--The only time I've seen this was in a game that used FGBG mode, and it looked messed up.
-Implemented the parsing of the background for Color Stack mode.
--Because the STIC Registers aren't populated, this doesn't do anything. I'm not sure when this is supposed to occur.
-Determined when Colored Squares mode is active. I'll try to implement this mode shortly.
--Did the same for the PSG because why not.
-Discovered that the Commando HLT happens after the CPU goes idle, so there's no point in further investigating the issue until I emulate that.
-Parsed the BACKTAB cards for the STIC's Draw().
-Attempted to draw the screen using the aforementioned cards.
--I'm only trying to apply color to the foreground.
---Instead of converting the FG color to RGBA, I'm making it all white for now.
--There's clearly some sanity to what's being drawn, so I think each 8x8 card is being drawn in the right place.
--I think the next step is trying to make each individual card draw properly.
--I believe the algorithm for populating the FrameBuffer is VERY inefficient in the way it accesses memory. Will need some suggestions as to how I can rewrite this.
it seems to be the most stable when the system is fast enough to maintain approximately 100% speed.
also fixed up metaspu in dumping and switched it to vecna. i can now have clean audio while running libsnes with lua script and ffmpeg dumping.
add two example resamplers that implement this: LinearResampler and CubicResampler. both are very basic and sound like shit compared to libresample4j
ultimately, a single good resampler with a better license than libresample4j should be selected and used
--VirtualHeight / Width will be useful due to how the scanlines are doubled on TVs, but for now, I will just be drawing to scale.
-Enabled XOR@, SAR, and COMR. Advanced Dungeons & Dragons provided more test cases.
-Noticed that Commando, as well as some other games, triggers a HLT. This should be looked into later.
--This number is fairly arbitrary, and I don't know why it works, but for now, it does.
--The values of INTRM don't match up exactly, but I think this is mostly a logging issue, though I still need to look into this.
-Fixed the Overflow Flag calculation.
--My original formula didn't compare the signs of the operands.
--It always needs to use the original operands, not the 2s complement one.
--As such, a result parameter has been added.
-Fixed the detection of a double swap, shift, and rotate in the related instructions. Ironically, I shifted one too many bits in my detection.
-Masked the result of left shifts and rotates to 0xFFFF so that the flags are calculated properly.
-Made RSWD (un)set the right flags.
-Enabled GSWD, MVI, SARC, CMP@, ADD, SUB@, INCR, RRC, SLR, SLL, RLC, ADDR, SUBR, SLLC, CMPR, and RSWD.
-COMR, NEGR, ADCR, SAR, ANDR, SUB, AND, XOR, and XOR@ remain disabled as I have yet to hit any test cases for them.
At this point, IntelliHawk is executing instructions indefinitely with what seems to be perfect results! I think I'm ready to hook up the screen.
-Replaced subtraction with adding the 2s complement in instructions. That way, the Overflow Flag is calculated properly.
-Made it so that the masking of a result to 0xFFFF comes after calculating the Carry and Overflow Flags but before the Sign and Zero Flags.
-The CMPX instructions now use the aforementioned masking to properly calculate the Sign and Zero Flags even though the result doesn't actually get stored.
Thanks to this commit, IntelliHawk executes 1711 instructions properly. Next, it's supposed to take an Interrupt, which is bizarre because INTRM appears to be true at that point. This doesn't seem possible unless I am once again logging at the wrong time, hiding that the INTRM gets set to false before immediately switching back to true after taking the interrupt. Will look into this later.
-Added and Interrupted flag to make it so that interrupts only trigger once per falling edge.
-For now, interrupts take 28 cycles.
-Made it so that the STIC tracks Pending / Total Executed Cycles just like the CPU.
-Forwarded the cycles executed in the CPU to the STIC's Execute.
-SR1 is now inverted when there are no pending cycles.
--If SR1 is high, 14394 cycles are added to the pending cycles.
--If SR1 is low, 3791 cycles are added to the pending cycles.