Someone thought it would be a good idea to have the location as the first argument on the instruction.
Changed it to how it is supposed to be disassembled.
Optimistically assume used GQRs are 0 in blocks that only use one GQR, and
bail at the start of the block and recompile if that assumption fails.
Many games use almost entirely unquantized stores (e.g. Rebel Strike, Sonic
Colors), so this will likely be a big performance improvement across the board
for games with heavy use of paired singles.
Won't work with all games, but provides a nice way to spend extra CPU to make
a variable framerate game faster (e.g. Spyro or The Last Story), or to make
a game use less CPU at the cost of a lower framerate (e.g. Rogue Leader).
If we have a shift amount that is the full length of the source register then we have an invalid instruction.
This can happen when dealing with a couple of PowerPC instructions.
This same adjustment is already in the ARMv7 emitter.
Fixes issues with negative offsets in loadstore instructions.
Adds ADRP/ADR instructions.
Optimizes MOVI2R function to take advantage of ADRP on pointers, can change a 3 instruction operation down to one.
Adds GPR push/pop operations for ABI related things.
The reason this didn't break is that bitwise instructions like VPAND,
VANDPS, and VANDPD do the exact same thing. The only difference is the
data type they are intended for.
The builtin byteswap routines cause critical failure on AArch64 when built with the Android toolchain.
I didn't experience this issue when building for Linux using a local qemu chroot.
Seems to be only an issue with the Android toolchain when building AArch64.
Use our generic version instead.
If the inputs are both float singles, and the top half is known to be identical
to the bottom half, we can use packed arithmetic instead of scalar to skip
the movddup.
This is slower on a few rather old CPUs, plus the Atom+Silvermont, so detect
Atom and disable it in that case.
Also avoid PPC_FP on stores if we know that the output came from a float op.
Move the JITed function/basic-block registration logic out of the CPU
subsystem in order to add JIT registration to JITed DSP and
Video/VertexLoader code.
This necessary in order to add /tmp/perf-$pid.map support to other
JITed code as they need to write to the same file.
When we cleaned up the code to calculate the shm_position and total_mem
in one step, we sometimes skipped over certain views because they were
Wii-only. When looking at the total memory, we'd look at the last field,
whether or not it was skipped. Since Wii-only fields are the last view,
this meant that the shm_position was 0, since it was skipped, causing us
to map a 0-sized field. Fix this by explicitly returning the total size
from MemoryMap_InitializeViews.
Additionally, the shm_position was being calculated incorrectly because
it was adding up the shm_position *before* the mirror, rather than after
it. Fix this by adopting a scheme similar to what we had before.
The code to calculate the offsets into the SHM file wasn't properly
respecting the skip flags, causing it to calculate offsets beyond
the end of the SHM file.
This code was ported from out_ptr, which was a double-pointer, and
wanted to double-check that the proper arena was actually allocated.
When I ported it to store the pointer directly in the view regardless
of whether out_ptr was non-NULL, I got confused here and instead
caused the code to only free the arena if the first byte was non-zero.
This code originally tried to map the "low space" for the Gamecube's
memory layout, but since has expanded to mapping all of the easily
mappable memory on the system. Change the name to "GrabSHMSegment" to
indicate that we're looking for a shared memory segment we can map into
our process space.
These are effectively unused, since the memmap already maps them in one
place. For 32-bit, they might have some slight advantage, but we already
special-case the regular "high-mem" pointer for 32-bit, so just use the
one we already have...
This is a higher level, more concise wrapper for bitsets which supports
efficiently counting and iterating over set bits. It's similar to
std::bitset, but the latter does not support efficient iteration (and at
least in libc++, the count algorithm is subpar, not that it really
matters). The converted uses include both bitsets and, notably,
considerably less efficient regular arrays (for in/out registers in
PPCAnalyst).
Unfortunately, this may slightly pessimize unoptimized builds.
We weren't dropping a newline character from the string, we were cutting off the last character of the hardware name.
This fixes my TK1 being called 'lagun' when it's name is 'laguna'
GCC has optimized this using the exact same code since 4.7 or 4.8.
Android building falls back to the __linux__ route.
No need to keep these around anymore since we aren't building on an old GCC version.
Before this commit, the two were reversed ("cpu_string" had the brand, e.g. "AuthenticAMD"; and "brand_string" had the CPU type, e.g. "AMD Phenom II X4 925").
This is good hygiene, and also happens to be required to build Dolphin
using Clang modules.
(Under this setup, each header file becomes a module, and each #include
is automatically translated to a module import. Recursive includes
still leak through (by default), but modules are compiled independently,
and can't depend on defines or types having previously been set up. The
main reason to retrofit it onto Dolphin is compilation performance - no
more textual includes whatsoever, rather than putting a few blessed
common headers into a PCH. Unfortunately, I found multiple Clang bugs
while trying to build Dolphin this way, so it's not ready yet, but I can
start with this prerequisite.)
I found it via clang complaining about a useless null check on an array,
but I decided to get rid of the array in favor of dynamic allocation, as
there was no reason to assume a maximum length of 0x32 bytes. Plus, add
a CFString type check just in case, and switch to UTF-8 in the
off-chance it matters.
The result has not actually been tested, as I have no CD drive.
It only ever did anything on 32-bit OS X.
Anyway, it wasn't even on the right functions, and these days
ABI_PushRegistersAndAdjustStack should handle maintaining the ABI
correctly.
This helps us avoid accidentally clobbering flags between two instructions
when the flags are expected to be maintained. Dolphin will of course crash
immediately, but at least it will crash loudly and alert us of the mistake,
instead of forcing hours of bisecting to find the subtle way in which the JIT
has managed to sneak a flag-modifying instruction where there shouldn't be one.
This is inconsistent with how other containers are used (i.e. with Do()), but making std::array be used with Do() seems rather confusing when there's also a DoArray available.
To avoid FPRs being pushed unnecessarily, I checked the uses: DSPEmitter
doesn't use FPRs, and VertexLoader doesn't use anything but RAX, so I
specified the register list accordingly. The regular JIT, however, does
use FPRs, and as far as I can tell, it was incorrect not to save them in
the outer routine. Since the dispatcher loop is only exited when
pausing or stopping, this should have no noticeable performance impact.
- Factor common work into a helper function.
- Replace confusingly named "noProlog" with "rsp_alignment". Now that
x86 is not supported, we can just specify it explicitly as 8 for
clarity.
- Add the option to include more frame size, which I'll need later.
- Revert a change by magumagu in March which replaced MOVAPD with MOVUPD
on account of 32-bit Windows, since it's no longer supported. True,
apparently recent processors don't execute the former any faster if the
pointer is, in fact, aligned, but there's no point using MOVUPD for
something that's guaranteed to be aligned...
(I discovered that GenFrsqrte and GenFres were incorrectly passing false
to noProlog - they were, in fact, functions without prologs, the
original meaning of the parameter - which caused the previous change to
break. This is now fixed.)
This is the bare minimum required to run a few games on AArch64.
Was able to run starfield and Animal Crossing to the Nintendo logo.
QEmu emulation is literally the slowest thing in the world, it maxes out at around 12mhz on my Core i7-4930MX.
I've tested a few instruction encodings and am expecting most to work as long as one stays away from VFP/SIMD.
This implements mostly instructions to bring up an initial JIT with integer support.
This can be improved to allow ease of use functions in the future, dealing with the raw imms/immr encodings is probably the worst thing ever.
Uses are split into three categories:
- Arbitrary (except for size savings) - constants like RSCRATCH are
used.
- ABI (i.e. RAX as return value) - ABI_RETURN is used.
- Fixed by architecture (RCX shifts, RDX/RAX for some instructions) -
explicit register is kept.
In theory this allows the assignments to be modified easily. I verified
that I was able to run Melee with all the registers changed, although
there may be issues if RSCRATCH[2] and ABI_PARAM{1,2} conflict.
The special case is where the registers are actually to be swapped (i.e.
func(ABI_PARAM2, ABI_PARAM1); this was previously impossible but would
be ugly not to handle anyway.
Prior to this change, it was possible to cause an infinite loop by making the string to be replaced and the replacing string the same thing.
e.g.
std::string some_str = "test";
ReplaceAll(some_str, "test", "test");
This also changes the replacing in a way that doesn't require starting from the beginning of the string on each replacement iteration.
Decreases total Wii state save time (not counting compression) from
~570ms to ~18ms.
The compiler can't remove this check because of potential aliasing; this
might be fixable (e.g. by making mode const), but there is no reason to
have the code work in such a braindead way in the first place.
- DoVoid now uses memcpy.
- DoArray now uses DoVoid on the whole rather than Doing each element
(would fail for an array of STL structures, but we don't have any of
those).
- Do also now uses DoVoid. (In the previous version, it replicated
DoVoid's code in order to ensure each type gets its own implementation,
which for small types then becomes a simple load/store in any modern
compiler. Now DoVoid is __forceinline, which addresses that issue and
shouldn't make a big difference otherwise - perhaps a few extra copies
of the code inlined into DoArray or whatever.)
(1) Rename ABI_ALL_CALLEE_SAVED to ABI_ALL_CALLER_SAVED, because that's
what it was actually defined as (and used as). Derp.
(2) RegistersInUse is always used for the purpose of saving registers
before calling a C++ function in the middle of a JIT block (without
flushing). There is no need to save callee-saved registers in this
case. Change the name to CallerSavedRegistersInUse and mask with
ABI_ALL_CALLER_SAVED.
Nothing obvious broke when starting up a Melee game. (I added a test
for anything actually being masked out; it happens, but in this
particular case seemed to occur at most a few dozen times per second, so
the actual performance benefit is probably negligible.)