By default unique_ptr will call delete on the given type if an array
qualifier isn't present, not delete[]. It's important to explicitly
specify an array is being handled.
Approximately three or four times now, the issue of pointers being
in an inconsistent state been an issue in the video backend renderers
with regards to tripping up other developers.
Global (ugh) resources are put into a unique_ptr and will always have a
well-defined state of being - null or not null
This was relying on behaviour that GLExtensions was adding fake extensions to the supported list with ES.
This no longer happens so it needed to be changed.
It was only implemented in OpenGL, though the option was visible in both
backends, leading to memory leaks if you enabled it in DirectX.
And it wasn't particularly useful as a debug feature as it only showed
where in the EFB the copies were taken from, not what format it was, or
what the copy was used for, or what content was in the EFB at that point
in time.
Also, it stretched the copy regions relative to the window, so the
on-screen regions don't even line up with the window unless the game used
the full EFB (some pal games) and you game image stretched to the full
window.
SSAA relies on MSAA being active to work. We only supports 4x SSAA while in fact you can enable SSAA at any MSAA level.
I even managed to run 64xMSAA + SSAA on my Quadro which made some pretty sleek looking games. They were very cinematic though.
With this, it properly fixes up SSAA and MSAA support in GLES as well. Before they were broken when stereo rendering was enabled.
Now in GLES they can properly support MSAA and also stereo rendering with MSAA enabled(with proper extensions).
OpenGL ES 3.2 adds this feature to core
It was available to GLES 3.1 as GL_{EXT, OES}_texture_buffer as well.
For the non-Nvidia vendors that implemented this is:
- Qualcomm's Adreno 4xx
- IMGTec's PowerVR Rogue
OpenGL ES 3.2 adds a few things we care about supporting in core. In particular:
- GL_{ARB,EXT,OES}_draw_elements_base_vertex
- KHR_Debug
- Sample Shading
- GL_{ARB,EXT,OES,NV}_copy_image
- Geometry shaders
- Geometry shader instancing (If they support GL_{EXT,OES}_geometry_point_size)
Nvidia was the first to release an OpenGL ES 3.2 driver which I uesd to test this on.
This also enables GS Instancing on GLES 3.1 hardware if it supports all of the required extensions.
Their new driver that supports GLES3.1 + AEP has issues with it.
At the very least they don't implement all of the geometry shader features fully which causes shader linker issues when we attempt to use them.
I don't have a device so I can't fully test, so until I do I'm going to blanket disable the whole thing.
When calculating the size of the undisplayed margin in the case where
fbWidth != fbStride for RealXFB for displaying in the output window,
we do not scale by IR - RealXFB is implicitly 1x.