (ch == '\0') break;
}
}
output[ptr] = '\0';
printf("%s", output);
}
2020-02-24 17:31:44 +00:00
void MonitorARM9Jump(u32 addr)
{
// checkme: can the entrypoint addr be THUMB?
if ((!RunningGame) && NDSCart::CartROM)
{
if (addr == *(u32*)&NDSCart::CartROM[0x24])
{
printf("Game is now booting\n");
RunningGame = true;
}
}
}
void HandleTimerOverflow(u32 tid)
{
Timer* timer = &Timers[tid];
timer->Counter += timer->Reload << 16;
if (timer->Cnt & (1<<6))
SetIRQ(tid >> 2, IRQ_Timer0 + (tid & 0x3));
if ((tid & 0x3) == 3)
return;
for (;;)
{
tid++;
timer = &Timers[tid];
if ((timer->Cnt & 0x84) != 0x84)
break;
timer->Counter += 0x10000;
if (timer->Counter >> 16)
break;
timer->Counter = timer->Reload << 16;
if (timer->Cnt & (1<<6))
SetIRQ(tid >> 2, IRQ_Timer0 + (tid & 0x3));
if ((tid & 0x3) == 3)
break;
}
}
void RunTimer(u32 tid, s32 cycles)
{
Timer* timer = &Timers[tid];
u32 oldcount = timer->Counter;
timer->Counter += (cycles << timer->CycleShift);
if (timer->Counter < oldcount)
HandleTimerOverflow(tid);
}
void RunTimers(u32 cpu)
{
2017-04-24 23:14:26 +00:00
register u32 timermask = TimerCheckMask[cpu];
s32 cycles;
if (cpu == 0)
cycles = (ARM9Timestamp >> ARM9ClockShift) - TimerTimestamp[0];
else
cycles = ARM7Timestamp - TimerTimestamp[1];
2017-04-24 23:14:26 +00:00
if (timermask & 0x1) RunTimer((cpu<<2)+0, cycles);
if (timermask & 0x2) RunTimer((cpu<<2)+1, cycles);
if (timermask & 0x4) RunTimer((cpu<<2)+2, cycles);
if (timermask & 0x8) RunTimer((cpu<<2)+3, cycles);
TimerTimestamp[cpu] += cycles;
}
2017-06-26 09:02:10 +00:00
bool DMAsInMode(u32 cpu, u32 mode)
{
cpu <<= 2;
if (DMAs[cpu+0]->IsInMode(mode)) return true;
if (DMAs[cpu+1]->IsInMode(mode)) return true;
if (DMAs[cpu+2]->IsInMode(mode)) return true;
if (DMAs[cpu+3]->IsInMode(mode)) return true;
return false;
}
bool DMAsRunning(u32 cpu)
{
cpu <<= 2;
if (DMAs[cpu+0]->IsRunning()) return true;
if (DMAs[cpu+1]->IsRunning()) return true;
if (DMAs[cpu+2]->IsRunning()) return true;
if (DMAs[cpu+3]->IsRunning()) return true;
return false;
}
2017-01-22 19:34:59 +00:00
void CheckDMAs(u32 cpu, u32 mode)
{
cpu <<= 2;
DMAs[cpu+0]->StartIfNeeded(mode);
DMAs[cpu+1]->StartIfNeeded(mode);
DMAs[cpu+2]->StartIfNeeded(mode);
DMAs[cpu+3]->StartIfNeeded(mode);
}
2017-03-20 21:18:35 +00:00
void StopDMAs(u32 cpu, u32 mode)
{
cpu <<= 2;
DMAs[cpu+0]->StopIfNeeded(mode);
DMAs[cpu+1]->StopIfNeeded(mode);
DMAs[cpu+2]->StopIfNeeded(mode);
DMAs[cpu+3]->StopIfNeeded(mode);
}
2017-01-22 19:34:59 +00:00
const s32 TimerPrescaler[4] = {0, 6, 8, 10};
u16 TimerGetCounter(u32 timer)
{
RunTimers(timer>>2);
u32 ret = Timers[timer].Counter;
return ret >> 16;
}
void TimerStart(u32 id, u16 cnt)
{
Timer* timer = &Timers[id];
u16 curstart = timer->Cnt & (1<<7);
u16 newstart = cnt & (1<<7);
timer->Cnt = cnt;
timer->CycleShift = 16 - TimerPrescaler[cnt & 0x03];
if ((!curstart) && newstart)
{
timer->Counter = timer->Reload << 16;
/*if ((cnt & 0x84) == 0x80)
{
u32 delay = (0x10000 - timer->Reload) << TimerPrescaler[cnt & 0x03];
printf("timer%d IRQ: start %d, reload=%04X cnt=%08X\n", id, delay, timer->Reload, timer->Counter);
CancelEvent(Event_TimerIRQ_0 + id);
ScheduleEvent(Event_TimerIRQ_0 + id, false, delay, HandleTimerOverflow, id);
}*/
}
2017-04-24 23:14:26 +00:00
if ((cnt & 0x84) == 0x80)
{
u32 tmask;
//if ((cnt & 0x03) == 0)
tmask = 0x01 << (id&0x3);
//else
// tmask = 0x10 << (id&0x3);
TimerCheckMask[id>>2] |= tmask;
}
2017-04-24 23:14:26 +00:00
else
TimerCheckMask[id>>2] &= ~(0x11 << (id&0x3));
}
void DivDone(u32 param)
{
DivCnt &= ~0xC000;
switch (DivCnt & 0x0003)
{
case 0x0000:
{
s32 num = (s32)DivNumerator[0];
s32 den = (s32)DivDenominator[0];
if (den == 0)
{
DivQuotient[0] = (num<0) ? 1:-1;
2019-08-24 15:52:24 +00:00
DivQuotient[1] = (num<0) ? -1:0;
*(s64*)&DivRemainder[0] = num;
}
else if (num == -0x80000000 && den == -1)
{
*(s64*)&DivQuotient[0] = 0x80000000;
}
else
{
*(s64*)&DivQuotient[0] = (s64)(num / den);
*(s64*)&DivRemainder[0] = (s64)(num % den);
}
}
break;
case 0x0001:
case 0x0003:
{
s64 num = *(s64*)&DivNumerator[0];
s32 den = (s32)DivDenominator[0];
if (den == 0)
{
*(s64*)&DivQuotient[0] = (num<0) ? 1:-1;
*(s64*)&DivRemainder[0] = num;
}
else if (num == -0x8000000000000000 && den == -1)
{
*(s64*)&DivQuotient[0] = 0x8000000000000000;
}
else
{
*(s64*)&DivQuotient[0] = (s64)(num / den);
*(s64*)&DivRemainder[0] = (s64)(num % den);
}
}
break;
case 0x0002:
{
s64 num = *(s64*)&DivNumerator[0];
s64 den = *(s64*)&DivDenominator[0];
if (den == 0)
{
*(s64*)&DivQuotient[0] = (num<0) ? 1:-1;
*(s64*)&DivRemainder[0] = num;
}
else if (num == -0x8000000000000000 && den == -1)
{
*(s64*)&DivQuotient[0] = 0x8000000000000000;
}
else
{
*(s64*)&DivQuotient[0] = (s64)(num / den);
*(s64*)&DivRemainder[0] = (s64)(num % den);
}
}
break;
}
if ((DivDenominator[0] | DivDenominator[1]) == 0)
DivCnt |= 0x4000;
}
void StartDiv()
2017-01-31 20:53:45 +00:00
{
NDS::CancelEvent(NDS::Event_Div);
DivCnt |= 0x8000;
NDS::ScheduleEvent(NDS::Event_Div, false, ((DivCnt&0x3)==0) ? 18:34, DivDone, 0);
}
2017-01-31 20:53:45 +00:00
// http://stackoverflow.com/questions/1100090/looking-for-an-efficient-integer-square-root-algorithm-for-arm-thumb2
void SqrtDone(u32 param)
{
2017-01-31 20:53:45 +00:00
u64 val;
u32 res = 0;
u64 rem = 0;
u32 prod = 0;
u32 nbits, topshift;
SqrtCnt &= ~0x8000;
2017-01-31 20:53:45 +00:00
if (SqrtCnt & 0x0001)
{
val = *(u64*)&SqrtVal[0];
nbits = 32;
topshift = 62;
}
else
{
val = (u64)SqrtVal[0]; // 32bit
nbits = 16;
topshift = 30;
}
for (u32 i = 0; i < nbits; i++)
{
rem = (rem << 2) + ((val >> topshift) & 0x3);
val <<= 2;
res <<= 1;
prod = (res << 1) + 1;
if (rem >= prod)
{
rem -= prod;
res++;
}
}
SqrtRes = res;
}
void StartSqrt()
{
NDS::CancelEvent(NDS::Event_Sqrt);
SqrtCnt |= 0x8000;
NDS::ScheduleEvent(NDS::Event_Sqrt, false, 13, SqrtDone, 0);
}
2016-12-06 16:32:51 +00:00
void debug(u32 param)
{
printf("ARM9 PC=%08X LR=%08X %08X\n", ARM9->R[15], ARM9->R[14], ARM9->R_IRQ[1]);
printf("ARM7 PC=%08X LR=%08X %08X\n", ARM7->R[15], ARM7->R[14], ARM7->R_IRQ[1]);
2017-02-27 23:50:54 +00:00
printf("ARM9 IME=%08X IE=%08X IF=%08X\n", IME[0], IE[0], IF[0]);
printf("ARM7 IME=%08X IE=%08X IF=%08X\n", IME[1], IE[1], IF[1]);
//for (int i = 0; i < 9; i++)
// printf("VRAM %c: %02X\n", 'A'+i, GPU::VRAMCNT[i]);
FILE*
shit = fopen("debug/party.bin", "wb");
fwrite(ARM9->ITCM, 0x8000, 1, shit);
for (u32 i = 0x02000000; i < 0x02400000; i+=4)
{
u32 val = ARM7Read32(i);
fwrite(&val, 4, 1, shit);
}
2017-05-09 01:54:37 +00:00
for (u32 i = 0x037F0000; i < 0x03810000; i+=4)
{
u32 val = ARM7Read32(i);
fwrite(&val, 4, 1, shit);
}
fclose(shit);
2016-12-06 16:32:51 +00:00
}
u8 ARM9Read8(u32 addr)
{
if ((addr & 0xFFFFF000) == 0xFFFF0000)
{
return *(u8*)&ARM9BIOS[addr & 0xFFF];
}
2016-12-03 12:42:27 +00:00
switch (addr & 0xFF000000)
{
case 0x02000000:
return *(u8*)&MainRAM[addr & (MAIN_RAM_SIZE - 1)];
2016-12-03 17:29:19 +00:00
case 0x03000000:
if (SWRAM_ARM9)
{
return *(u8*)&SWRAM_ARM9[addr & SWRAM_ARM9Mask];
}
else
{
return 0;
}
2016-12-03 17:29:19 +00:00
case 0x04000000:
return ARM9IORead8(addr);
case 0x05000000:
if (!(PowerControl9 & ((addr & 0x400) ? (1<<9) : (1<<1)))) return 0;
return *(u8*)&GPU::Palette[addr & 0x7FF];
2016-12-06 16:32:51 +00:00
case 0x06000000:
switch (addr & 0x00E00000)
{
case 0x00000000: return GPU::ReadVRAM_ABG<u8>(addr);
case 0x00200000: return GPU::ReadVRAM_BBG<u8>(addr);
case 0x00400000: return GPU::ReadVRAM_AOBJ<u8>(addr);
case 0x00600000: return GPU::ReadVRAM_BOBJ<u8>(addr);
default: return GPU::ReadVRAM_LCDC<u8>(addr);
}
2016-12-06 16:32:51 +00:00
case 0x07000000:
if (!(PowerControl9 & ((addr & 0x400) ? (1<<9) : (1<<1)))) return 0;
return *(u8*)&GPU::OAM[addr & 0x7FF];
case 0x08000000:
case 0x09000000:
if (ExMemCnt[0] & (1<<7)) return 0x00; // deselected CPU is 00h-filled
if (GBACart::CartInserted)
{
return *(u8*)&GBACart::CartROM[addr & (GBACart::CartROMSize-1)];
}
return 0xFF; // TODO: proper open bus
case 0x0A000000:
if (ExMemCnt[0] & (1<<7)) return 0x00; // deselected CPU is 00h-filled
if (GBACart::CartInserted)
{
return GBACart_SRAM::Read8(addr & (GBACart_SRAM::SRAMLength-1));
}
return 0xFF; // TODO: proper open bus
2016-12-03 12:42:27 +00:00
}
printf("unknown arm9 read8 %08X\n", addr);
return 0;
}
u16 ARM9Read16(u32 addr)
{
if ((addr & 0xFFFFF000) == 0xFFFF0000)
{
return *(u16*)&ARM9BIOS[addr & 0xFFF];
}
2016-12-03 12:42:27 +00:00
switch (addr & 0xFF000000)
{
case 0x02000000:
return *(u16*)&MainRAM[addr & (MAIN_RAM_SIZE - 1)];
2016-12-03 17:29:19 +00:00
case 0x03000000:
if (SWRAM_ARM9)
{
return *(u16*)&SWRAM_ARM9[addr & SWRAM_ARM9Mask];
}
else
{
return 0;
}
2016-12-03 17:29:19 +00:00
case 0x04000000:
return ARM9IORead16(addr);
2016-12-06 16:32:51 +00:00
case 0x05000000:
if (!(PowerControl9 & ((addr & 0x400) ? (1<<9) : (1<<1)))) return 0;
return *(u16*)&GPU::Palette[addr & 0x7FF];
2016-12-06 16:32:51 +00:00
case 0x06000000:
switch (addr & 0x00E00000)
{
case 0x00000000: return GPU::ReadVRAM_ABG<u16>(addr);
case 0x00200000: return GPU::ReadVRAM_BBG<u16>(addr);
case 0x00400000: return GPU::ReadVRAM_AOBJ<u16>(addr);
case 0x00600000: return GPU::ReadVRAM_BOBJ<u16>(addr);
default: return GPU::ReadVRAM_LCDC<u16>(addr);
}
2016-12-06 16:32:51 +00:00
case 0x07000000:
if (!(PowerControl9 & ((addr & 0x400) ? (1<<9) : (1<<1)))) return 0;
return *(u16*)&GPU::OAM[addr & 0x7FF];
case 0x08000000:
case 0x09000000:
if (ExMemCnt[0] & (1<<7)) return 0x0000; // deselected CPU is 00h-filled
if (GBACart::CartInserted)
{
return *(u16*)&GBACart::CartROM[addr & (GBACart::CartROMSize-1)];
}
return 0xFFFF; // TODO: proper open bus
case 0x0A000000:
if (ExMemCnt[0] & (1<<7)) return 0x0000; // deselected CPU is 00h-filled
if (GBACart::CartInserted)
{
return GBACart_SRAM::Read16(addr & (GBACart_SRAM::SRAMLength-1));
}
return 0xFFFF; // TODO: proper open bus
2016-12-03 12:42:27 +00:00
}
//printf("unknown arm9 read16 %08X %08X\n", addr, ARM9->R[15]);
return 0;
}
u32 ARM9Read32(u32 addr)
{
if ((addr & 0xFFFFF000) == 0xFFFF0000)
{
return *(u32*)&ARM9BIOS[addr & 0xFFF];
}
2016-12-03 12:42:27 +00:00
switch (addr & 0xFF000000)
{
case 0x02000000:
return *(u32*)&MainRAM[addr & (MAIN_RAM_SIZE - 1)];
2016-12-03 17:29:19 +00:00
case 0x03000000:
if (SWRAM_ARM9)
{
return *(u32*)&SWRAM_ARM9[addr & SWRAM_ARM9Mask];
}
else
{
return 0;
}
case 0x04000000:
return ARM9IORead32(addr);
case 0x05000000:
if (!(PowerControl9 & ((addr & 0x400) ? (1<<9) : (1<<1)))) return 0;
return *(u32*)&GPU::Palette[addr & 0x7FF];
2016-12-06 16:32:51 +00:00
case 0x06000000:
switch (addr & 0x00E00000)
{
case 0x00000000: return GPU::ReadVRAM_ABG<u32>(addr);
case 0x00200000: return GPU::ReadVRAM_BBG<u32>(addr);
case 0x00400000: return GPU::ReadVRAM_AOBJ<u32>(addr);
case 0x00600000: return GPU::ReadVRAM_BOBJ<u32>(addr);
default: return GPU::ReadVRAM_LCDC<u32>(addr);
}
2016-12-06 16:32:51 +00:00
case 0x07000000:
if (!(PowerControl9 & ((addr & 0x400) ? (1<<9) : (1<<1)))) return 0;
return *(u32*)&GPU::OAM[addr & 0x7FF];
case 0x08000000:
case 0x09000000:
if (ExMemCnt[0] & (1<<7)) return 0x00000000; // deselected CPU is 00h-filled
if (GBACart::CartInserted)
{
return *(u32*)&GBACart::CartROM[addr & (GBACart::CartROMSize-1)];
}
return 0xFFFFFFFF; // TODO: proper open bus
case 0x0A000000:
if (ExMemCnt[0] & (1<<7)) return 0x00000000; // deselected CPU is 00h-filled
if (GBACart::CartInserted)
{
return GBACart_SRAM::Read32(addr & (GBACart_SRAM::SRAMLength-1));
}
return 0xFFFFFFFF; // TODO: proper open bus
2016-12-03 12:42:27 +00:00
}
printf("unknown arm9 read32 %08X | %08X %08X\n", addr, ARM9->R[15], ARM9->R[12]);
return 0;
2016-05-16 15:48:40 +00:00
}
void ARM9Write8(u32 addr, u8 val)
{
2019-07-14 17:24:00 +00:00
#ifdef JIT_ENABLED
ARMJIT::Invalidate16<0>(addr);
2019-07-14 17:24:00 +00:00
#endif
2016-12-03 12:42:27 +00:00
switch (addr & 0xFF000000)
{
case 0x02000000:
*(u8*)&MainRAM[addr & (MAIN_RAM_SIZE - 1)] = val;
return;
2016-12-03 17:29:19 +00:00
case 0x03000000:
if (SWRAM_ARM9)
{
*(u8*)&SWRAM_ARM9[addr & SWRAM_ARM9Mask] = val;
}
return;
2016-12-03 17:29:19 +00:00
case 0x04000000:
ARM9IOWrite8(addr, val);
return;
2016-12-06 16:32:51 +00:00
case 0x05000000:
case 0x06000000:
case 0x07000000:
// checkme
return;
2019-12-08 22:56:22 +00:00
2019-12-10 23:44:53 +00:00
case 0x08000000:
case 0x09000000:
if (ExMemCnt[0] & (1<<7)) return; // deselected CPU, skip the write
if (GBACart::CartInserted)
{
if ((addr & 0x00FFFFFF) >= 0xC4 && (addr & 0x00FFFFFF) <= 0xC9)
{
GBACart::WriteGPIO(addr & (GBACart::CartROMSize-1), val);
return;
}
}
break;
2019-12-08 22:56:22 +00:00
case 0x0A000000:
if (ExMemCnt[0] & (1<<7)) return; // deselected CPU, skip the write
if (GBACart::CartInserted)
{
GBACart_SRAM::Write8(addr & (GBACart_SRAM::SRAMLength-1), val);
}
return;
2016-12-03 12:42:27 +00:00
}
printf("unknown arm9 write8 %08X %02X\n", addr, val);
}
void ARM9Write16(u32 addr, u16 val)
{
2019-07-14 17:24:00 +00:00
#ifdef JIT_ENABLED
ARMJIT::Invalidate16<0>(addr);
2019-07-14 17:24:00 +00:00
#endif
2016-12-03 12:42:27 +00:00
switch (addr & 0xFF000000)
{
case 0x02000000:
*(u16*)&MainRAM[addr & (MAIN_RAM_SIZE - 1)] = val;
return;
2016-12-03 17:29:19 +00:00
case 0x03000000:
if (SWRAM_ARM9)
{
*(u16*)&SWRAM_ARM9[addr & SWRAM_ARM9Mask] = val;
}
return;
2016-12-03 17:29:19 +00:00
case 0x04000000:
ARM9IOWrite16(addr, val);
return;
2016-12-06 16:32:51 +00:00
case 0x05000000:
if (!(PowerControl9 & ((addr & 0x400) ? (1<<9) : (1<<1)))) return;
2017-01-18 03:03:19 +00:00
*(u16*)&GPU::Palette[addr & 0x7FF] = val;
return;
2016-12-06 16:32:51 +00:00
case 0x06000000:
switch (addr & 0x00E00000)
{
case 0x00000000: GPU::WriteVRAM_ABG<u16>(addr, val); return;
case 0x00200000: GPU::WriteVRAM_BBG<u16>(addr, val); return;
case 0x00400000: GPU::WriteVRAM_AOBJ<u16>(addr, val); return;
case 0x00600000: GPU::WriteVRAM_BOBJ<u16>(addr, val); return;
default: GPU::WriteVRAM_LCDC<u16>(addr, val); return;
}
2016-12-06 16:32:51 +00:00
case 0x07000000:
if (!(PowerControl9 & ((addr & 0x400) ? (1<<9) : (1<<1)))) return;
2017-01-18 03:03:19 +00:00
*(u16*)&GPU::OAM[addr & 0x7FF] = val;
return;
2019-12-08 22:56:22 +00:00
2019-12-10 23:44:53 +00:00
case 0x08000000:
case 0x09000000:
if (ExMemCnt[0] & (1<<7)) return; // deselected CPU, skip the write
if (GBACart::CartInserted)
{
// Note: the lower bound is adjusted such that a write starting
// there will hit the first byte of the GPIO region.
if ((addr & 0x00FFFFFF) >= 0xC3 && (addr & 0x00FFFFFF) <= 0xC9)
{
GBACart::WriteGPIO(addr & (GBACart::CartROMSize-1), val);
return;
}
}
break;
2019-12-08 22:56:22 +00:00
case 0x0A000000:
if (ExMemCnt[0] & (1<<7)) return; // deselected CPU, skip the write
if (GBACart::CartInserted)
{
GBACart_SRAM::Write16(addr & (GBACart_SRAM::SRAMLength-1), val);
}
return;
2016-12-03 12:42:27 +00:00
}
2017-12-07 00:04:00 +00:00
//printf("unknown arm9 write16 %08X %04X\n", addr, val);
}
void ARM9Write32(u32 addr, u32 val)
2018-12-18 01:00:50 +00:00
{
2019-07-14 17:24:00 +00:00
#ifdef JIT_ENABLED
ARMJIT::Invalidate32<0>(addr);
2019-07-14 17:24:00 +00:00
#endif
2016-12-03 12:42:27 +00:00
switch (addr & 0xFF000000)
{
case 0x02000000:
*(u32*)&MainRAM[addr & (MAIN_RAM_SIZE - 1)] = val;
return ;
2016-12-03 17:29:19 +00:00
case 0x03000000:
if (SWRAM_ARM9)
{
*(u32*)&SWRAM_ARM9[addr & SWRAM_ARM9Mask] = val;
}
return;
case 0x04000000:
ARM9IOWrite32(addr, val);
return;
2016-12-06 16:32:51 +00:00
case 0x05000000:
if (!(PowerControl9 & ((addr & 0x400) ? (1<<9) : (1<<1)))) return;
2017-01-18 03:03:19 +00:00
*(u32*)&GPU::Palette[addr & 0x7FF] = val;
return;
2016-12-06 16:32:51 +00:00
case 0x06000000:
switch (addr & 0x00E00000)
{
case 0x00000000: GPU::WriteVRAM_ABG<u32>(addr, val); return;
case 0x00200000: GPU::WriteVRAM_BBG<u32>(addr, val); return;
case 0x00400000: GPU::WriteVRAM_AOBJ<u32>(addr, val); return;
case 0x00600000: GPU::WriteVRAM_BOBJ<u32>(addr, val); return;
default: GPU::WriteVRAM_LCDC<u32>(addr, val); return;
}
2016-12-06 16:32:51 +00:00
case 0x07000000:
if (!(PowerControl9 & ((addr & 0x400) ? (1<<9) : (1<<1)))) return;
2017-01-18 03:03:19 +00:00
*(u32*)&GPU::OAM[addr & 0x7FF] = val;
return;
2019-12-08 22:56:22 +00:00
2019-12-10 23:44:53 +00:00
case 0x08000000:
case 0x09000000:
if (ExMemCnt[0] & (1<<7)) return; // deselected CPU, skip the write
if (GBACart::CartInserted)
{
// Note: the lower bound is adjusted such that a write starting
// there will hit the first byte of the GPIO region.
if ((addr & 0x00FFFFFF) >= 0xC1 && (addr & 0x00FFFFFF) <= 0xC9)
{
GBACart::WriteGPIO(addr & (GBACart::CartROMSize-1), val & 0xFF);
GBACart::WriteGPIO((addr + 2) & (GBACart::CartROMSize-1), (val >> 16) & 0xFF);
return;
}
}
break;
2019-12-08 22:56:22 +00:00
case 0x0A000000:
if (ExMemCnt[0] & (1<<7)) return; // deselected CPU, skip the write
if (GBACart::CartInserted)
{
GBACart_SRAM::Write32(addr & (GBACart_SRAM::SRAMLength-1), val);
}
return;
2016-12-03 12:42:27 +00:00
}
printf("unknown arm9 write32 %08X %08X | %08X\n", addr, val, ARM9->R[15]);
}
bool ARM9GetMemRegion(u32 addr, bool write, MemRegion* region)
{
switch (addr & 0xFF000000)
{
case 0x02000000:
region->Mem = MainRAM;
region->Mask = MAIN_RAM_SIZE-1;
return true;
case 0x03000000:
if (SWRAM_ARM9)
{
region->Mem = SWRAM_ARM9;
region->Mask = SWRAM_ARM9Mask;
return true;
}
break;
}
if ((addr & 0xFFFFF000) == 0xFFFF0000 && !write)
{
region->Mem = ARM9BIOS;
region->Mask = 0xFFF;
return true;
}
region->Mem = NULL;
return false;
}
u8 ARM7Read8(u32 addr)
{
if (addr < 0x00004000)
{
if (ARM7->R[15] >= 0x4000)
return 0xFF;
if (addr < ARM7BIOSProt && ARM7->R[15] >= ARM7BIOSProt)
return 0xFF;
return *(u8*)&ARM7BIOS[addr];
}
2016-12-03 12:42:27 +00:00
switch (addr & 0xFF800000)
{
case 0x02000000:
case 0x02800000:
return *(u8*)&MainRAM[addr & (MAIN_RAM_SIZE - 1)];
2016-12-03 12:42:27 +00:00
2016-12-03 17:29:19 +00:00
case 0x03000000:
if (SWRAM_ARM7)
{
return *(u8*)&SWRAM_ARM7[addr & SWRAM_ARM7Mask];
}
else
{
return *(u8*)&ARM7WRAM[addr & 0xFFFF];
}
2016-12-03 17:29:19 +00:00
2016-12-03 12:42:27 +00:00
case 0x03800000:
return *(u8*)&ARM7WRAM[addr & 0xFFFF];
2016-12-03 17:29:19 +00:00
case 0x04000000:
return ARM7IORead8(addr);
case 0x06000000:
case 0x06800000:
return GPU::ReadVRAM_ARM7<u8>(addr);
case 0x08000000:
case 0x09000000:
if (!(ExMemCnt[0] & (1<<7))) return 0x00; // deselected CPU is 00h-filled
if (GBACart::CartInserted)
{
return *(u8*)&GBACart::CartROM[addr & (GBACart::CartROMSize-1)];
}
return 0xFF; // TODO: proper open bus
case 0x0A000000:
if (!(ExMemCnt[0] & (1<<7))) return 0x00; // deselected CPU is 00h-filled
if (GBACart::CartInserted)
{
return GBACart_SRAM::Read8(addr & (GBACart_SRAM::SRAMLength-1));
}
return 0xFF; // TODO: proper open bus
2016-12-03 12:42:27 +00:00
}
2017-01-18 00:33:06 +00:00
printf("unknown arm7 read8 %08X %08X %08X/%08X\n", addr, ARM7->R[15], ARM7->R[0], ARM7->R[1]);
return 0;
}
u16 ARM7Read16(u32 addr)
{
if (addr < 0x00004000)
{
if (ARM7->R[15] >= 0x4000)
return 0xFFFF;
if (addr < ARM7BIOSProt && ARM7->R[15] >= ARM7BIOSProt)
return 0xFFFF;
return *(u16*)&ARM7BIOS[addr];
}
2016-12-03 12:42:27 +00:00
switch (addr & 0xFF800000)
{
case 0x02000000:
case 0x02800000:
return *(u16*)&MainRAM[addr & (MAIN_RAM_SIZE - 1)];
2016-12-03 12:42:27 +00:00
2016-12-03 17:29:19 +00:00
case 0x03000000:
if (SWRAM_ARM7)
{
return *(u16*)&SWRAM_ARM7[addr & SWRAM_ARM7Mask];
}
else
{
return *(u16*)&ARM7WRAM[addr & 0xFFFF];
}
2016-12-03 17:29:19 +00:00
2016-12-03 12:42:27 +00:00
case 0x03800000:
return *(u16*)&ARM7WRAM[addr & 0xFFFF];
case 0x04000000:
return ARM7IORead16(addr);
case 0x04800000:
if (addr < 0x04810000)
{
return Wifi::Read(addr);
}
break;
case 0x06000000:
case 0x06800000:
return GPU::ReadVRAM_ARM7<u16>(addr);
case 0x08000000:
case 0x09000000:
if (!(ExMemCnt[0] & (1<<7))) return 0x0000; // deselected CPU is 00h-filled
if (GBACart::CartInserted)
{
return *(u16*)&GBACart::CartROM[addr & (GBACart::CartROMSize-1)];
}
return 0xFFFF; // TODO: proper open bus
case 0x0A000000:
if (!(ExMemCnt[0] & (1<<7))) return 0x0000; // deselected CPU is 00h-filled
if (GBACart::CartInserted)
{
return GBACart_SRAM::Read16(addr & (GBACart_SRAM::SRAMLength-1));
}
return 0xFFFF; // TODO: proper open bus
2016-12-03 12:42:27 +00:00
}
printf("unknown arm7 read16 %08X %08X\n", addr, ARM7->R[15]);
return 0;
}
u32 ARM7Read32(u32 addr)
{
if (addr < 0x00004000)
{
if (ARM7->R[15] >= 0x4000)
return 0xFFFFFFFF;
if (addr < ARM7BIOSProt && ARM7->R[15] >= ARM7BIOSProt)
return 0xFFFFFFFF;
return *(u32*)&ARM7BIOS[addr];
}
2016-12-03 12:42:27 +00:00
switch (addr & 0xFF800000)
{
case 0x02000000:
case 0x02800000:
return *(u32*)&MainRAM[addr & (MAIN_RAM_SIZE - 1)];
2016-12-03 12:42:27 +00:00
2016-12-03 17:29:19 +00:00
case 0x03000000:
if (SWRAM_ARM7)
{
return *(u32*)&SWRAM_ARM7[addr & SWRAM_ARM7Mask];
}
else
{
return *(u32*)&ARM7WRAM[addr & 0xFFFF];
}
2016-12-03 17:29:19 +00:00
2016-12-03 12:42:27 +00:00
case 0x03800000:
return *(u32*)&ARM7WRAM[addr & 0xFFFF];
2016-12-03 17:29:19 +00:00
case 0x04000000:
return ARM7IORead32(addr);
case 0x04800000:
if (addr < 0x04810000)
{
return Wifi::Read(addr) | (Wifi::Read(addr+2) << 16);
}
break;
case 0x06000000:
case 0x06800000:
return GPU::ReadVRAM_ARM7<u32>(addr);
case 0x08000000:
case 0x09000000:
if (!(ExMemCnt[0] & (1<<7))) return 0x00000000; // deselected CPU is 00h-filled
if (GBACart::CartInserted)
{
return *(u32*)&GBACart::CartROM[addr & (GBACart::CartROMSize-1)];
}
return 0xFFFFFFFF; // TODO: proper open bus
case 0x0A000000:
if (!(ExMemCnt[0] & (1<<7))) return 0x00000000; // deselected CPU is 00h-filled
if (GBACart::CartInserted)
{
return GBACart_SRAM::Read32(addr & (GBACart_SRAM::SRAMLength-1));
}
return 0xFFFFFFFF; // TODO: proper open bus
2016-12-03 12:42:27 +00:00
}
2016-12-03 16:58:24 +00:00
printf("unknown arm7 read32 %08X | %08X\n", addr, ARM7->R[15]);
return 0;
}
2016-05-16 15:48:40 +00:00
void ARM7Write8(u32 addr, u8 val)
{
2019-07-14 17:24:00 +00:00
#ifdef JIT_ENABLED
ARMJIT::Invalidate16<1>(addr);
2019-07-14 17:24:00 +00:00
#endif
2016-12-03 12:42:27 +00:00
switch (addr & 0xFF800000)
{
case 0x02000000:
case 0x02800000:
*(u8*)&MainRAM[addr & (MAIN_RAM_SIZE - 1)] = val;
return;
2016-12-03 12:42:27 +00:00
2016-12-03 17:29:19 +00:00
case 0x03000000:
if (SWRAM_ARM7)
{
*(u8*)&SWRAM_ARM7[addr & SWRAM_ARM7Mask] = val;
return;
}
else
{
*(u8*)&ARM7WRAM[addr & 0xFFFF] = val;
return;
}
2016-12-03 17:29:19 +00:00
2016-12-03 12:42:27 +00:00
case 0x03800000:
*(u8*)&ARM7WRAM[addr & 0xFFFF] = val;
return;
case 0x04000000:
ARM7IOWrite8(addr, val);
return;
case 0x06000000:
case 0x06800000:
GPU::WriteVRAM_ARM7<u8>(addr, val);
return;
2019-12-08 22:56:22 +00:00
2019-12-10 23:44:53 +00:00
case 0x08000000:
case 0x09000000:
if (!(ExMemCnt[0] & (1<<7))) return; // deselected CPU, skip the write
if (GBACart::CartInserted)
{
if ((addr & 0x00FFFFFF) >= 0xC4 && (addr & 0x00FFFFFF) <= 0xC9)
{
GBACart::WriteGPIO(addr & (GBACart::CartROMSize-1), val);
return;
}
}
break;
2019-12-08 22:56:22 +00:00
case 0x0A000000:
if (!(ExMemCnt[0] & (1<<7))) return; // deselected CPU, skip the write
if (GBACart::CartInserted)
{
GBACart_SRAM::Write8(addr & (GBACart_SRAM::SRAMLength-1), val);
}
return;
2016-12-03 12:42:27 +00:00
}
2017-04-12 14:58:09 +00:00
printf("unknown arm7 write8 %08X %02X @ %08X\n", addr, val, ARM7->R[15]);
}
void ARM7Write16(u32 addr, u16 val)
{
2019-07-14 17:24:00 +00:00
#ifdef JIT_ENABLED
ARMJIT::Invalidate16<1>(addr);
2019-07-14 17:24:00 +00:00
#endif
2016-12-03 12:42:27 +00:00
switch (addr & 0xFF800000)
{
case 0x02000000:
case 0x02800000:
*(u16*)&MainRAM[addr & (MAIN_RAM_SIZE - 1)] = val;
return;
2016-12-03 12:42:27 +00:00
2016-12-03 17:29:19 +00:00
case 0x03000000:
if (SWRAM_ARM7)
{
*(u16*)&SWRAM_ARM7[addr & SWRAM_ARM7Mask] = val;
return;
}
else
{
*(u16*)&ARM7WRAM[addr & 0xFFFF] = val;
return;
}
2016-12-03 17:29:19 +00:00
2016-12-03 12:42:27 +00:00
case 0x03800000:
*(u16*)&ARM7WRAM[addr & 0xFFFF] = val;
return;
case 0x04000000:
ARM7IOWrite16(addr, val);
return;
case 0x04800000:
if (addr < 0x04810000)
{
Wifi::Write(addr, val);
return;
}
break;
case 0x06000000:
case 0x06800000:
GPU::WriteVRAM_ARM7<u16>(addr, val);
return;
2019-12-08 22:56:22 +00:00
2019-12-10 23:44:53 +00:00
case 0x08000000:
case 0x09000000:
if (!(ExMemCnt[0] & (1<<7))) return; // deselected CPU, skip the write
if (GBACart::CartInserted)
{
// Note: the lower bound is adjusted such that a write starting
// there will hit the first byte of the GPIO region.
if ((addr & 0x00FFFFFF) >= 0xC3 && (addr & 0x00FFFFFF) <= 0xC9)
{
GBACart::WriteGPIO(addr & (GBACart::CartROMSize-1), val);
return;
}
}
break;
2019-12-08 22:56:22 +00:00
case 0x0A000000:
if (!(ExMemCnt[0] & (1<<7))) return; // deselected CPU, skip the write
if (GBACart::CartInserted)
{
GBACart_SRAM::Write16(addr & (GBACart_SRAM::SRAMLength-1), val);
}
return;
2016-12-03 12:42:27 +00:00
}
2017-06-05 12:10:12 +00:00
//printf("unknown arm7 write16 %08X %04X @ %08X\n", addr, val, ARM7->R[15]);
2016-05-16 15:48:40 +00:00
}
void ARM7Write32(u32 addr, u32 val)
2016-05-16 15:48:40 +00:00
{
2019-07-14 17:24:00 +00:00
#ifdef JIT_ENABLED
ARMJIT::Invalidate32<1>(addr);
2019-07-14 17:24:00 +00:00
#endif
2016-12-03 12:42:27 +00:00
switch (addr & 0xFF800000)
{
case 0x02000000:
case 0x02800000:
*(u32*)&MainRAM[addr & (MAIN_RAM_SIZE - 1)] = val;
return;
2016-12-03 12:42:27 +00:00
2016-12-03 17:29:19 +00:00
case 0x03000000:
if (SWRAM_ARM7)
{
*(u32*)&SWRAM_ARM7[addr & SWRAM_ARM7Mask] = val;
return;
}
else
{
*(u32*)&ARM7WRAM[addr & 0xFFFF] = val;
return;
}
2016-12-03 17:29:19 +00:00
2016-12-03 12:42:27 +00:00
case 0x03800000:
*(u32*)&ARM7WRAM[addr & 0xFFFF] = val;
return;
case 0x04000000:
ARM7IOWrite32(addr, val);
return;
case 0x04800000:
if (addr < 0x04810000)
{
Wifi::Write(addr, val & 0xFFFF);
Wifi::Write(addr+2, val >> 16);
return;
}
break;
case 0x06000000:
case 0x06800000:
GPU::WriteVRAM_ARM7<u32>(addr, val);
return;
2019-12-08 22:56:22 +00:00
2019-12-10 23:44:53 +00:00
case 0x08000000:
case 0x09000000:
if (!(ExMemCnt[0] & (1<<7))) return; // deselected CPU, skip the write
if (GBACart::CartInserted)
{
// Note: the lower bound is adjusted such that a write starting
// there will hit the first byte of the GPIO region.
if ((addr & 0x00FFFFFF) >= 0xC1 && (addr & 0x00FFFFFF) <= 0xC9)
{
GBACart::WriteGPIO(addr & (GBACart::CartROMSize-1), val & 0xFF);
GBACart::WriteGPIO((addr + 2) & (GBACart::CartROMSize-1), (val >> 16) & 0xFF);
return;
}
}
break;
2019-12-08 22:56:22 +00:00
case 0x0A000000:
if (!(ExMemCnt[0] & (1<<7))) return; // deselected CPU, skip the write
if (GBACart::CartInserted)
{
GBACart_SRAM::Write32(addr & (GBACart_SRAM::SRAMLength-1), val);
}
return;
2016-12-03 12:42:27 +00:00
}
2017-06-05 12:10:12 +00:00
//printf("unknown arm7 write32 %08X %08X @ %08X\n", addr, val, ARM7->R[15]);
2016-05-16 15:48:40 +00:00
}
bool ARM7GetMemRegion(u32 addr, bool write, MemRegion* region)
{
switch (addr & 0xFF800000)
{
case 0x02000000:
case 0x02800000:
region->Mem = MainRAM;
region->Mask = MAIN_RAM_SIZE-1;
return true;
case 0x03000000:
// note on this, and why we can only cover it in one particular case:
// it is typical for games to map all shared WRAM to the ARM7
// then access all the WRAM as one contiguous block starting at 0x037F8000
// this case needs a bit of a hack to cover
// it's not really worth bothering anyway
if (!SWRAM_ARM7)
{
region->Mem = ARM7WRAM;
region->Mask = 0xFFFF;
return true;
}
break;
case 0x03800000:
region->Mem = ARM7WRAM;
region->Mask = 0xFFFF;
return true;
}
// BIOS. ARM7 PC has to be within range.
if (addr < 0x00004000 && !write)
{
if (ARM7->R[15] < 0x4000 && (addr >= ARM7BIOSProt || ARM7->R[15] < ARM7BIOSProt))
{
region->Mem = ARM7BIOS;
region->Mask = 0x3FFF;
return true;
}
}
region->Mem = NULL;
return false;
}
#define CASE_READ8_16BIT(addr, val) \
case (addr): return (val) & 0xFF; \
case (addr+1): return (val) >> 8;
#define CASE_READ8_32BIT(addr, val) \
case (addr): return (val) & 0xFF; \
case (addr+1): return ((val) >> 8) & 0xFF; \
case (addr+2): return ((val) >> 16) & 0xFF; \
case (addr+3): return (val) >> 24;
u8 ARM9IORead8(u32 addr)
{
switch (addr)
{
case 0x04000130: return KeyInput & 0xFF;
case 0x04000131: return (KeyInput >> 8) & 0xFF;
case 0x04000132: return KeyCnt & 0xFF;
case 0x04000133: return KeyCnt >> 8;
case 0x040001A2: return NDSCart::ReadSPIData();
case 0x040001A8: return NDSCart::ROMCommand[0];
case 0x040001A9: return NDSCart::ROMCommand[1];
case 0x040001AA: return NDSCart::ROMCommand[2];
case 0x040001AB: return NDSCart::ROMCommand[3];
case 0x040001AC: return NDSCart::ROMCommand[4];
case 0x040001AD: return NDSCart::ROMCommand[5];
case 0x040001AE: return NDSCart::ROMCommand[6];
case 0x040001AF: return NDSCart::ROMCommand[7];
case 0x04000208: return IME[0];
2017-01-18 03:03:19 +00:00
case 0x04000240: return GPU::VRAMCNT[0];
case 0x04000241: return GPU::VRAMCNT[1];
case 0x04000242: return GPU::VRAMCNT[2];
case 0x04000243: return GPU::VRAMCNT[3];
case 0x04000244: return GPU::VRAMCNT[4];
case 0x04000245: return GPU::VRAMCNT[5];
case 0x04000246: return GPU::VRAMCNT[6];
case 0x04000247: return WRAMCnt;
2017-01-18 03:03:19 +00:00
case 0x04000248: return GPU::VRAMCNT[7];
case 0x04000249: return GPU::VRAMCNT[8];
CASE_READ8_16BIT(0x04000280, DivCnt)
CASE_READ8_32BIT(0x04000290, DivNumerator[0])
CASE_READ8_32BIT(0x04000294, DivNumerator[1])
CASE_READ8_32BIT(0x04000298, DivDenominator[0])
CASE_READ8_32BIT(0x0400029C, DivDenominator[1])
CASE_READ8_32BIT(0x040002A0, DivQuotient[0])
CASE_READ8_32BIT(0x040002A4, DivQuotient[1])
CASE_READ8_32BIT(0x040002A8, DivRemainder[0])
CASE_READ8_32BIT(0x040002AC, DivRemainder[1])
CASE_READ8_16BIT(0x040002B0, SqrtCnt)
CASE_READ8_32BIT(0x040002B4, SqrtRes)
CASE_READ8_32BIT(0x040002B8, SqrtVal[0])
CASE_READ8_32BIT(0x040002BC, SqrtVal[1])
case 0x04000300: return PostFlag9;
}
2017-01-18 03:03:19 +00:00
if (addr >= 0x04000000 && addr < 0x04000060)
{
return GPU::GPU2D_A->Read8(addr);
}
if (addr >= 0x04001000 && addr < 0x04001060)
{
return GPU::GPU2D_B->Read8(addr);
}
if (addr >= 0x04000320 && addr < 0x040006A4)
{
return GPU3D::Read8(addr);
}
2017-01-18 03:03:19 +00:00
printf("unknown ARM9 IO read8 %08X %08X\n", addr, ARM9->R[15]);
return 0;
}
u16 ARM9IORead16(u32 addr)
{
switch (addr)
{
2017-01-18 03:03:19 +00:00
case 0x04000004: return GPU::DispStat[0];
case 0x04000006: return GPU::VCount;
case 0x04000060: return GPU3D::Read16(addr);
case 0x04000064:
case 0x04000066: return GPU::GPU2D_A->Read16(addr);
case 0x040000B8: return DMAs[0]->Cnt & 0xFFFF;
case 0x040000BA: return DMAs[0]->Cnt >> 16;
case 0x040000C4: return DMAs[1]->Cnt & 0xFFFF;
case 0x040000C6: return DMAs[1]->Cnt >> 16;
case 0x040000D0: return DMAs[2]->Cnt & 0xFFFF;
case 0x040000D2: return DMAs[2]->Cnt >> 16;
case 0x040000DC: return DMAs[3]->Cnt & 0xFFFF;
case 0x040000DE: return DMAs[3]->Cnt >> 16;
2017-01-18 00:33:06 +00:00
case 0x040000E0: return ((u16*)DMA9Fill)[0];
case 0x040000E2: return ((u16*)DMA9Fill)[1];
case 0x040000E4: return ((u16*)DMA9Fill)[2];
case 0x040000E6: return ((u16*)DMA9Fill)[3];
case 0x040000E8: return ((u16*)DMA9Fill)[4];
case 0x040000EA: return ((u16*)DMA9Fill)[5];
case 0x040000EC: return ((u16*)DMA9Fill)[6];
case 0x040000EE: return ((u16*)DMA9Fill)[7];
case 0x04000100: return TimerGetCounter(0);
case 0x04000102: return Timers[0].Cnt;
case 0x04000104: return TimerGetCounter(1);
case 0x04000106: return Timers[1].Cnt;
case 0x04000108: return TimerGetCounter(2);
case 0x0400010A: return Timers[2].Cnt;
case 0x0400010C: return TimerGetCounter(3);
case 0x0400010E: return Timers[3].Cnt;
case 0x04000130: return KeyInput & 0xFFFF;
case 0x04000132: return KeyCnt;
case 0x04000180: return IPCSync9;
case 0x04000184:
{
u16 val = IPCFIFOCnt9;
if (IPCFIFO9->IsEmpty()) val |= 0x0001;
else if (IPCFIFO9->IsFull()) val |= 0x0002;
if (IPCFIFO7->IsEmpty()) val |= 0x0100;
else if (IPCFIFO7->IsFull()) val |= 0x0200;
return val;
}
2017-01-22 19:34:59 +00:00
case 0x040001A0: return NDSCart::SPICnt;
case 0x040001A2: return NDSCart::ReadSPIData();
case 0x040001A8: return NDSCart::ROMCommand[0] |
(NDSCart::ROMCommand[1] << 8);
case 0x040001AA: return NDSCart::ROMCommand[2] |
(NDSCart::ROMCommand[3] << 8);
case 0x040001AC: return NDSCart::ROMCommand[4] |
(NDSCart::ROMCommand[5] << 8);
case 0x040001AE: return NDSCart::ROMCommand[6] |
(NDSCart::ROMCommand[7] << 8);
2017-01-22 19:34:59 +00:00
case 0x04000204: return ExMemCnt[0];
case 0x04000208: return IME[0];
case 0x04000210: return IE[0] & 0xFFFF;
case 0x04000212: return IE[0] >> 16;
case 0x04000240: return GPU::VRAMCNT[0] | (GPU::VRAMCNT[1] << 8);
case 0x04000242: return GPU::VRAMCNT[2] | (GPU::VRAMCNT[3] << 8);
case 0x04000244: return GPU::VRAMCNT[4] | (GPU::VRAMCNT[5] << 8);
case 0x04000246: return GPU::VRAMCNT[6] | (WRAMCnt << 8);
case 0x04000248: return GPU::VRAMCNT[7] | (GPU::VRAMCNT[8] << 8);
case 0x04000280: return DivCnt;
case 0x04000290: return DivNumerator[0] & 0xFFFF;
case 0x04000292: return DivNumerator[0] >> 16;
case 0x04000294: return DivNumerator[1] & 0xFFFF;
case 0x04000296: return DivNumerator[1] >> 16;
case 0x04000298: return DivDenominator[0] & 0xFFFF;
case 0x0400029A: return DivDenominator[0] >> 16;
case 0x0400029C: return DivDenominator[1] & 0xFFFF;
case 0x0400029E: return DivDenominator[1] >> 16;
case 0x040002A0: return DivQuotient[0] & 0xFFFF;
case 0x040002A2: return DivQuotient[0] >> 16;
case 0x040002A4: return DivQuotient[1] & 0xFFFF;
case 0x040002A6: return DivQuotient[1] >> 16;
case 0x040002A8: return DivRemainder[0] & 0xFFFF;
case 0x040002AA: return DivRemainder[0] >> 16;
case 0x040002AC: return DivRemainder[1] & 0xFFFF;
case 0x040002AE: return DivRemainder[1] >> 16;
2017-01-31 20:53:45 +00:00
case 0x040002B0: return SqrtCnt;
case 0x040002B4: return SqrtRes & 0xFFFF;
case 0x040002B6: return SqrtRes >> 16;
case 0x040002B8: return SqrtVal[0] & 0xFFFF;
case 0x040002BA: return SqrtVal[0] >> 16;
case 0x040002BC: return SqrtVal[1] & 0xFFFF;
case 0x040002BE: return SqrtVal[1] >> 16;
2017-01-31 20:53:45 +00:00
case 0x04000300: return PostFlag9;
case 0x04000304: return PowerControl9;
}
if ((addr >= 0x04000000 && addr < 0x04000060) || (addr == 0x0400006C))
2017-01-18 03:03:19 +00:00
{
return GPU::GPU2D_A->Read16(addr);
}
if ((addr >= 0x04001000 && addr < 0x04001060) || (addr == 0x0400106C))
2017-01-18 03:03:19 +00:00
{
return GPU::GPU2D_B->Read16(addr);
}
if (addr >= 0x04000320 && addr < 0x040006A4)
{
return GPU3D::Read16(addr);
}
2017-01-18 03:03:19 +00:00
2018-12-18 01:00:50 +00:00
printf("unknown ARM9 IO read16 %08X %08X\n", addr, ARM9->R[15]);
return 0;
}
u32 ARM9IORead32(u32 addr)
{
switch (addr)
{
2017-01-18 03:03:19 +00:00
case 0x04000004: return GPU::DispStat[0] | (GPU::VCount << 16);
case 0x04000060: return GPU3D::Read32(addr);
case 0x04000064: return GPU::GPU2D_A->Read32(addr);
2017-01-18 00:33:06 +00:00
case 0x040000B0: return DMAs[0]->SrcAddr;
case 0x040000B4: return DMAs[0]->DstAddr;
case 0x040000B8: return DMAs[0]->Cnt;
case 0x040000BC: return DMAs[1]->SrcAddr;
case 0x040000C0: return DMAs[1]->DstAddr;
case 0x040000C4: return DMAs[1]->Cnt;
case 0x040000C8: return DMAs[2]->SrcAddr;
case 0x040000CC: return DMAs[2]->DstAddr;
case 0x040000D0: return DMAs[2]->Cnt;
case 0x040000D4: return DMAs[3]->SrcAddr;
case 0x040000D8: return DMAs[3]->DstAddr;
case 0x040000DC: return DMAs[3]->Cnt;
case 0x040000E0: return DMA9Fill[0];
case 0x040000E4: return DMA9Fill[1];
case 0x040000E8: return DMA9Fill[2];
case 0x040000EC: return DMA9Fill[3];
case 0x040000F4: return 0; // ???? Golden Sun Dark Dawn keeps reading this
case 0x04000100: return TimerGetCounter(0) | (Timers[0].Cnt << 16);
case 0x04000104: return TimerGetCounter(1) | (Timers[1].Cnt << 16);
case 0x04000108: return TimerGetCounter(2) | (Timers[2].Cnt << 16);
case 0x0400010C: return TimerGetCounter(3) | (Timers[3].Cnt << 16);
case 0x04000130: return (KeyInput & 0xFFFF) | (KeyCnt << 16);
2018-04-24 20:31:52 +00:00
case 0x04000180: return IPCSync9;
case 0x040001A0: return NDSCart::SPICnt | (NDSCart::ReadSPIData() << 16);
2017-01-22 19:34:59 +00:00
case 0x040001A4: return NDSCart::ROMCnt;
case 0x040001A8: return NDSCart::ROMCommand[0] |
(NDSCart::ROMCommand[1] << 8) |
(NDSCart::ROMCommand[2] << 16) |
(NDSCart::ROMCommand[3] << 24);
case 0x040001AC: return NDSCart::ROMCommand[4] |
(NDSCart::ROMCommand[5] << 8) |
(NDSCart::ROMCommand[6] << 16) |
(NDSCart::ROMCommand[7] << 24);
case 0x04000208: return IME[0];
case 0x04000210: return IE[0];
case 0x04000214: return IF[0];
case 0x04000240: return GPU::VRAMCNT[0] | (GPU::VRAMCNT[1] << 8) | (GPU::VRAMCNT[2] << 16) | (GPU::VRAMCNT[3] << 24);
case 0x04000244: return GPU::VRAMCNT[4] | (GPU::VRAMCNT[5] << 8) | (GPU::VRAMCNT[6] << 16) | (WRAMCnt << 24);
case 0x04000248: return GPU::VRAMCNT[7] | (GPU::VRAMCNT[8] << 8);
case 0x04000280: return DivCnt;
case 0x04000290: return DivNumerator[0];
case 0x04000294: return DivNumerator[1];
case 0x04000298: return DivDenominator[0];
case 0x0400029C: return DivDenominator[1];
case 0x040002A0: return DivQuotient[0];
case 0x040002A4: return DivQuotient[1];
case 0x040002A8: return DivRemainder[0];
case 0x040002AC: return DivRemainder[1];
case 0x040002B0: return SqrtCnt;
2017-01-31 20:53:45 +00:00
case 0x040002B4: return SqrtRes;
case 0x040002B8: return SqrtVal[0];
case 0x040002BC: return SqrtVal[1];
case 0x04000300: return PostFlag9;
case 0x04000304: return PowerControl9;
case 0x04100000:
if (IPCFIFOCnt9 & 0x8000)
{
u32 ret;
if (IPCFIFO7->IsEmpty())
{
IPCFIFOCnt9 |= 0x4000;
ret = IPCFIFO7->Peek();
}
else
{
ret = IPCFIFO7->Read();
if (IPCFIFO7->IsEmpty() && (IPCFIFOCnt7 & 0x0004))
SetIRQ(1, IRQ_IPCSendDone);
}
return ret;
}
else
return IPCFIFO7->Peek();
2017-01-22 19:34:59 +00:00
case 0x04100010:
if (!(ExMemCnt[0] & (1<<11))) return NDSCart::ReadROMData();
2017-01-22 19:34:59 +00:00
return 0;
}
if ((addr >= 0x04000000 && addr < 0x04000060) || (addr == 0x0400006C))
2017-01-18 03:03:19 +00:00
{
return GPU::GPU2D_A->Read32(addr);
}
if ((addr >= 0x04001000 && addr < 0x04001060) || (addr == 0x0400106C))
2017-01-18 03:03:19 +00:00
{
return GPU::GPU2D_B->Read32(addr);
}
if (addr >= 0x04000320 && addr < 0x040006A4)
{
return GPU3D::Read32(addr);
}
2017-01-18 03:03:19 +00:00
printf("unknown ARM9 IO read32 %08X %08X\n", addr, ARM9->R[15]);
return 0;
}
void ARM9IOWrite8(u32 addr, u8 val)
{
switch (addr)
{
2017-07-23 13:31:09 +00:00
case 0x0400006C:
case 0x0400006D: GPU::GPU2D_A->Write8(addr, val); return;
case 0x0400106C:
case 0x0400106D: GPU::GPU2D_B->Write8(addr, val); return;
case 0x04000132:
KeyCnt = (KeyCnt & 0xFF00) | val;
return;
case 0x04000133:
KeyCnt = (KeyCnt & 0x00FF) | (val << 8);
return;
case 0x040001A0:
2017-01-22 19:34:59 +00:00
if (!(ExMemCnt[0] & (1<<11)))
{
NDSCart::WriteSPICnt((NDSCart::SPICnt & 0xFF00) | val);
2017-01-22 19:34:59 +00:00
}
return;
case 0x040001A1:
2017-01-22 19:34:59 +00:00
if (!(ExMemCnt[0] & (1<<11)))
{
NDSCart::WriteSPICnt((NDSCart::SPICnt & 0x00FF) | (val << 8));
2017-01-22 19:34:59 +00:00
}
return;
case 0x040001A2:
NDSCart::WriteSPIData(val);
return;
2017-01-22 19:34:59 +00:00
case 0x040001A8: NDSCart::ROMCommand[0] = val; return;
case 0x040001A9: NDSCart::ROMCommand[1] = val; return;
case 0x040001AA: NDSCart::ROMCommand[2] = val; return;
case 0x040001AB: NDSCart::ROMCommand[3] = val; return;
case 0x040001AC: NDSCart::ROMCommand[4] = val; return;
case 0x040001AD: NDSCart::ROMCommand[5] = val; return;
case 0x040001AE: NDSCart::ROMCommand[6] = val; return;
case 0x040001AF: NDSCart::ROMCommand[7] = val; return;
2019-06-08 20:16:51 +00:00
case 0x04000208: IME[0] = val & 0x1; UpdateIRQ(0); return;
2017-01-18 03:03:19 +00:00
case 0x04000240: GPU::MapVRAM_AB(0, val); return;
case 0x04000241: GPU::MapVRAM_AB(1, val); return;
case 0x04000242: GPU::MapVRAM_CD(2, val); return;
case 0x04000243: GPU::MapVRAM_CD(3, val); return;
case 0x04000244: GPU::MapVRAM_E(4, val); return;
case 0x04000245: GPU::MapVRAM_FG(5, val); return;
case 0x04000246: GPU::MapVRAM_FG(6, val); return;
case 0x04000247: MapSharedWRAM(val); return;
2017-01-18 03:03:19 +00:00
case 0x04000248: GPU::MapVRAM_H(7, val); return;
case 0x04000249: GPU::MapVRAM_I(8, val); return;
case 0x04000300:
if (PostFlag9 & 0x01) val |= 0x01;
PostFlag9 = val & 0x03;
return;
}
2017-01-18 03:03:19 +00:00
if (addr >= 0x04000000 && addr < 0x04000060)
{
GPU::GPU2D_A->Write8(addr, val);
return;
}
if (addr >= 0x04001000 && addr < 0x04001060)
{
GPU::GPU2D_B->Write8(addr, val);
return;
}
if (addr >= 0x04000320 && addr < 0x040006A4)
{
GPU3D::Write8(addr, val);
return;
}
2017-01-18 03:03:19 +00:00
printf("unknown ARM9 IO write8 %08X %02X %08X\n", addr, val, ARM9->R[15]);
}
void ARM9IOWrite16(u32 addr, u16 val)
{
switch (addr)
{
2017-01-18 03:03:19 +00:00
case 0x04000004: GPU::SetDispStat(0, val); return;
case 0x04000006: GPU::SetVCount(val); return;
case 0x04000060: GPU3D::Write16(addr, val); return;
2017-06-26 09:02:10 +00:00
case 0x04000068:
case 0x0400006A: GPU::GPU2D_A->Write16(addr, val); return;
2017-07-23 13:31:09 +00:00
case 0x0400006C: GPU::GPU2D_A->Write16(addr, val); return;
case 0x0400106C: GPU::GPU2D_B->Write16(addr, val); return;
case 0x040000B8: DMAs[0]->WriteCnt((DMAs[0]->Cnt & 0xFFFF0000) | val); return;
case 0x040000BA: DMAs[0]->WriteCnt((DMAs[0]->Cnt & 0x0000FFFF) | (val << 16)); return;
case 0x040000C4: DMAs[1]->WriteCnt((DMAs[1]->Cnt & 0xFFFF0000) | val); return;
case 0x040000C6: DMAs[1]->WriteCnt((DMAs[1]->Cnt & 0x0000FFFF) | (val << 16)); return;
case 0x040000D0: DMAs[2]->WriteCnt((DMAs[2]->Cnt & 0xFFFF0000) | val); return;
case 0x040000D2: DMAs[2]->WriteCnt((DMAs[2]->Cnt & 0x0000FFFF) | (val << 16)); return;
case 0x040000DC: DMAs[3]->WriteCnt((DMAs[3]->Cnt & 0xFFFF0000) | val); return;
case 0x040000DE: DMAs[3]->WriteCnt((DMAs[3]->Cnt & 0x0000FFFF) | (val << 16)); return;
case 0x040000E0: DMA9Fill[0] = (DMA9Fill[0] & 0xFFFF0000) | val; return;
case 0x040000E2: DMA9Fill[0] = (DMA9Fill[0] & 0x0000FFFF) | (val << 16); return;
case 0x040000E4: DMA9Fill[1] = (DMA9Fill[1] & 0xFFFF0000) | val; return;
case 0x040000E6: DMA9Fill[1] = (DMA9Fill[1] & 0x0000FFFF) | (val << 16); return;
case 0x040000E8: DMA9Fill[2] = (DMA9Fill[2] & 0xFFFF0000) | val; return;
case 0x040000EA: DMA9Fill[2] = (DMA9Fill[2] & 0x0000FFFF) | (val << 16); return;
case 0x040000EC: DMA9Fill[3] = (DMA9Fill[3] & 0xFFFF0000) | val; return;
case 0x040000EE: DMA9Fill[3] = (DMA9Fill[3] & 0x0000FFFF) | (val << 16); return;
case 0x04000100: Timers[0].Reload = val; return;
case 0x04000102: TimerStart(0, val); return;
case 0x04000104: Timers[1].Reload = val; return;
case 0x04000106: TimerStart(1, val); return;
case 0x04000108: Timers[2].Reload = val; return;
case 0x0400010A: TimerStart(2, val); return;
case 0x0400010C: Timers[3].Reload = val; return;
case 0x0400010E: TimerStart(3, val); return;
case 0x04000132:
KeyCnt = val;
return;
case 0x04000180:
IPCSync7 &= 0xFFF0;
IPCSync7 |= ((val & 0x0F00) >> 8);
IPCSync9 &= 0xB0FF;
IPCSync9 |= (val & 0x4F00);
if ((val & 0x2000) && (IPCSync7 & 0x4000))
{
SetIRQ(1, IRQ_IPCSync);
}
return;
case 0x04000184:
if (val & 0x0008)
IPCFIFO9->Clear();
if ((val & 0x0004) && (!(IPCFIFOCnt9 & 0x0004)) && IPCFIFO9->IsEmpty())
SetIRQ(0, IRQ_IPCSendDone);
if ((val & 0x0400) && (!(IPCFIFOCnt9 & 0x0400)) && (!IPCFIFO7->IsEmpty()))
SetIRQ(0, IRQ_IPCRecv);
if (val & 0x4000)
IPCFIFOCnt9 &= ~0x4000;
IPCFIFOCnt9 = val & 0x8404;
return;
case 0x040001A0:
if (!(ExMemCnt[0] & (1<<11))) NDSCart::WriteSPICnt(val);
return;
case 0x040001A2:
NDSCart::WriteSPIData(val & 0xFF);
2017-01-22 19:34:59 +00:00
return;
case 0x040001A8:
NDSCart::ROMCommand[0] = val & 0xFF;
NDSCart::ROMCommand[1] = val >> 8;
return;
case 0x040001AA:
NDSCart::ROMCommand[2] = val & 0xFF;
NDSCart::ROMCommand[3] = val >> 8;
return;
case 0x040001AC:
NDSCart::ROMCommand[4] = val & 0xFF;
NDSCart::ROMCommand[5] = val >> 8;
return;
case 0x040001AE:
NDSCart::ROMCommand[6] = val & 0xFF;
NDSCart::ROMCommand[7] = val >> 8;
return;
2017-01-22 19:34:59 +00:00
case 0x040001B8: ROMSeed0[4] = val & 0x7F; return;
case 0x040001BA: ROMSeed1[4] = val & 0x7F; return;
case 0x04000204:
ExMemCnt[0] = val;
ExMemCnt[1] = (ExMemCnt[1] & 0x007F) | (val & 0xFF80);
SetGBASlotTimings();
return;
2019-06-08 20:16:51 +00:00
case 0x04000208: IME[0] = val & 0x1; UpdateIRQ(0); return;
case 0x04000210: IE[0] = (IE[0] & 0xFFFF0000) | val; UpdateIRQ(0); return;
case 0x04000212: IE[0] = (IE[0] & 0x0000FFFF) | (val << 16); UpdateIRQ(0); return;
// TODO: what happens when writing to IF this way??
case 0x04000240:
2017-01-18 03:03:19 +00:00
GPU::MapVRAM_AB(0, val & 0xFF);
GPU::MapVRAM_AB(1, val >> 8);
return;
case 0x04000242:
2017-01-18 03:03:19 +00:00
GPU::MapVRAM_CD(2, val & 0xFF);
GPU::MapVRAM_CD(3, val >> 8);
return;
case 0x04000244:
2017-01-18 03:03:19 +00:00
GPU::MapVRAM_E(4, val & 0xFF);
GPU::MapVRAM_FG(5, val >> 8);
return;
case 0x04000246:
2017-01-18 03:03:19 +00:00
GPU::MapVRAM_FG(6, val & 0xFF);
MapSharedWRAM(val >> 8);
return;
case 0x04000248:
2017-01-18 03:03:19 +00:00
GPU::MapVRAM_H(7, val & 0xFF);
GPU::MapVRAM_I(8, val >> 8);
return;
case 0x04000280: DivCnt = val; StartDiv(); return;
2017-01-31 20:53:45 +00:00
case 0x040002B0: SqrtCnt = val; StartSqrt(); return;
case 0x04000300:
if (PostFlag9 & 0x01) val |= 0x01;
PostFlag9 = val & 0x03;
return;
case 0x04000304:
PowerControl9 = val & 0x820F;
GPU::SetPowerCnt(PowerControl9);
return;
}
2017-07-23 13:31:09 +00:00
if (addr >= 0x04000000 && addr < 0x04000060)
2017-01-18 03:03:19 +00:00
{
GPU::GPU2D_A->Write16(addr, val);
return;
}
2017-07-23 13:31:09 +00:00
if (addr >= 0x04001000 && addr < 0x04001060)
2017-01-18 03:03:19 +00:00
{
GPU::GPU2D_B->Write16(addr, val);
return;
}
if (addr >= 0x04000320 && addr < 0x040006A4)
{
GPU3D::Write16(addr, val);
return;
}
2017-01-18 03:03:19 +00:00
printf("unknown ARM9 IO write16 %08X %04X %08X\n", addr, val, ARM9->R[15]);
}
void ARM9IOWrite32(u32 addr, u32 val)
{
switch (addr)
{
case 0x04000004:
GPU::SetDispStat(0, val & 0xFFFF);
GPU::SetVCount(val >> 16);
return;
case 0x04000060: GPU3D::Write32(addr, val); return;
2017-06-26 09:02:10 +00:00
case 0x04000064:
case 0x04000068: GPU::GPU2D_A->Write32(addr, val); return;
2017-07-23 13:31:09 +00:00
case 0x0400006C: GPU::GPU2D_A->Write16(addr, val&0xFFFF); return;
case 0x0400106C: GPU::GPU2D_B->Write16(addr, val&0xFFFF); return;
2017-01-18 00:33:06 +00:00
case 0x040000B0: DMAs[0]->SrcAddr = val; return;
case 0x040000B4: DMAs[0]->DstAddr = val; return;
case 0x040000B8: DMAs[0]->WriteCnt(val); return;
case 0x040000BC: DMAs[1]->SrcAddr = val; return;
case 0x040000C0: DMAs[1]->DstAddr = val; return;
case 0x040000C4: DMAs[1]->WriteCnt(val); return;
case 0x040000C8: DMAs[2]->SrcAddr = val; return;
case 0x040000CC: DMAs[2]->DstAddr = val; return;
case 0x040000D0: DMAs[2]->WriteCnt(val); return;
case 0x040000D4: DMAs[3]->SrcAddr = val; return;
case 0x040000D8: DMAs[3]->DstAddr = val; return;
case 0x040000DC: DMAs[3]->WriteCnt(val); return;
case 0x040000E0: DMA9Fill[0] = val; return;
case 0x040000E4: DMA9Fill[1] = val; return;
case 0x040000E8: DMA9Fill[2] = val; return;
case 0x040000EC: DMA9Fill[3] = val; return;
case 0x04000100:
Timers[0].Reload = val & 0xFFFF;
TimerStart(0, val>>16);
return;
case 0x04000104:
Timers[1].Reload = val & 0xFFFF;
TimerStart(1, val>>16);
return;
case 0x04000108:
Timers[2].Reload = val & 0xFFFF;
TimerStart(2, val>>16);
return;
case 0x0400010C:
Timers[3].Reload = val & 0xFFFF;
TimerStart(3, val>>16);
return;
case 0x04000130:
KeyCnt = val >> 16;
return;
2018-04-24 20:31:52 +00:00
case 0x04000180:
ARM9IOWrite16(addr, val);
return;
case 0x04000188:
if (IPCFIFOCnt9 & 0x8000)
{
if (IPCFIFO9->IsFull())
IPCFIFOCnt9 |= 0x4000;
else
{
2017-01-17 04:29:38 +00:00
bool wasempty = IPCFIFO9->IsEmpty();
IPCFIFO9->Write(val);
2017-01-17 04:29:38 +00:00
if ((IPCFIFOCnt7 & 0x0400) && wasempty)
SetIRQ(1, IRQ_IPCRecv);
}
}
return;
case 0x040001A0:
2017-01-22 19:34:59 +00:00
if (!(ExMemCnt[0] & (1<<11)))
{
NDSCart::WriteSPICnt(val & 0xFFFF);
NDSCart::WriteSPIData((val >> 16) & 0xFF);
2017-01-22 19:34:59 +00:00
}
return;
case 0x040001A4:
if (!(ExMemCnt[0] & (1<<11))) NDSCart::WriteROMCnt(val);
return;
case 0x040001A8:
NDSCart::ROMCommand[0] = val & 0xFF;
NDSCart::ROMCommand[1] = (val >> 8) & 0xFF;
NDSCart::ROMCommand[2] = (val >> 16) & 0xFF;
NDSCart::ROMCommand[3] = val >> 24;
return;
case 0x040001AC:
NDSCart::ROMCommand[4] = val & 0xFF;
NDSCart::ROMCommand[5] = (val >> 8) & 0xFF;
NDSCart::ROMCommand[6] = (val >> 16) & 0xFF;
NDSCart::ROMCommand[7] = val >> 24;
return;
2017-01-22 19:34:59 +00:00
case 0x040001B0: *(u32*)&ROMSeed0[0] = val; return;
case 0x040001B4: *(u32*)&ROMSeed1[0] = val; return;
2019-06-08 20:16:51 +00:00
case 0x04000208: IME[0] = val & 0x1; UpdateIRQ(0); return;
case 0x04000210: IE[0] = val; UpdateIRQ(0); return;
case 0x04000214: IF[0] &= ~val; GPU3D::CheckFIFOIRQ(); UpdateIRQ(0); return;
case 0x04000240:
2017-01-18 03:03:19 +00:00
GPU::MapVRAM_AB(0, val & 0xFF);
GPU::MapVRAM_AB(1, (val >> 8) & 0xFF);
GPU::MapVRAM_CD(2, (val >> 16) & 0xFF);
GPU::MapVRAM_CD(3, val >> 24);
return;
case 0x04000244:
2017-01-18 03:03:19 +00:00
GPU::MapVRAM_E(4, val & 0xFF);
GPU::MapVRAM_FG(5, (val >> 8) & 0xFF);
GPU::MapVRAM_FG(6, (val >> 16) & 0xFF);
MapSharedWRAM(val >> 24);
return;
case 0x04000248:
2017-01-18 03:03:19 +00:00
GPU::MapVRAM_H(7, val & 0xFF);
GPU::MapVRAM_I(8, (val >> 8) & 0xFF);
return;
2017-04-28 15:23:18 +00:00
case 0x04000280: DivCnt = val; StartDiv(); return;
case 0x040002B0: SqrtCnt = val; StartSqrt(); return;
case 0x04000290: DivNumerator[0] = val; StartDiv(); return;
case 0x04000294: DivNumerator[1] = val; StartDiv(); return;
case 0x04000298: DivDenominator[0] = val; StartDiv(); return;
case 0x0400029C: DivDenominator[1] = val; StartDiv(); return;
2017-01-31 20:53:45 +00:00
case 0x040002B8: SqrtVal[0] = val; StartSqrt(); return;
case 0x040002BC: SqrtVal[1] = val; StartSqrt(); return;
case 0x04000304:
PowerControl9 = val & 0x820F;
GPU::SetPowerCnt(PowerControl9);
return;
}
2017-01-18 03:03:19 +00:00
if (addr >= 0x04000000 && addr < 0x04000060)
{
GPU::GPU2D_A->Write32(addr, val);
return;
}
if (addr >= 0x04001000 && addr < 0x04001060)
{
GPU::GPU2D_B->Write32(addr, val);
return;
}
if (addr >= 0x04000320 && addr < 0x040006A4)
{
GPU3D::Write32(addr, val);
return;
}
2017-01-18 03:03:19 +00:00
printf("unknown ARM9 IO write32 %08X %08X %08X\n", addr, val, ARM9->R[15]);
}
u8 ARM7IORead8(u32 addr)
{
switch (addr)
{
case 0x04000130: return KeyInput & 0xFF;
case 0x04000131: return (KeyInput >> 8) & 0xFF;
case 0x04000132: return KeyCnt & 0xFF;
case 0x04000133: return KeyCnt >> 8;
case 0x04000134: return RCnt & 0xFF;
case 0x04000135: return RCnt >> 8;
case 0x04000136: return (KeyInput >> 16) & 0xFF;
case 0x04000137: return KeyInput >> 24;
case 0x04000138: return RTC::Read() & 0xFF;
case 0x040001A2: return NDSCart::ReadSPIData();
case 0x040001A8: return NDSCart::ROMCommand[0];
case 0x040001A9: return NDSCart::ROMCommand[1];
case 0x040001AA: return NDSCart::ROMCommand[2];
case 0x040001AB: return NDSCart::ROMCommand[3];
case 0x040001AC: return NDSCart::ROMCommand[4];
case 0x040001AD: return NDSCart::ROMCommand[5];
case 0x040001AE: return NDSCart::ROMCommand[6];
case 0x040001AF: return NDSCart::ROMCommand[7];
case 0x040001C2: return SPI::ReadData();
case 0x04000208: return IME[1];
2017-01-18 03:03:19 +00:00
case 0x04000240: return GPU::VRAMSTAT;
case 0x04000241: return WRAMCnt;
case 0x04000300: return PostFlag7;
}
if (addr >= 0x04000400 && addr < 0x04000520)
{
2017-04-06 17:44:34 +00:00
return SPU::Read8(addr);
}
printf("unknown ARM7 IO read8 %08X %08X\n", addr, ARM7->R[15]);
return 0;
}
u16 ARM7IORead16(u32 addr)
{
switch (addr)
{
2017-01-18 03:03:19 +00:00
case 0x04000004: return GPU::DispStat[1];
case 0x04000006: return GPU::VCount;
case 0x040000B8: return DMAs[4]->Cnt & 0xFFFF;
case 0x040000BA: return DMAs[4]->Cnt >> 16;
case 0x040000C4: return DMAs[5]->Cnt & 0xFFFF;
case 0x040000C6: return DMAs[5]->Cnt >> 16;
case 0x040000D0: return DMAs[6]->Cnt & 0xFFFF;
case 0x040000D2: return DMAs[6]->Cnt >> 16;
case 0x040000DC: return DMAs[7]->Cnt & 0xFFFF;
case 0x040000DE: return DMAs[7]->Cnt >> 16;
case 0x04000100: return TimerGetCounter(4);
case 0x04000102: return Timers[4].Cnt;
case 0x04000104: return TimerGetCounter(5);
case 0x04000106: return Timers[5].Cnt;
case 0x04000108: return TimerGetCounter(6);
case 0x0400010A: return Timers[6].Cnt;
case 0x0400010C: return TimerGetCounter(7);
case 0x0400010E: return Timers[7].Cnt;
case 0x04000130: return KeyInput & 0xFFFF;
case 0x04000132: return KeyCnt;
case 0x04000134: return RCnt;
case 0x04000136: return KeyInput >> 16;
case 0x04000138: return RTC::Read();
case 0x04000180: return IPCSync7;
case 0x04000184:
{
u16 val = IPCFIFOCnt7;
if (IPCFIFO7->IsEmpty()) val |= 0x0001;
else if (IPCFIFO7->IsFull()) val |= 0x0002;
if (IPCFIFO9->IsEmpty()) val |= 0x0100;
else if (IPCFIFO9->IsFull()) val |= 0x0200;
return val;
}
2017-01-22 19:34:59 +00:00
case 0x040001A0: return NDSCart::SPICnt;
case 0x040001A2: return NDSCart::ReadSPIData();
2017-01-22 19:34:59 +00:00
case 0x040001A8: return NDSCart::ROMCommand[0] |
(NDSCart::ROMCommand[1] << 8);
case 0x040001AA: return NDSCart::ROMCommand[2] |
(NDSCart::ROMCommand[3] << 8);
case 0x040001AC: return NDSCart::ROMCommand[4] |
(NDSCart::ROMCommand[5] << 8);
case 0x040001AE: return NDSCart::ROMCommand[6] |
(NDSCart::ROMCommand[7] << 8);
case 0x040001C0: return SPI::Cnt;
case 0x040001C2: return SPI::ReadData();
2017-01-22 19:34:59 +00:00
case 0x04000204: return ExMemCnt[1];
case 0x04000206: return WifiWaitCnt;
case 0x04000208: return IME[1];
case 0x04000210: return IE[1] & 0xFFFF;
case 0x04000212: return IE[1] >> 16;
case 0x04000300: return PostFlag7;
case 0x04000304: return PowerControl7;
case 0x04000308: return ARM7BIOSProt;
}
if (addr >= 0x04000400 && addr < 0x04000520)
{
2017-04-06 17:44:34 +00:00
return SPU::Read16(addr);
}
printf("unknown ARM7 IO read16 %08X %08X\n", addr, ARM7->R[15]);
return 0;
}
u32 ARM7IORead32(u32 addr)
{
switch (addr)
{
2017-01-18 03:03:19 +00:00
case 0x04000004: return GPU::DispStat[1] | (GPU::VCount << 16);
2017-01-18 00:33:06 +00:00
case 0x040000B0: return DMAs[4]->SrcAddr;
case 0x040000B4: return DMAs[4]->DstAddr;
case 0x040000B8: return DMAs[4]->Cnt;
case 0x040000BC: return DMAs[5]->SrcAddr;
case 0x040000C0: return DMAs[5]->DstAddr;
case 0x040000C4: return DMAs[5]->Cnt;
case 0x040000C8: return DMAs[6]->SrcAddr;
case 0x040000CC: return DMAs[6]->DstAddr;
case 0x040000D0: return DMAs[6]->Cnt;
case 0x040000D4: return DMAs[7]->SrcAddr;
case 0x040000D8: return DMAs[7]->DstAddr;
case 0x040000DC: return DMAs[7]->Cnt;
case 0x04000100: return TimerGetCounter(4) | (Timers[4].Cnt << 16);
case 0x04000104: return TimerGetCounter(5) | (Timers[5].Cnt << 16);
case 0x04000108: return TimerGetCounter(6) | (Timers[6].Cnt << 16);
case 0x0400010C: return TimerGetCounter(7) | (Timers[7].Cnt << 16);
case 0x04000130: return (KeyInput & 0xFFFF) | (KeyCnt << 16);
case 0x04000134: return RCnt | (KeyCnt & 0xFFFF0000);
case 0x04000138: return RTC::Read();
2018-04-24 20:31:52 +00:00
case 0x04000180: return IPCSync7;
case 0x040001A0: return NDSCart::SPICnt | (NDSCart::ReadSPIData() << 16);
2017-01-22 19:34:59 +00:00
case 0x040001A4: return NDSCart::ROMCnt;
case 0x040001A8: return NDSCart::ROMCommand[0] |
(NDSCart::ROMCommand[1] << 8) |
(NDSCart::ROMCommand[2] << 16) |
(NDSCart::ROMCommand[3] << 24);
case 0x040001AC: return NDSCart::ROMCommand[4] |
(NDSCart::ROMCommand[5] << 8) |
(NDSCart::ROMCommand[6] << 16) |
(NDSCart::ROMCommand[7] << 24);
case 0x040001C0:
return SPI::Cnt | (SPI::ReadData() << 16);
case 0x04000208: return IME[1];
case 0x04000210: return IE[1];
case 0x04000214: return IF[1];
case 0x04000308: return ARM7BIOSProt;
case 0x04100000:
if (IPCFIFOCnt7 & 0x8000)
{
u32 ret;
if (IPCFIFO9->IsEmpty())
{
IPCFIFOCnt7 |= 0x4000;
ret = IPCFIFO9->Peek();
}
else
{
ret = IPCFIFO9->Read();
if (IPCFIFO9->IsEmpty() && (IPCFIFOCnt9 & 0x0004))
SetIRQ(0, IRQ_IPCSendDone);
}
return ret;
}
else
return IPCFIFO9->Peek();
2017-01-22 19:34:59 +00:00
case 0x04100010:
if (ExMemCnt[0] & (1<<11)) return NDSCart::ReadROMData();
2017-01-22 19:34:59 +00:00
return 0;
}
if (addr >= 0x04000400 && addr < 0x04000520)
{
2017-04-06 17:44:34 +00:00
return SPU::Read32(addr);
}
printf("unknown ARM7 IO read32 %08X %08X\n", addr, ARM7->R[15]);
return 0;
}
void ARM7IOWrite8(u32 addr, u8 val)
{
switch (addr)
{
case 0x04000132:
KeyCnt = (KeyCnt & 0xFF00) | val;
return;
case 0x04000133:
KeyCnt = (KeyCnt & 0x00FF) | (val << 8);
return;
case 0x04000134:
RCnt = (RCnt & 0xFF00) | val;
return;
case 0x04000135:
RCnt = (RCnt & 0x00FF) | (val << 8);
return;
case 0x04000138: RTC::Write(val, true); return;
case 0x040001A0:
2017-01-22 19:34:59 +00:00
if (ExMemCnt[0] & (1<<11))
{
NDSCart::WriteSPICnt((NDSCart::SPICnt & 0xFF00) | val);
2017-01-22 19:34:59 +00:00
}
return;
case 0x040001A1:
2017-01-22 19:34:59 +00:00
if (ExMemCnt[0] & (1<<11))
{
NDSCart::WriteSPICnt((NDSCart::SPICnt & 0x00FF) | (val << 8));
2017-01-22 19:34:59 +00:00
}
return;
case 0x040001A2:
NDSCart::WriteSPIData(val);
return;
2017-01-22 19:34:59 +00:00
case 0x040001A8: NDSCart::ROMCommand[0] = val; return;
case 0x040001A9: NDSCart::ROMCommand[1] = val; return;
case 0x040001AA: NDSCart::ROMCommand[2] = val; return;
case 0x040001AB: NDSCart::ROMCommand[3] = val; return;
case 0x040001AC: NDSCart::ROMCommand[4] = val; return;
case 0x040001AD: NDSCart::ROMCommand[5] = val; return;
case 0x040001AE: NDSCart::ROMCommand[6] = val; return;
case 0x040001AF: NDSCart::ROMCommand[7] = val; return;
case 0x040001C2:
SPI::WriteData(val);
return;
2019-06-08 20:16:51 +00:00
case 0x04000208: IME[1] = val & 0x1; UpdateIRQ(1); return;
case 0x04000300:
if (ARM7->R[15] >= 0x4000)
return;
if (!(PostFlag7 & 0x01))
PostFlag7 = val & 0x01;
return;
case 0x04000301:
val & 0xC0;
if (val == 0x40) printf("!! GBA MODE NOT SUPPORTED\n");
else if (val == 0x80) ARM7->Halt(1);
else if (val == 0xC0) EnterSleepMode();
return;
}
if (addr >= 0x04000400 && addr < 0x04000520)
{
2017-04-06 17:44:34 +00:00
SPU::Write8(addr, val);
return;
}
printf("unknown ARM7 IO write8 %08X %02X %08X\n", addr, val, ARM7->R[15]);
}
void ARM7IOWrite16(u32 addr, u16 val)
{
switch (addr)
{
2017-01-18 03:03:19 +00:00
case 0x04000004: GPU::SetDispStat(1, val); return;
case 0x04000006: GPU::SetVCount(val); return;
case 0x040000B8: DMAs[4]->WriteCnt((DMAs[4]->Cnt & 0xFFFF0000) | val); return;
case 0x040000BA: DMAs[4]->WriteCnt((DMAs[4]->Cnt & 0x0000FFFF) | (val << 16)); return;
case 0x040000C4: DMAs[5]->WriteCnt((DMAs[5]->Cnt & 0xFFFF0000) | val); return;
case 0x040000C6: DMAs[5]->WriteCnt((DMAs[5]->Cnt & 0x0000FFFF) | (val << 16)); return;
case 0x040000D0: DMAs[6]->WriteCnt((DMAs[6]->Cnt & 0xFFFF0000) | val); return;
case 0x040000D2: DMAs[6]->WriteCnt((DMAs[6]->Cnt & 0x0000FFFF) | (val << 16)); return;
case 0x040000DC: DMAs[7]->WriteCnt((DMAs[7]->Cnt & 0xFFFF0000) | val); return;
case 0x040000DE: DMAs[7]->WriteCnt((DMAs[7]->Cnt & 0x0000FFFF) | (val << 16)); return;
case 0x04000100: Timers[4].Reload = val; return;
case 0x04000102: TimerStart(4, val); return;
case 0x04000104: Timers[5].Reload = val; return;
case 0x04000106: TimerStart(5, val); return;
case 0x04000108: Timers[6].Reload = val; return;
case 0x0400010A: TimerStart(6, val); return;
case 0x0400010C: Timers[7].Reload = val; return;
case 0x0400010E: TimerStart(7, val); return;
case 0x04000132: KeyCnt = val; return;
case 0x04000134: RCnt = val; return;
case 0x04000138: RTC::Write(val, false); return;
case 0x04000180:
IPCSync9 &= 0xFFF0;
IPCSync9 |= ((val & 0x0F00) >> 8);
IPCSync7 &= 0xB0FF;
IPCSync7 |= (val & 0x4F00);
if ((val & 0x2000) && (IPCSync9 & 0x4000))
{
SetIRQ(0, IRQ_IPCSync);
}
return;
case 0x04000184:
if (val & 0x0008)
IPCFIFO7->Clear();
if ((val & 0x0004) && (!(IPCFIFOCnt7 & 0x0004)) && IPCFIFO7->IsEmpty())
SetIRQ(1, IRQ_IPCSendDone);
if ((val & 0x0400) && (!(IPCFIFOCnt7 & 0x0400)) && (!IPCFIFO9->IsEmpty()))
SetIRQ(1, IRQ_IPCRecv);
if (val & 0x4000)
IPCFIFOCnt7 &= ~0x4000;
IPCFIFOCnt7 = val & 0x8404;
return;
case 0x040001A0:
2017-01-22 19:34:59 +00:00
if (ExMemCnt[0] & (1<<11))
NDSCart::WriteSPICnt(val);
return;
case 0x040001A2:
NDSCart::WriteSPIData(val & 0xFF);
return;
case 0x040001A8:
NDSCart::ROMCommand[0] = val & 0xFF;
NDSCart::ROMCommand[1] = val >> 8;
return;
case 0x040001AA:
NDSCart::ROMCommand[2] = val & 0xFF;
NDSCart::ROMCommand[3] = val >> 8;
return;
case 0x040001AC:
NDSCart::ROMCommand[4] = val & 0xFF;
NDSCart::ROMCommand[5] = val >> 8;
return;
case 0x040001AE:
NDSCart::ROMCommand[6] = val & 0xFF;
NDSCart::ROMCommand[7] = val >> 8;
return;
2017-01-22 19:34:59 +00:00
case 0x040001B8: ROMSeed0[12] = val & 0x7F; return;
case 0x040001BA: ROMSeed1[12] = val & 0x7F; return;
case 0x040001C0:
SPI::WriteCnt(val);
return;
case 0x040001C2:
SPI::WriteData(val & 0xFF);
return;
2017-01-22 19:34:59 +00:00
case 0x04000204:
ExMemCnt[1] = (ExMemCnt[1] & 0xFF80) | (val & 0x007F);
SetGBASlotTimings();
return;
case 0x04000206:
SetWifiWaitCnt(val);
2017-01-22 19:34:59 +00:00
return;
2019-06-08 20:16:51 +00:00
case 0x04000208: IME[1] = val & 0x1; UpdateIRQ(1); return;
case 0x04000210: IE[1] = (IE[1] & 0xFFFF0000) | val; UpdateIRQ(1); return;
case 0x04000212: IE[1] = (IE[1] & 0x0000FFFF) | (val << 16); UpdateIRQ(1); return;
// TODO: what happens when writing to IF this way??
case 0x04000300:
if (ARM7->R[15] >= 0x4000)
return;
if (!(PostFlag7 & 0x01))
PostFlag7 = val & 0x01;
return;
case 0x04000304: PowerControl7 = val; return;
case 0x04000308:
if (ARM7BIOSProt == 0)
ARM7BIOSProt = val & 0xFFFE;
return;
}
if (addr >= 0x04000400 && addr < 0x04000520)
{
2017-04-06 17:44:34 +00:00
SPU::Write16(addr, val);
return;
}
printf("unknown ARM7 IO write16 %08X %04X %08X\n", addr, val, ARM7->R[15]);
}
void ARM7IOWrite32(u32 addr, u32 val)
{
switch (addr)
{
case 0x04000004:
GPU::SetDispStat(1, val & 0xFFFF);
GPU::SetVCount(val >> 16);
return;
2017-01-18 00:33:06 +00:00
case 0x040000B0: DMAs[4]->SrcAddr = val; return;
case 0x040000B4: DMAs[4]->DstAddr = val; return;
case 0x040000B8: DMAs[4]->WriteCnt(val); return;
case 0x040000BC: DMAs[5]->SrcAddr = val; return;
case 0x040000C0: DMAs[5]->DstAddr = val; return;
case 0x040000C4: DMAs[5]->WriteCnt(val); return;
case 0x040000C8: DMAs[6]->SrcAddr = val; return;
case 0x040000CC: DMAs[6]->DstAddr = val; return;
case 0x040000D0: DMAs[6]->WriteCnt(val); return;
case 0x040000D4: DMAs[7]->SrcAddr = val; return;
case 0x040000D8: DMAs[7]->DstAddr = val; return;
case 0x040000DC: DMAs[7]->WriteCnt(val); return;
2017-01-18 00:33:06 +00:00
case 0x04000100:
Timers[4].Reload = val & 0xFFFF;
TimerStart(4, val>>16);
return;
case 0x04000104:
Timers[5].Reload = val & 0xFFFF;
TimerStart(5, val>>16);
return;
case 0x04000108:
Timers[6].Reload = val & 0xFFFF;
TimerStart(6, val>>16);
return;
case 0x0400010C:
Timers[7].Reload = val & 0xFFFF;
TimerStart(7, val>>16);
return;
case 0x04000130: KeyCnt = val >> 16; return;
case 0x04000134: RCnt = val & 0xFFFF; return;
case 0x04000138: RTC::Write(val & 0xFFFF, false); return;
2018-04-24 20:31:52 +00:00
case 0x04000180:
ARM7IOWrite16(addr, val);
return;
case 0x04000188:
if (IPCFIFOCnt7 & 0x8000)
{
if (IPCFIFO7->IsFull())
IPCFIFOCnt7 |= 0x4000;
else
{
2017-01-17 04:29:38 +00:00
bool wasempty = IPCFIFO7->IsEmpty();
IPCFIFO7->Write(val);
2017-01-17 04:29:38 +00:00
if ((IPCFIFOCnt9 & 0x0400) && wasempty)
SetIRQ(0, IRQ_IPCRecv);
}
}
return;
case 0x040001A0:
2017-01-22 19:34:59 +00:00
if (ExMemCnt[0] & (1<<11))
{
NDSCart::WriteSPICnt(val & 0xFFFF);
NDSCart::WriteSPIData((val >> 16) & 0xFF);
2017-01-22 19:34:59 +00:00
}
return;
case 0x040001A4:
if (ExMemCnt[0] & (1<<11)) NDSCart::WriteROMCnt(val);
return;
case 0x040001A8:
NDSCart::ROMCommand[0] = val & 0xFF;
NDSCart::ROMCommand[1] = (val >> 8) & 0xFF;
NDSCart::ROMCommand[2] = (val >> 16) & 0xFF;
NDSCart::ROMCommand[3] = val >> 24;
return;
case 0x040001AC:
NDSCart::ROMCommand[4] = val & 0xFF;
NDSCart::ROMCommand[5] = (val >> 8) & 0xFF;
NDSCart::ROMCommand[6] = (val >> 16) & 0xFF;
NDSCart::ROMCommand[7] = val >> 24;
return;
2017-01-22 19:34:59 +00:00
case 0x040001B0: *(u32*)&ROMSeed0[8] = val; return;
case 0x040001B4: *(u32*)&ROMSeed1[8] = val; return;
2019-06-08 20:16:51 +00:00
case 0x04000208: IME[1] = val & 0x1; UpdateIRQ(1); return;
case 0x04000210: IE[1] = val; UpdateIRQ(1); return;
case 0x04000214: IF[1] &= ~val; UpdateIRQ(1); return;
case 0x04000304: PowerControl7 = val & 0xFFFF; return;
case 0x04000308:
if (ARM7BIOSProt == 0)
ARM7BIOSProt = val & 0xFFFE;
return;
}
if (addr >= 0x04000400 && addr < 0x04000520)
{
2017-04-06 17:44:34 +00:00
SPU::Write32(addr, val);
return;
}
printf("unknown ARM7 IO write32 %08X %08X %08X\n", addr, val, ARM7->R[15]);
}
2016-05-16 15:48:40 +00:00
}