These disc images are only used on dev units and not retail units.
There are two important differences compared to normal Wii disc images:
- The data starts 0x8000 bytes into each partition instead of 0x20000
- The data of a partition is stored unencrypted and contains no hashes
Our old implementation was just guesswork and doesn't work at all.
According to testing by GerbilSoft, this commit's implementation
is able to read and extract files in the filesystem correctly,
but the tested game still isn't able to boot. (It's thanks to their
info about unencrypted disc images that I was able to make this commit.)
Initialising Wii filesystem contents should be done after Boot and
not in HW to ensure that we operate with the correct title context
and to make sure required title directories exist (so that Movie and
Netplay code can copy data from and to the temporary NAND).
D3D11 cannot handle block compressed textures where the first mip level
is not a multiple of the block size. The simple fix for texture pack
authors: leave these textures uncompressed. You can still use a .dds
container.
Executing a supervisor-level instruction in user mode is supposed to
cause a program exception to occur.
The following supervisor instructions are present:
- dcbi
- mfmsr
- mfspr
- mfsr
- mfsrin
- mtmsr
- mtspr
- mtsr
- mtsrin
- rfi
- tlbie
- tlbsync
In 0337ca116a checks within mfspr and
mtspr were added. This change adds the trivial checks to the other
instructions.
Using 8-bit integer math here lead to precision loss for depth copies,
which broke various effects in games, e.g. lens flare in MK:DD.
It's unlikely the console implements this as a floating-point multiply
(fixed-point perhaps), but since we have the float round trip in our
EFB2RAM shaders anyway, it's not going to make things any worse. If we
do rewrite our shaders to use integer math completely, then it might be
worth switching this conversion back to integers.
However, the range of the values (format) should be known, or we should
expand all values out to 24-bits first.
Keeps signed values out of bit arithmetic (not that there's any issues
that could arise from it in these situations, but it does look more
consistent, and silences compiler warnings)
Also ensure that all members of the class are initialized on
construction as well. Previously the bool indicating if options are
dirty wouldn't be initialized, which could be read uninitialized if an
instance was constructed and then IsDirty() is called.
Keeps all of the interpreter-specific exception handling functions
together in a reusable way across translation units, similar to
FPUtils.h for reusable floating-point functions.
Given this is a base class, we should clearly state what the parameters
to the functions in its exposed interface actually mean or represent.
This avoids needing to hunt for the definition of the functions in cpp
files.
While we're at it, normalize said parameter names so they follow our
naming guidelines.
There's no reason to use int here as opposed to an unsigned value.
Video_AccessEFB() takes its arguments as u32 values, so we'd be doing
sign conversions for no reason here (along with causing avoidable
compiler warnings).
If a program executing in user mode tries to write to any SPRs other than
XER, LR, or CTR registers, then a program exception occurs. Similarly
this also applies for reading SPRs as well, however the upper and lower
timebase halves can also be read (but not written to).
If HID0.NOOPTI is set, then dcbt and dcbtst are no-oped globally. We
currently don't perform data cache emulation, but we put this in anyway
so this detail isn't forgotten about if data cache emulation is
introduced at some point in the future.
This implements ES_VerifySign which is notably used by the system menu
when importing saves.
Now *all* ES commands that are actually used by titles are implemented.
- Move all of the ec functions into the Common::ec namespace.
- Give the public functions better names and some usage information.
- Move all of the "elt" related functions into an "elt" class including
all of the arithmetic operations, so that the logic becomes clearer
and feels less like assembly.
This also makes it much more obvious what the parameters are, instead
of only using unsigned char* (which doesn't tell anything about what
the pointer is used for or the size).
- Similarly, add a new "Point" class and move point functions there.
Overload the arithmetic operators to make calculations easier to read
The loops relied on unsigned integer overflow, which is not immediately
obvious. Replace them with less clever variants that are clearer.
Also implement bn_compare using std::memcmp.
This function in both JITs is only ever called by passing the JIT's code
buffer into it. Given this is already accessible, since the functions
are part of the respective JIT class, we can just remove this parameter.
This also cleans up accesses with the new code buffer, as we don't need
to do janky looking dereference-then-index expressions.
This class effectively acted as a "discount vector", that would simply
allocate memory and then delete it in the destructor when it goes out of
scope.
We can just use a std::vector directly to reduce this boilerplate.
ImportTitleDone only checks if all required contents have been imported
for system titles.
This fixes the system menu not being able to recreate title directories
to copy a save back to the NAND by using title import functionality.