Because the last commit made us use separate folders for GCPad and
GCKey profiles, we should also use separate game INI keys for them.
Otherwise setting e.g. PadProfile1 in a game INI will make both GCPad
and GCKey try to load it, typically with one of them succeeding and the
other one showing a panic alert due to the profile not existing in its
folder.
Better do this breaking change for GCKeys in the same PR as the other
breaking change rather than later.
After reading the previous commit, you might think "hold on, what's the
difference between GetProfileName and GetProfileDirectoryName"? These
two are being used for the exact same thing - figuring out where
profiles are stored - yet they return different values for certain
controllers like GC keyboards! As far as I can tell, the existing code
has been broken for GC keyboards since they were introduced a decade
ago. The GUI (and more recently, also InputCycler) would write and read
profiles in one location, and our code for loading profiles specified in
a game INI file would read profiles in another location.
This commit gets rid of the set of values used by the game INI code in
favor of the other set. This does breaking existing setups where a
GCKey profile has been configured in a game INI, but I think the number
of working such setups is vanishingly small. The alternative would make
existing GCKey profiles go missing from the profile dropdown in the GUI,
which I think would be more disruptive. The alternative would also force
new GCKey profiles into the same directory as GCPad profiles.
This commit also fixes a regression from d6c0f8e749. The Android GUI was
using GetProfileName to figure out what key to use in the game INI,
which made it use incorrect game INI entries for GameCube controller
profiles but not Wii Remote profiles. Now the Android GUI uses
GetProfileKey for this, fixing the problem.
By having getters for this information, other code that needs access to
the same information can call the getters instead of duplicating the
information.
If InputConfig::LoadConfig() was called once with a non empty/customized config,
then called again after manually deleting the config (dolphin calls LoadConfig() every time it opens the mapping widget),
the second load would fail to clear the values on any non first EmulatedController and would instead keep the
previous config values despite it being deleted (while it would instead correctly default the first EmulatedController).
This is not a big bug though the code is better now.
SPDX standardizes how source code conveys its copyright and licensing
information. See https://spdx.github.io/spdx-spec/1-rationale/ . SPDX
tags are adopted in many large projects, including things like the Linux
kernel.
Loop index int i was being compared against GetControllerCount() which
returned a size_t. This was the only place GetControllerCount() was
called from so the change of return type doesn't disturb anything else.
Changing the loop index to size_t wouldn't work as well since it's
passed into GetController(), which takes an int and is called from many
places, so it would need a cast anyway on an already busy line.
We want to use positional arguments in translatable strings
that have more than one argument so that translators can change
the order of them, but the question is: Should we also use
positional arguments in translatable strings with only one
argument? I think it makes most sense that way, partially
so that translators don't even have to be aware of the
non-positional syntax and partially because "translatable
strings use positional arguments" is an easier rule for us
to remember than "transitional strings which have more than
one argument use positional arguments". But let me know if
you have a different opinion.
NOTE: The explicit std::string() conversions later are needed. Otherwise,
gcc-9.2.0 throws all sorts of errors because it can't find a matching
operator+() function.
ControllerEmu, the class, is essentially acting like a namespace for
ControlGroup. This makes it impossible to forward declare any of the
internals. It also globs a bunch of classes together which is kind of a
pain to manage.
This splits ControlGroup and the classes it contains into their own source
files and situates them all within a namespace, which gets them out of
global scope.
Since this allows forward declarations for the once-internal classes, it
now requires significantly less files to be rebuilt if anything is changed
in the ControllerEmu portion of code.
It does not split out the settings classes yet, however, as it
would be preferable to make a settings base class that all settings derive
from, but this would be a functional change -- this commit only intends to
move around existing code. Extracting the settings class will be done in
another commit.
ControllerEmu is a massive class with a lot of nested public classes.
The only reason these are nested is because the outer class acts as a
namespace. There's no reason to keep these classes nested just for that.
Keeping these classes nested makes it impossible to forward declare them, which leads to quite a few includes in other headers, making compilation take
longer.
This moves the source files to their own directory so classes can be
separated as necessary to their own source files, and be namespaced under the
ControllerEmu namespace.
- Simplified the locking mechanism when controllers were updated
- Reloaded the config of the controls instead of re-initialising the control plugins
- Fixed controls being unresponsive after the Refresh button was pressed
- Disables the hotkeys while the controller config is open