When the immediate value is zero, we can do a negation. On ARM64 the NEG
/NEGS instructions are just an alias for SUB/SUBS with a hardcoded WZR.
Before:
```
ldr w22, [x29, #0x28]
mov w21, #0x0 ; =0
subs w22, w21, w22
```
After:
```
ldr w22, [x29, #0x28]
negs w22, w22
```
This reverts commit 72cf2bdb87.
SYSCONF settings are getting cleared when they shouldn't be. Let's
revert the change until I get proper time to figure out why it's broken.
Whenever a request to update the Rich Presence comes in, typically every ten seconds, the Achievement Progress Widget will update the sort order of the achievements and all of their measured values.
bugfix: SetQWidgetWindowDecorations(this); not called before show() for Windows darkmode titlebars.
The actual call to (QWidget) show() needed to come sooner. Show() was originally left alone, but with other checks needing to move with (QWidget) show(), this function became less useful. Show() was originally created to fix the render widget appearing behind the main window, but that appears to work fine in this iteration.
The measured_progress C string for achievements to display potentially contains junk data after the null terminator, which was rendering in the QString in the dialog. This trims those junk characters.
This causes Dual Core to lock up during the boot sequence, because it tries to wait for a not-yet-running GPU thread.
Fixes https://bugs.dolphin-emu.org/issues/13559
rc_client calls the provided memory peeker asynchronously in the callback for starting a session, to validate/invalidate the memory used for achievements. Dolphin cannot access memory from any thread but host or CPU so this access has a small chance of being invalid. This commit adds a MemoryVerifier that the AchievementManager will use to perform this, before changing the peek method back to the original MemoryPeeker for normal operation.
Some pieces of code are calling IsRunning because there's some
particular action that only makes sense when emulation is running, for
instance showing the state of the emulated CPU. IsRunning is appropriate
to use for this. Then there are pieces of code that are calling
IsRunning because there's some particular thing they must avoid doing
e.g. when the CPU thread is running or IOS is running. IsRunning isn't
quite appropriate for this. Such code should also be checking for the
states Starting and Stopping. Keep in mind that:
* When the state is Starting, the state can asynchronously change to
Running at any time.
* When we try to stop the core, the state gets set to Stopping before we
take any action to actually stop things.
This commit adds a new method Core::IsUninitialized, and changes all
callers of IsRunning and GetState that look to me like they should be
changed.
Core::GetState reads from four different pieces of state: s_is_stopping,
s_hardware_initialized, s_is_booting, and CPUManager::IsStepping.
I'm keeping that last one as is for now because there's code in Dolphin
that sets it directly, but we can unify the other three to make things
easier to reason about.
This commit also gets rid of s_is_started. This was previously used in
Core::IsRunningAndStarted to ensure true wouldn't be returned until the
CPU thread was started, but it wasn't used in Core::GetState, so
Core::GetState would happily return State::Running after we had
initialized the hardware but before we had initialized the CPU thread.
As far as I know, there are no callers that have any real need to know
whether the boot process is currently initializing the hardware or the
CPU thread. Perhaps once upon a time there was a desire to make the
apploader debuggable, but a long time has passed without anyone stepping
up to implement it, and the way CBoot::RunApploader is implemented makes
it rather difficult. So this commit makes all the functions in Core.cpp
consider the core to still be starting until the CPU thread is started.
When AchievementProgress::UpdateData(false) is called, it will now empty itself and reinsert all existing boxes, re-sorted into their current buckets, and call UpdateProgress on them all.
Rerendering the entire Achievements dialog every EmulationStateChanged signal is far too often when it turns out that signal fires multiple times to confirm game close, for example. This change results in only the settings changing on EmulationStateChanged, and having the Hardcore mode toggle (which DOES require redrawing the entire dialog) emit its own signal alongside EmulationStateChanged.
AchievementBox now has UpdateData and UpdateProgress, which is called from UpdateData, but may be called elsewhere to update just the progress measurement of the achievement.
CPU Clock Override slider now increments 1% in the UI, with the new lower limit
being 1% instead of 6%.
Prior implementation made it impossible to set exactly 150% in the GUI.
147% -> 152%. Now users can set exact clock % without needing to edit INIs.
rc_client provides basic sorting buckets as a possible option when retrieving the list of achievements or leaderboards; this enables them and labels them in the dialog.
Since rcheevos headers are included in AchievementManager.h, and everyone that depends on Core can include that, we must also pass on the include directory and defines to those dependencies
If an icon is displayed on screen before it downloads, it was displaying a default icon but it would fail to load the actual icon even after it was downloaded. This fixes that.
Add a two second timer to Achievement Progress Indicators to wait until two seconds after the previous message (when it should have decayed out automatically) before posting any new ones.
Prior to this change, attempting to decrease the speed limit below 100% in hardmode would display the new attempted speed and then warn that the speed can not be decreased below 100%; this disables that first message under those conditions.
AchievementManager maintains a unique pointer to a copy of the current volume so it can asynchronously hash that volume. It is not needed otherwise, so I can release that pointer when hashing is complete. This change fixes a bug whereby changing discs in a game and then changing to a different game would result in the loaded volume pointer still being loaded with and hashing to the previous game.
We currently have 32 different binaries containing unit tests. At least
when I build for Android, each one takes up over 200 MiB, and linking
them all increases my incremental build times by over a minute. I'd
like to change this for the sake of my productivity and disk space.
For reference, MSBuild is already putting all tests in a single binary.
This lets us reduce the number of USE_RETRO_ACHIEVEMENTS ifdefs in the
code base, reducing visual clutter. In particular, needing an ifdef for
each call to IsHardcodeModeActive was annoying to me. This also reduces
the risk that someone writes code that accidentally fails to compile
with USE_RETRO_ACHIEVEMENTS disabled.
We could cut down on ifdefs even further by making HardcodeWarningWidget
always exist, but that would result in non-trivial code ending up in the
binary even with USE_RETRO_ACHIEVEMENTS disabled, so I'm leaving it out
of this PR. It's not a lot of code though, so I might end up revisiting
it at some point.
Right now, we assign a versionCode to each Android build of Dolphin by
counting the total number of git commits made. This has worked fine so
far, but it won't work as-is for the new release process.
Let's say we're currently on commit 20000. If we want to create a
release under the new release process, we would create a release branch,
add a new commit on it that updates the release name in CMake files and
so on, and create a tag for that commit. The Android build of this
release commit would get the version code 20001. However, the master
branch is also going to get a commit with the version code 20001 sooner
or later, and this commit would be an entirely different commit than
commit 20001 on the release branch. This isn't much of a problem for
people downloading Dolphin from dolphin-emu.org, but it's a big problem
for Google Play, as Google Play doesn't allow us to upload two builds
with the same version code.
This commit makes us calculate the Android version code in a new way:
The number of commits times two, and if the current build isn't a
release build, plus 1. (We check whether the current build is a release
build by checking whether there's a tag for the current commit.)
With this new version code scheme, the release commit described in my
example would get the version code 40002, and the master commit would
get the version code 40003. This lets us upload both corresponding
builds to Google Play, and also lets the user switch from the release
build to the development build if they would like to. (Under normal
circumstances, Android forbids installing a build with an older version
code than the currently installed build. Therefore, whether the 1 is
added for release builds or for development builds is a decision with
consequences.)
Enable emulator hotkeys and controller input (when that option is
enabled) when a TAS Input window has focus, as if it was the render
window instead. This allows TASers to use frame advance and the like
without having to switch the focused window or disabling Hotkeys Require
Window Focus which also picks up keypresses while other apps are active.
Cursor updates are disabled when the TAS Input window has focus, as
otherwise the Wii IR widget (and anything else controlled by the mouse)
becomes unusable. The cursor continues to work normally when the render
window has focus.