Almost all the virtual functions in Renderer are part of dolphin's
"graphics api abstraction layer", which has slowly formed over the
last decade or two.
Most of the work was done previously with the introduction of the
various "AbstractX" classes, associated with texture cache cleanups
and implementation of newer graphics APIs (Direct3D 12, Vulkan, Metal).
We are simply taking the last step and yeeting these functions out
of Renderer.
This "AbstractGfx" class is now completely agnostic of any details
from the flipper/hollywood GPU we are emulating, though somewhat
specialized.
(Will not build, this commit only contains changes outside VideoBackends)
Fixes incorrect logspam when the buffer needed to be reset on flushes (which we already were doing, but 52feed04db moved it to after the check was made). This is https://bugs.dolphin-emu.org/issues/10312.
I also converted it to an assert, as if this does happen, things are going to render incorrectly, so we want to make it obvious.
Rather than makring some parts of VertexLoaderManager dirty in some places and some in others, do it all in VideoState. Also, since CPState no longer contains pointers/non-CP data after d039b1bc0d, we can just use p.Do on it instead of manually saving each field.
This more accurately represents what's going on, and also ends at 0 instead of 1, making some indexing operations easier. This also changes it so that position_matrix_index_cache actually starts from index 0 instead of index 1.
Now works with games that deliberately avoid invalidating TMEM because
they know textures are too large to fit:
* Sonic Riders
* Metal Arms: Glitch in the System
* Godzilla: Destroy All Monsters Melee
* NHL Slapshot
* Tak and the Power of Juju
* Night at the Museum: Battle of the Smithsonian
* 428: Fūsa Sareta Shibuya de
SPDX standardizes how source code conveys its copyright and licensing
information. See https://spdx.github.io/spdx-spec/1-rationale/ . SPDX
tags are adopted in many large projects, including things like the Linux
kernel.
These are only ever used with ShaderCode instances and nothing else.
Given that, we can convert these helper functions to expect that type of
object as an argument and remove the need for templates, improving
compiler throughput a marginal amount, as the template instantiation
process doesn't need to be performed.
We can also move the definitions of these functions into the cpp file,
which allows us to remove a few inclusions from the ShaderGenCommon
header. This uncovered a few instances of indirect inclusions being
relied upon in other source files.
One other benefit is this allows changes to be made to the definitions
of the functions without needing to recompile all translation units that
make use of these functions, making change testing a little quicker.
Moving the definitions into the cpp file also allows us to completely
hide DefineOutputMember() from external view, given it's only ever used
inside of GenerateVSOutputMembers().
Hardware tests have shown that if the number of texgens/channels do not
match, you get garbage rendering. Presumably because the output
registers from the XF stage are fed into the incorrect input registers
for TEV/BP.
Currently, this causes Dolphin to crash/generate invalid shaders with an
assertion failure in the hardware backends. Instead, we log an error.
Perhaps in the future we should just spit out all texgens/colors anyway
from both stages, and let cross-stage optimization take care of DCE'ing
it away. But doing so would require changing the UIDs and invalidating
everyone's shader caches.
Rather than expose the bounding box members directly, we can instead
provide an interface for code to use. This makes it nicer to transition
from global data, as the interface function names are already in
place.
Now that we've extracted all of the stateless functions that can be
hidden, it's time to make the index generator a regular class with
active data members.
This can just be a member that sits within the vertex manager base
class. By deglobalizing the state of the index generator we also get rid
of the wonky dual-initializing that was going on within the OpenGL
backend.
Since the renderer is always initialized before the vertex manager, we
now only call Init() once throughout the execution lifecycle.