dolphin/Source/Core/VideoCommon/BPMemory.h

Ignoring revisions in .git-blame-ignore-revs. Click here to bypass and see the normal blame view.

2505 lines
72 KiB
C
Raw Normal View History

// Copyright 2009 Dolphin Emulator Project
// SPDX-License-Identifier: GPL-2.0-or-later
#pragma once
#include <array>
#include <string>
#include <utility>
#include "Common/BitField.h"
#include "Common/BitUtils.h"
#include "Common/CommonTypes.h"
#include "Common/EnumFormatter.h"
#include "Common/EnumMap.h"
#include "Common/Inline.h"
// X.h defines None to be 0 and Always to be 2, which causes problems with some of the enums
#undef None
#undef Always
enum class TextureFormat;
enum class EFBCopyFormat;
enum class TLUTFormat;
#pragma pack(4)
enum
{
BPMEM_GENMODE = 0x00,
BPMEM_DISPLAYCOPYFILTER = 0x01, // 0x01 + 4
BPMEM_IND_MTXA = 0x06, // 0x06 + (3 * 3)
BPMEM_IND_MTXB = 0x07, // 0x07 + (3 * 3)
BPMEM_IND_MTXC = 0x08, // 0x08 + (3 * 3)
BPMEM_IND_IMASK = 0x0F,
BPMEM_IND_CMD = 0x10, // 0x10 + 16
BPMEM_SCISSORTL = 0x20,
BPMEM_SCISSORBR = 0x21,
BPMEM_LINEPTWIDTH = 0x22,
BPMEM_PERF0_TRI = 0x23,
BPMEM_PERF0_QUAD = 0x24,
BPMEM_RAS1_SS0 = 0x25,
BPMEM_RAS1_SS1 = 0x26,
BPMEM_IREF = 0x27,
BPMEM_TREF = 0x28, // 0x28 + 8
BPMEM_SU_SSIZE = 0x30, // 0x30 + (2 * 8)
BPMEM_SU_TSIZE = 0x31, // 0x31 + (2 * 8)
BPMEM_ZMODE = 0x40,
BPMEM_BLENDMODE = 0x41,
BPMEM_CONSTANTALPHA = 0x42,
BPMEM_ZCOMPARE = 0x43,
BPMEM_FIELDMASK = 0x44,
BPMEM_SETDRAWDONE = 0x45,
BPMEM_BUSCLOCK0 = 0x46,
BPMEM_PE_TOKEN_ID = 0x47,
BPMEM_PE_TOKEN_INT_ID = 0x48,
BPMEM_EFB_TL = 0x49,
2021-02-07 20:32:45 +00:00
BPMEM_EFB_WH = 0x4A,
BPMEM_EFB_ADDR = 0x4B,
BPMEM_MIPMAP_STRIDE = 0x4D,
BPMEM_COPYYSCALE = 0x4E,
BPMEM_CLEAR_AR = 0x4F,
BPMEM_CLEAR_GB = 0x50,
BPMEM_CLEAR_Z = 0x51,
BPMEM_TRIGGER_EFB_COPY = 0x52,
BPMEM_COPYFILTER0 = 0x53,
BPMEM_COPYFILTER1 = 0x54,
BPMEM_CLEARBBOX1 = 0x55,
BPMEM_CLEARBBOX2 = 0x56,
BPMEM_CLEAR_PIXEL_PERF = 0x57,
BPMEM_REVBITS = 0x58,
BPMEM_SCISSOROFFSET = 0x59,
BPMEM_PRELOAD_ADDR = 0x60,
BPMEM_PRELOAD_TMEMEVEN = 0x61,
BPMEM_PRELOAD_TMEMODD = 0x62,
BPMEM_PRELOAD_MODE = 0x63,
BPMEM_LOADTLUT0 = 0x64,
BPMEM_LOADTLUT1 = 0x65,
BPMEM_TEXINVALIDATE = 0x66,
BPMEM_PERF1 = 0x67,
BPMEM_FIELDMODE = 0x68,
BPMEM_BUSCLOCK1 = 0x69,
BPMEM_TX_SETMODE0 = 0x80, // 0x80 + 4
BPMEM_TX_SETMODE1 = 0x84, // 0x84 + 4
BPMEM_TX_SETIMAGE0 = 0x88, // 0x88 + 4
BPMEM_TX_SETIMAGE1 = 0x8C, // 0x8C + 4
BPMEM_TX_SETIMAGE2 = 0x90, // 0x90 + 4
BPMEM_TX_SETIMAGE3 = 0x94, // 0x94 + 4
BPMEM_TX_SETTLUT = 0x98, // 0x98 + 4
BPMEM_TX_SETMODE0_4 = 0xA0, // 0xA0 + 4
BPMEM_TX_SETMODE1_4 = 0xA4, // 0xA4 + 4
BPMEM_TX_SETIMAGE0_4 = 0xA8, // 0xA8 + 4
BPMEM_TX_SETIMAGE1_4 = 0xAC, // 0xA4 + 4
BPMEM_TX_SETIMAGE2_4 = 0xB0, // 0xB0 + 4
BPMEM_TX_SETIMAGE3_4 = 0xB4, // 0xB4 + 4
BPMEM_TX_SETTLUT_4 = 0xB8, // 0xB8 + 4
BPMEM_TEV_COLOR_ENV = 0xC0, // 0xC0 + (2 * 16)
BPMEM_TEV_ALPHA_ENV = 0xC1, // 0xC1 + (2 * 16)
BPMEM_TEV_COLOR_RA = 0xE0, // 0xE0 + (2 * 4)
BPMEM_TEV_COLOR_BG = 0xE1, // 0xE1 + (2 * 4)
BPMEM_FOGRANGE = 0xE8, // 0xE8 + 6
BPMEM_FOGPARAM0 = 0xEE,
BPMEM_FOGBMAGNITUDE = 0xEF,
BPMEM_FOGBEXPONENT = 0xF0,
BPMEM_FOGPARAM3 = 0xF1,
BPMEM_FOGCOLOR = 0xF2,
BPMEM_ALPHACOMPARE = 0xF3,
BPMEM_BIAS = 0xF4,
BPMEM_ZTEX2 = 0xF5,
BPMEM_TEV_KSEL = 0xF6, // 0xF6 + 8
BPMEM_BP_MASK = 0xFE,
};
// Tev/combiner things
// TEV scaling type
enum class TevScale : u32
{
Scale1 = 0,
Scale2 = 1,
Scale4 = 2,
Divide2 = 3
};
template <>
struct fmt::formatter<TevScale> : EnumFormatter<TevScale::Divide2>
{
constexpr formatter() : EnumFormatter({"1", "2", "4", "0.5"}) {}
};
// TEV combiner operator
enum class TevOp : u32
{
Add = 0,
Sub = 1,
};
template <>
struct fmt::formatter<TevOp> : EnumFormatter<TevOp::Sub>
{
constexpr formatter() : EnumFormatter({"Add", "Subtract"}) {}
};
enum class TevCompareMode : u32
{
R8 = 0,
GR16 = 1,
BGR24 = 2,
RGB8 = 3,
A8 = RGB8,
};
template <>
struct fmt::formatter<TevCompareMode> : EnumFormatter<TevCompareMode::RGB8>
{
constexpr formatter() : EnumFormatter({"R8", "GR16", "BGR24", "RGB8 / A8"}) {}
};
enum class TevComparison : u32
{
GT = 0,
EQ = 1,
};
template <>
struct fmt::formatter<TevComparison> : EnumFormatter<TevComparison::EQ>
{
constexpr formatter() : EnumFormatter({"Greater than", "Equal to"}) {}
};
// TEV color combiner input
enum class TevColorArg : u32
{
PrevColor = 0,
PrevAlpha = 1,
Color0 = 2,
Alpha0 = 3,
Color1 = 4,
Alpha1 = 5,
Color2 = 6,
Alpha2 = 7,
TexColor = 8,
TexAlpha = 9,
RasColor = 10,
RasAlpha = 11,
One = 12,
Half = 13,
Konst = 14,
Zero = 15
};
template <>
struct fmt::formatter<TevColorArg> : EnumFormatter<TevColorArg::Zero>
{
static constexpr array_type names = {
"prev.rgb", "prev.aaa", "c0.rgb", "c0.aaa", "c1.rgb", "c1.aaa", "c2.rgb", "c2.aaa",
"tex.rgb", "tex.aaa", "ras.rgb", "ras.aaa", "ONE", "HALF", "konst.rgb", "ZERO",
};
constexpr formatter() : EnumFormatter(names) {}
};
// TEV alpha combiner input
enum class TevAlphaArg : u32
{
PrevAlpha = 0,
Alpha0 = 1,
Alpha1 = 2,
Alpha2 = 3,
TexAlpha = 4,
RasAlpha = 5,
Konst = 6,
Zero = 7
};
template <>
struct fmt::formatter<TevAlphaArg> : EnumFormatter<TevAlphaArg::Zero>
{
static constexpr array_type names = {
"prev", "c0", "c1", "c2", "tex", "ras", "konst", "ZERO",
};
constexpr formatter() : EnumFormatter(names) {}
};
// TEV output registers
enum class TevOutput : u32
{
Prev = 0,
Color0 = 1,
Color1 = 2,
Color2 = 3,
};
template <>
struct fmt::formatter<TevOutput> : EnumFormatter<TevOutput::Color2>
{
constexpr formatter() : EnumFormatter({"prev", "c0", "c1", "c2"}) {}
};
// Z-texture formats
enum class ZTexFormat : u32
{
U8 = 0,
U16 = 1,
U24 = 2
};
template <>
struct fmt::formatter<ZTexFormat> : EnumFormatter<ZTexFormat::U24>
{
constexpr formatter() : EnumFormatter({"u8", "u16", "u24"}) {}
};
// Z texture operator
enum class ZTexOp : u32
{
Disabled = 0,
Add = 1,
Replace = 2
};
template <>
struct fmt::formatter<ZTexOp> : EnumFormatter<ZTexOp::Replace>
{
constexpr formatter() : EnumFormatter({"Disabled", "Add", "Replace"}) {}
};
// TEV bias value
enum class TevBias : u32
{
Zero = 0,
AddHalf = 1,
SubHalf = 2,
Compare = 3
};
template <>
struct fmt::formatter<TevBias> : EnumFormatter<TevBias::Compare>
{
constexpr formatter() : EnumFormatter({"0", "+0.5", "-0.5", "compare"}) {}
};
// Indirect texture format
enum class IndTexFormat : u32
{
ITF_8 = 0,
ITF_5 = 1,
ITF_4 = 2,
ITF_3 = 3
};
template <>
struct fmt::formatter<IndTexFormat> : EnumFormatter<IndTexFormat::ITF_3>
{
constexpr formatter() : EnumFormatter({"ITF_8", "ITF_5", "ITF_4", "ITF_3"}) {}
};
// Indirect texture bias
enum class IndTexBias : u32
{
None = 0,
S = 1,
T = 2,
ST = 3,
U = 4,
SU = 5,
TU_ = 6, // conflicts with define in PowerPC.h
STU = 7
};
template <>
struct fmt::formatter<IndTexBias> : EnumFormatter<IndTexBias::STU>
{
constexpr formatter() : EnumFormatter({"None", "S", "T", "ST", "U", "SU", "TU", "STU"}) {}
};
enum class IndMtxIndex : u32
{
Off = 0,
Matrix0 = 1,
Matrix1 = 2,
Matrix2 = 3,
};
template <>
struct fmt::formatter<IndMtxIndex> : EnumFormatter<IndMtxIndex::Matrix2>
{
constexpr formatter() : EnumFormatter({"Off", "Matrix 0", "Matrix 1", "Matrix 2"}) {}
};
enum class IndMtxId : u32
{
Indirect = 0,
S = 1,
T = 2,
};
template <>
struct fmt::formatter<IndMtxId> : EnumFormatter<IndMtxId::T>
{
constexpr formatter() : EnumFormatter({"Indirect", "S", "T"}) {}
};
// Indirect texture bump alpha
enum class IndTexBumpAlpha : u32
{
Off = 0,
S = 1,
T = 2,
U = 3
};
template <>
struct fmt::formatter<IndTexBumpAlpha> : EnumFormatter<IndTexBumpAlpha::U>
{
constexpr formatter() : EnumFormatter({"Off", "S", "T", "U"}) {}
};
// Indirect texture wrap value
enum class IndTexWrap : u32
{
ITW_OFF = 0,
ITW_256 = 1,
ITW_128 = 2,
ITW_64 = 3,
ITW_32 = 4,
ITW_16 = 5,
ITW_0 = 6
};
template <>
struct fmt::formatter<IndTexWrap> : EnumFormatter<IndTexWrap::ITW_0>
{
constexpr formatter() : EnumFormatter({"Off", "256", "128", "64", "32", "16", "0"}) {}
};
union IND_MTXA
{
BitField<0, 11, s32> ma;
BitField<11, 11, s32> mb;
BitField<22, 2, u8, u32> s0; // bits 0-1 of scale factor
u32 hex;
};
template <>
struct fmt::formatter<IND_MTXA>
{
constexpr auto parse(format_parse_context& ctx) { return ctx.begin(); }
template <typename FormatContext>
auto format(const IND_MTXA& col, FormatContext& ctx) const
{
return fmt::format_to(ctx.out(),
"Row 0 (ma): {} ({})\n"
"Row 1 (mb): {} ({})\n"
"Scale bits: {} (shifted: {})",
col.ma / 1024.0f, col.ma, col.mb / 1024.0f, col.mb, col.s0, col.s0);
}
};
union IND_MTXB
{
BitField<0, 11, s32> mc;
BitField<11, 11, s32> md;
BitField<22, 2, u8, u32> s1; // bits 2-3 of scale factor
u32 hex;
};
template <>
struct fmt::formatter<IND_MTXB>
{
constexpr auto parse(format_parse_context& ctx) { return ctx.begin(); }
template <typename FormatContext>
auto format(const IND_MTXB& col, FormatContext& ctx) const
{
return fmt::format_to(ctx.out(),
"Row 0 (mc): {} ({})\n"
"Row 1 (md): {} ({})\n"
"Scale bits: {} (shifted: {})",
col.mc / 1024.0f, col.mc, col.md / 1024.0f, col.md, col.s1, col.s1 << 2);
}
};
union IND_MTXC
{
BitField<0, 11, s32> me;
BitField<11, 11, s32> mf;
BitField<22, 1, u8, u32> s2; // bit 4 of scale factor
// The SDK treats the scale factor as 6 bits, 2 on each column; however, hardware seems to ignore
// the top bit.
BitField<22, 2, u8, u32> sdk_s2;
u32 hex;
};
template <>
struct fmt::formatter<IND_MTXC>
{
constexpr auto parse(format_parse_context& ctx) { return ctx.begin(); }
template <typename FormatContext>
auto format(const IND_MTXC& col, FormatContext& ctx) const
{
return fmt::format_to(ctx.out(),
"Row 0 (me): {} ({})\n"
"Row 1 (mf): {} ({})\n"
"Scale bits: {} (shifted: {}), given to SDK as {} ({})",
col.me / 1024.0f, col.me, col.mf / 1024.0f, col.mf, col.s2, col.s2 << 4,
col.sdk_s2, col.sdk_s2 << 4);
}
};
struct IND_MTX
{
IND_MTXA col0;
IND_MTXB col1;
IND_MTXC col2;
u8 GetScale() const { return (col0.s0 << 0) | (col1.s1 << 2) | (col2.s2 << 4); }
};
union IND_IMASK
{
BitField<0, 24, u32> mask;
u32 hex;
};
struct TevStageCombiner
{
union ColorCombiner
{
// abc=8bit,d=10bit
BitField<0, 4, TevColorArg> d;
BitField<4, 4, TevColorArg> c;
BitField<8, 4, TevColorArg> b;
BitField<12, 4, TevColorArg> a;
BitField<16, 2, TevBias> bias;
BitField<18, 1, TevOp> op; // Applies when bias is not compare
BitField<18, 1, TevComparison> comparison; // Applies when bias is compare
BitField<19, 1, bool, u32> clamp;
BitField<20, 2, TevScale> scale; // Applies when bias is not compare
BitField<20, 2, TevCompareMode> compare_mode; // Applies when bias is compare
BitField<22, 2, TevOutput> dest;
u32 hex;
};
union AlphaCombiner
{
BitField<0, 2, u32> rswap;
BitField<2, 2, u32> tswap;
BitField<4, 3, TevAlphaArg> d;
BitField<7, 3, TevAlphaArg> c;
BitField<10, 3, TevAlphaArg> b;
BitField<13, 3, TevAlphaArg> a;
BitField<16, 2, TevBias> bias;
BitField<18, 1, TevOp> op; // Applies when bias is not compare
BitField<18, 1, TevComparison> comparison; // Applies when bias is compare
BitField<19, 1, bool, u32> clamp;
BitField<20, 2, TevScale> scale; // Applies when bias is not compare
BitField<20, 2, TevCompareMode> compare_mode; // Applies when bias is compare
BitField<22, 2, TevOutput> dest;
u32 hex;
};
ColorCombiner colorC;
AlphaCombiner alphaC;
};
template <>
struct fmt::formatter<TevStageCombiner::ColorCombiner>
{
constexpr auto parse(format_parse_context& ctx) { return ctx.begin(); }
template <typename FormatContext>
auto format(const TevStageCombiner::ColorCombiner& cc, FormatContext& ctx) const
{
auto out = ctx.out();
if (cc.bias != TevBias::Compare)
{
// Generate an equation view, simplifying out addition of zero and multiplication by 1
// dest = (d (OP) ((1 - c)*a + c*b) + bias) * scale
// or equivalently and more readably when the terms are not constants:
// dest = (d (OP) lerp(a, b, c) + bias) * scale
// Note that lerping is more complex than the first form shows; see PixelShaderGen's
// WriteTevRegular for more details.
static constexpr Common::EnumMap<const char*, TevColorArg::Zero> alt_names = {
"prev.rgb", "prev.aaa", "c0.rgb", "c0.aaa", "c1.rgb", "c1.aaa", "c2.rgb", "c2.aaa",
"tex.rgb", "tex.aaa", "ras.rgb", "ras.aaa", "1", ".5", "konst.rgb", "0",
};
const bool has_d = cc.d != TevColorArg::Zero;
// If c is one, (1 - c) is zero, so (1-c)*a is zero
const bool has_ac = cc.a != TevColorArg::Zero && cc.c != TevColorArg::One;
// If either b or c is zero, b*c is zero
const bool has_bc = cc.b != TevColorArg::Zero && cc.c != TevColorArg::Zero;
const bool has_bias = cc.bias != TevBias::Zero; // != Compare is already known
const bool has_scale = cc.scale != TevScale::Scale1;
const char op = (cc.op == TevOp::Sub ? '-' : '+');
if (cc.dest == TevOutput::Prev)
out = fmt::format_to(out, "dest.rgb = ");
else
out = fmt::format_to(out, "{:n}.rgb = ", cc.dest);
if (has_scale)
out = fmt::format_to(out, "(");
if (has_d)
out = fmt::format_to(out, "{}", alt_names[cc.d]);
if (has_ac || has_bc)
{
if (has_d)
out = fmt::format_to(out, " {} ", op);
else if (cc.op == TevOp::Sub)
out = fmt::format_to(out, "{}", op);
if (has_ac && has_bc)
{
if (cc.c == TevColorArg::Half)
{
// has_a and has_b imply that c is not Zero or One, and Half is the only remaining
// numeric constant. This results in an average.
out = fmt::format_to(out, "({} + {})/2", alt_names[cc.a], alt_names[cc.b]);
}
else
{
out = fmt::format_to(out, "lerp({}, {}, {})", alt_names[cc.a], alt_names[cc.b],
alt_names[cc.c]);
}
}
else if (has_ac)
{
if (cc.c == TevColorArg::Zero)
out = fmt::format_to(out, "{}", alt_names[cc.a]);
else if (cc.c == TevColorArg::Half) // 1 - .5 is .5
out = fmt::format_to(out, ".5*{}", alt_names[cc.a]);
else
out = fmt::format_to(out, "(1 - {})*{}", alt_names[cc.c], alt_names[cc.a]);
}
else // has_bc
{
if (cc.c == TevColorArg::One)
out = fmt::format_to(out, "{}", alt_names[cc.b]);
else
out = fmt::format_to(out, "{}*{}", alt_names[cc.c], alt_names[cc.b]);
}
}
if (has_bias)
{
if (has_ac || has_bc || has_d)
2022-01-13 06:26:04 +00:00
out = fmt::format_to(out, "{}", cc.bias == TevBias::AddHalf ? " + .5" : " - .5");
else
2022-01-13 06:26:04 +00:00
out = fmt::format_to(out, "{}", cc.bias == TevBias::AddHalf ? ".5" : "-.5");
}
else
{
// If nothing has been written so far, add a zero
if (!(has_ac || has_bc || has_d))
out = fmt::format_to(out, "0");
}
if (has_scale)
out = fmt::format_to(out, ") * {:n}", cc.scale);
out = fmt::format_to(out, "\n\n");
}
return fmt::format_to(ctx.out(),
"a: {}\n"
"b: {}\n"
"c: {}\n"
"d: {}\n"
"Bias: {}\n"
"Op: {} / Comparison: {}\n"
"Clamp: {}\n"
"Scale factor: {} / Compare mode: {}\n"
"Dest: {}",
cc.a, cc.b, cc.c, cc.d, cc.bias, cc.op, cc.comparison,
cc.clamp ? "Yes" : "No", cc.scale, cc.compare_mode, cc.dest);
}
};
template <>
struct fmt::formatter<TevStageCombiner::AlphaCombiner>
{
constexpr auto parse(format_parse_context& ctx) { return ctx.begin(); }
template <typename FormatContext>
auto format(const TevStageCombiner::AlphaCombiner& ac, FormatContext& ctx) const
{
auto out = ctx.out();
if (ac.bias != TevBias::Compare)
{
// Generate an equation view, simplifying out addition of zero and multiplication by 1
// dest = (d (OP) ((1 - c)*a + c*b) + bias) * scale
// or equivalently and more readably when the terms are not constants:
// dest = (d (OP) lerp(a, b, c) + bias) * scale
// Note that lerping is more complex than the first form shows; see PixelShaderGen's
// WriteTevRegular for more details.
// We don't need an alt_names map here, unlike the color combiner, as the only special term is
// Zero, and we we filter that out below. However, we do need to append ".a" to all
// parameters, to make it explicit that these are operations on the alpha term instead of the
// 4-element vector. We also need to use the :n specifier so that the numeric ID isn't shown.
const bool has_d = ac.d != TevAlphaArg::Zero;
// There is no c value for alpha that results in (1 - c) always being zero
const bool has_ac = ac.a != TevAlphaArg::Zero;
// If either b or c is zero, b*c is zero
const bool has_bc = ac.b != TevAlphaArg::Zero && ac.c != TevAlphaArg::Zero;
const bool has_bias = ac.bias != TevBias::Zero; // != Compare is already known
const bool has_scale = ac.scale != TevScale::Scale1;
const char op = (ac.op == TevOp::Sub ? '-' : '+');
if (ac.dest == TevOutput::Prev)
out = fmt::format_to(out, "dest.a = ");
else
out = fmt::format_to(out, "{:n}.a = ", ac.dest);
if (has_scale)
out = fmt::format_to(out, "(");
if (has_d)
out = fmt::format_to(out, "{:n}.a", ac.d);
if (has_ac || has_bc)
{
if (has_d)
out = fmt::format_to(out, " {} ", op);
else if (ac.op == TevOp::Sub)
out = fmt::format_to(out, "{}", op);
if (has_ac && has_bc)
{
out = fmt::format_to(out, "lerp({:n}.a, {:n}.a, {:n}.a)", ac.a, ac.b, ac.c);
}
else if (has_ac)
{
if (ac.c == TevAlphaArg::Zero)
out = fmt::format_to(out, "{:n}.a", ac.a);
else
out = fmt::format_to(out, "(1 - {:n}.a)*{:n}.a", ac.c, ac.a);
}
else // has_bc
{
out = fmt::format_to(out, "{:n}.a*{:n}.a", ac.c, ac.b);
}
}
if (has_bias)
{
if (has_ac || has_bc || has_d)
2022-01-13 06:26:04 +00:00
out = fmt::format_to(out, "{}", ac.bias == TevBias::AddHalf ? " + .5" : " - .5");
else
2022-01-13 06:26:04 +00:00
out = fmt::format_to(out, "{}", ac.bias == TevBias::AddHalf ? ".5" : "-.5");
}
else
{
// If nothing has been written so far, add a zero
if (!(has_ac || has_bc || has_d))
out = fmt::format_to(out, "0");
}
if (has_scale)
out = fmt::format_to(out, ") * {:n}", ac.scale);
out = fmt::format_to(out, "\n\n");
}
return fmt::format_to(out,
"a: {}\n"
"b: {}\n"
"c: {}\n"
"d: {}\n"
"Bias: {}\n"
"Op: {} / Comparison: {}\n"
"Clamp: {}\n"
"Scale factor: {} / Compare mode: {}\n"
"Dest: {}\n"
"Rasterized color swaptable: {}\n"
"Texture color swaptable: {}",
ac.a, ac.b, ac.c, ac.d, ac.bias, ac.op, ac.comparison,
ac.clamp ? "Yes" : "No", ac.scale, ac.compare_mode, ac.dest, ac.rswap,
ac.tswap);
}
};
// several discoveries:
// GXSetTevIndBumpST(tevstage, indstage, matrixind)
// if ( matrix == 2 ) realmat = 6; // 10
// else if ( matrix == 3 ) realmat = 7; // 11
// else if ( matrix == 1 ) realmat = 5; // 9
// GXSetTevIndirect(tevstage, indstage, 0, 3, realmat, 6, 6, 0, 0, 0)
// GXSetTevIndirect(tevstage+1, indstage, 0, 3, realmat+4, 6, 6, 1, 0, 0)
// GXSetTevIndirect(tevstage+2, indstage, 0, 0, 0, 0, 0, 1, 0, 0)
union TevStageIndirect
{
BitField<0, 2, u32> bt; // Indirect tex stage ID
BitField<2, 2, IndTexFormat> fmt;
BitField<4, 3, IndTexBias> bias;
BitField<4, 1, bool, u32> bias_s;
BitField<5, 1, bool, u32> bias_t;
BitField<6, 1, bool, u32> bias_u;
BitField<7, 2, IndTexBumpAlpha> bs; // Indicates which coordinate will become the 'bump alpha'
// Indicates which indirect matrix is used when matrix_id is Indirect.
// Also always indicates which indirect matrix to use for the scale factor, even with S or T.
BitField<9, 2, IndMtxIndex> matrix_index;
// Should be set to Indirect (0) if matrix_index is Off (0)
BitField<11, 2, IndMtxId> matrix_id;
BitField<13, 3, IndTexWrap> sw; // Wrapping factor for S of regular coord
BitField<16, 3, IndTexWrap> tw; // Wrapping factor for T of regular coord
BitField<19, 1, bool, u32> lb_utclod; // Use modified or unmodified texture
// coordinates for LOD computation
BitField<20, 1, bool, u32> fb_addprev; // true if the texture coordinate results from the
// previous TEV stage should be added
struct
{
u32 hex : 21;
u32 unused : 11;
};
u32 fullhex;
// If bs and matrix are zero, the result of the stage is independent of
// the texture sample data, so we can skip sampling the texture.
bool IsActive() const { return bs != IndTexBumpAlpha::Off || matrix_index != IndMtxIndex::Off; }
};
template <>
struct fmt::formatter<TevStageIndirect>
{
constexpr auto parse(format_parse_context& ctx) { return ctx.begin(); }
template <typename FormatContext>
auto format(const TevStageIndirect& tevind, FormatContext& ctx) const
{
return fmt::format_to(ctx.out(),
"Indirect tex stage ID: {}\n"
"Format: {}\n"
"Bias: {}\n"
"Bump alpha: {}\n"
"Offset matrix index: {}\n"
"Offset matrix ID: {}\n"
"Regular coord S wrapping factor: {}\n"
"Regular coord T wrapping factor: {}\n"
"Use modified texture coordinates for LOD computation: {}\n"
"Add texture coordinates from previous TEV stage: {}",
tevind.bt, tevind.fmt, tevind.bias, tevind.bs, tevind.matrix_index,
tevind.matrix_id, tevind.sw, tevind.tw, tevind.lb_utclod ? "Yes" : "No",
tevind.fb_addprev ? "Yes" : "No");
}
};
enum class RasColorChan : u32
{
Color0 = 0,
Color1 = 1,
AlphaBump = 5,
NormalizedAlphaBump = 6,
Zero = 7,
};
template <>
struct fmt::formatter<RasColorChan> : EnumFormatter<RasColorChan::Zero>
{
static constexpr array_type names = {
"Color chan 0", "Color chan 1", nullptr, nullptr,
nullptr, "Alpha bump", "Norm alpha bump", "Zero",
};
constexpr formatter() : EnumFormatter(names) {}
};
union TwoTevStageOrders
{
BitField<0, 3, u32> texmap_even;
BitField<3, 3, u32> texcoord_even;
BitField<6, 1, bool, u32> enable_tex_even; // true if should read from texture
BitField<7, 3, RasColorChan> colorchan_even;
BitField<12, 3, u32> texmap_odd;
BitField<15, 3, u32> texcoord_odd;
BitField<18, 1, bool, u32> enable_tex_odd; // true if should read from texture
BitField<19, 3, RasColorChan> colorchan_odd;
u32 hex;
u32 getTexMap(int i) const { return i ? texmap_odd.Value() : texmap_even.Value(); }
u32 getTexCoord(int i) const { return i ? texcoord_odd.Value() : texcoord_even.Value(); }
u32 getEnable(int i) const { return i ? enable_tex_odd.Value() : enable_tex_even.Value(); }
RasColorChan getColorChan(int i) const
{
return i ? colorchan_odd.Value() : colorchan_even.Value();
}
};
template <>
struct fmt::formatter<std::pair<u8, TwoTevStageOrders>>
{
constexpr auto parse(format_parse_context& ctx) { return ctx.begin(); }
template <typename FormatContext>
auto format(const std::pair<u8, TwoTevStageOrders>& p, FormatContext& ctx) const
{
const auto& [cmd, stages] = p;
const u8 stage_even = (cmd - BPMEM_TREF) * 2;
const u8 stage_odd = stage_even + 1;
return fmt::format_to(ctx.out(),
"Stage {0} texmap: {1}\nStage {0} tex coord: {2}\n"
"Stage {0} enable texmap: {3}\nStage {0} rasterized color channel: {4}\n"
"Stage {5} texmap: {6}\nStage {5} tex coord: {7}\n"
"Stage {5} enable texmap: {8}\nStage {5} rasterized color channel: {9}\n",
stage_even, stages.texmap_even, stages.texcoord_even,
stages.enable_tex_even ? "Yes" : "No", stages.colorchan_even, stage_odd,
stages.texmap_odd, stages.texcoord_odd,
stages.enable_tex_odd ? "Yes" : "No", stages.colorchan_odd);
}
};
union TEXSCALE
{
BitField<0, 4, u32> ss0; // Indirect tex stage 0 or 2, 2^(-ss0)
BitField<4, 4, u32> ts0; // Indirect tex stage 0 or 2
BitField<8, 4, u32> ss1; // Indirect tex stage 1 or 3
BitField<12, 4, u32> ts1; // Indirect tex stage 1 or 3
u32 hex;
};
template <>
struct fmt::formatter<std::pair<u8, TEXSCALE>>
{
constexpr auto parse(format_parse_context& ctx) { return ctx.begin(); }
template <typename FormatContext>
auto format(const std::pair<u8, TEXSCALE>& p, FormatContext& ctx) const
{
const auto& [cmd, scale] = p;
const u8 even = (cmd - BPMEM_RAS1_SS0) * 2;
const u8 odd_ = even + 1;
return fmt::format_to(ctx.out(),
"Indirect stage {0} S coord scale: {1} ({2})\n"
"Indirect stage {0} T coord scale: {3} ({4})\n"
"Indirect stage {5} S coord scale: {6} ({7})\n"
"Indirect stage {5} T coord scale: {8} ({9})",
even, 1.f / (1 << scale.ss0), scale.ss0, 1.f / (1 << scale.ts0),
scale.ts0, odd_, 1.f / (1 << scale.ss1), scale.ss1,
1.f / (1 << scale.ts1), scale.ts1);
}
};
union RAS1_IREF
{
BitField<0, 3, u32> bi0; // Indirect tex stage 0 texmap
BitField<3, 3, u32> bc0; // Indirect tex stage 0 tex coord
BitField<6, 3, u32> bi1;
BitField<9, 3, u32> bc1;
BitField<12, 3, u32> bi2;
BitField<15, 3, u32> bc2;
BitField<18, 3, u32> bi3;
BitField<21, 3, u32> bc3;
u32 hex;
u32 getTexCoord(int i) const { return (hex >> (6 * i + 3)) & 7; }
u32 getTexMap(int i) const { return (hex >> (6 * i)) & 7; }
};
template <>
struct fmt::formatter<RAS1_IREF>
{
constexpr auto parse(format_parse_context& ctx) { return ctx.begin(); }
template <typename FormatContext>
auto format(const RAS1_IREF& indref, FormatContext& ctx) const
{
return fmt::format_to(ctx.out(),
"Indirect stage 0 texmap: {}\nIndirect stage 0 tex coord: {}\n"
"Indirect stage 1 texmap: {}\nIndirect stage 1 tex coord: {}\n"
"Indirect stage 2 texmap: {}\nIndirect stage 2 tex coord: {}\n"
"Indirect stage 3 texmap: {}\nIndirect stage 3 tex coord: {}",
indref.bi0, indref.bc0, indref.bi1, indref.bc1, indref.bi2, indref.bc2,
indref.bi3, indref.bc3);
}
};
// Texture structs
enum class WrapMode : u32
{
Clamp = 0,
Repeat = 1,
Mirror = 2,
2021-07-20 19:53:32 +00:00
// Hardware testing indicates that WrapMode set to 3 behaves the same as clamp, though this is an
// invalid value
};
template <>
struct fmt::formatter<WrapMode> : EnumFormatter<WrapMode::Mirror>
{
constexpr formatter() : EnumFormatter({"Clamp", "Repeat", "Mirror"}) {}
};
enum class MipMode : u32
{
None = 0,
Point = 1,
Linear = 2,
};
template <>
struct fmt::formatter<MipMode> : EnumFormatter<MipMode::Linear>
{
constexpr formatter() : EnumFormatter({"None", "Mip point", "Mip linear"}) {}
};
enum class FilterMode : u32
{
Near = 0,
Linear = 1,
};
template <>
struct fmt::formatter<FilterMode> : EnumFormatter<FilterMode::Linear>
{
constexpr formatter() : EnumFormatter({"Near", "Linear"}) {}
};
enum class LODType : u32
{
Edge = 0,
Diagonal = 1,
};
template <>
struct fmt::formatter<LODType> : EnumFormatter<LODType::Diagonal>
{
constexpr formatter() : EnumFormatter({"Edge LOD", "Diagonal LOD"}) {}
};
2021-07-29 00:18:05 +00:00
enum class MaxAniso
{
One = 0,
Two = 1,
Four = 2,
};
template <>
2021-07-29 00:18:05 +00:00
struct fmt::formatter<MaxAniso> : EnumFormatter<MaxAniso::Four>
{
constexpr formatter() : EnumFormatter({"1", "2", "4"}) {}
};
union TexMode0
{
BitField<0, 2, WrapMode> wrap_s;
BitField<2, 2, WrapMode> wrap_t;
BitField<4, 1, FilterMode> mag_filter;
BitField<5, 2, MipMode> mipmap_filter;
BitField<7, 1, FilterMode> min_filter;
BitField<8, 1, LODType> diag_lod;
BitField<9, 8, s32> lod_bias;
2021-07-29 00:18:05 +00:00
BitField<19, 2, MaxAniso> max_aniso;
BitField<21, 1, bool, u32> lod_clamp;
u32 hex;
};
template <>
struct fmt::formatter<TexMode0>
{
constexpr auto parse(format_parse_context& ctx) { return ctx.begin(); }
template <typename FormatContext>
auto format(const TexMode0& mode, FormatContext& ctx) const
{
return fmt::format_to(ctx.out(),
"Wrap S: {}\n"
"Wrap T: {}\n"
"Mag filter: {}\n"
"Mipmap filter: {}\n"
"Min filter: {}\n"
"LOD type: {}\n"
"LOD bias: {} ({})\n"
"Max anisotropic filtering: {}\n"
"LOD/bias clamp: {}",
mode.wrap_s, mode.wrap_t, mode.mag_filter, mode.mipmap_filter,
mode.min_filter, mode.diag_lod, mode.lod_bias, mode.lod_bias / 32.f,
mode.max_aniso, mode.lod_clamp ? "Yes" : "No");
}
};
union TexMode1
{
BitField<0, 8, u32> min_lod;
BitField<8, 8, u32> max_lod;
u32 hex;
};
template <>
struct fmt::formatter<TexMode1>
{
constexpr auto parse(format_parse_context& ctx) { return ctx.begin(); }
template <typename FormatContext>
auto format(const TexMode1& mode, FormatContext& ctx) const
{
return fmt::format_to(ctx.out(), "Min LOD: {} ({})\nMax LOD: {} ({})", mode.min_lod,
mode.min_lod / 16.f, mode.max_lod, mode.max_lod / 16.f);
}
};
union TexImage0
{
BitField<0, 10, u32> width; // Actually w-1
BitField<10, 10, u32> height; // Actually h-1
BitField<20, 4, TextureFormat> format;
u32 hex;
};
template <>
struct fmt::formatter<TexImage0>
{
constexpr auto parse(format_parse_context& ctx) { return ctx.begin(); }
template <typename FormatContext>
auto format(const TexImage0& teximg, FormatContext& ctx) const
{
return fmt::format_to(ctx.out(),
"Width: {}\n"
"Height: {}\n"
"Format: {}",
teximg.width + 1, teximg.height + 1, teximg.format);
}
};
union TexImage1
{
BitField<0, 15, u32> tmem_even; // TMEM line index for even LODs
BitField<15, 3, u32> cache_width;
BitField<18, 3, u32> cache_height;
// true if this texture is managed manually (false means we'll
// autofetch the texture data whenever it changes)
BitField<21, 1, bool, u32> cache_manually_managed;
u32 hex;
};
template <>
struct fmt::formatter<TexImage1>
{
constexpr auto parse(format_parse_context& ctx) { return ctx.begin(); }
template <typename FormatContext>
auto format(const TexImage1& teximg, FormatContext& ctx) const
{
return fmt::format_to(ctx.out(),
"Even TMEM Offset: {:x}\n"
"Even TMEM Width: {}\n"
"Even TMEM Height: {}\n"
"Cache is manually managed: {}",
teximg.tmem_even, teximg.cache_width, teximg.cache_height,
teximg.cache_manually_managed ? "Yes" : "No");
}
};
union TexImage2
{
BitField<0, 15, u32> tmem_odd; // tmem line index for odd LODs
BitField<15, 3, u32> cache_width;
BitField<18, 3, u32> cache_height;
u32 hex;
};
template <>
struct fmt::formatter<TexImage2>
{
constexpr auto parse(format_parse_context& ctx) { return ctx.begin(); }
template <typename FormatContext>
auto format(const TexImage2& teximg, FormatContext& ctx) const
{
return fmt::format_to(ctx.out(),
"Odd TMEM Offset: {:x}\n"
"Odd TMEM Width: {}\n"
"Odd TMEM Height: {}",
teximg.tmem_odd, teximg.cache_width, teximg.cache_height);
}
};
union TexImage3
{
BitField<0, 24, u32> image_base; // address in memory >> 5 (was 20 for GC)
u32 hex;
};
template <>
struct fmt::formatter<TexImage3>
{
constexpr auto parse(format_parse_context& ctx) { return ctx.begin(); }
template <typename FormatContext>
auto format(const TexImage3& teximg, FormatContext& ctx) const
{
return fmt::format_to(ctx.out(), "Source address (32 byte aligned): 0x{:06X}",
teximg.image_base << 5);
}
};
union TexTLUT
{
BitField<0, 10, u32> tmem_offset;
BitField<10, 2, TLUTFormat> tlut_format;
u32 hex;
};
template <>
struct fmt::formatter<TexTLUT>
{
constexpr auto parse(format_parse_context& ctx) { return ctx.begin(); }
template <typename FormatContext>
auto format(const TexTLUT& tlut, FormatContext& ctx) const
{
return fmt::format_to(ctx.out(), "Address: {:08x}\nFormat: {}", tlut.tmem_offset << 9,
tlut.tlut_format);
}
};
union ZTex1
{
BitField<0, 24, u32> bias;
u32 hex;
};
union ZTex2
{
BitField<0, 2, ZTexFormat> type;
BitField<2, 2, ZTexOp> op;
u32 hex;
};
template <>
struct fmt::formatter<ZTex2>
{
constexpr auto parse(format_parse_context& ctx) { return ctx.begin(); }
template <typename FormatContext>
auto format(const ZTex2& ztex2, FormatContext& ctx) const
{
return fmt::format_to(ctx.out(), "Type: {}\nOperation: {}", ztex2.type, ztex2.op);
}
};
// Geometry/other structs
enum class CullMode : u32
{
None = 0,
Back = 1, // cull back-facing primitives
Front = 2, // cull front-facing primitives
All = 3, // cull all primitives
};
template <>
struct fmt::formatter<CullMode> : EnumFormatter<CullMode::All>
{
static constexpr array_type names = {
"None",
"Back-facing primitives only",
"Front-facing primitives only",
"All primitives",
};
constexpr formatter() : EnumFormatter(names) {}
};
union GenMode
{
BitField<0, 4, u32> numtexgens;
BitField<4, 3, u32> numcolchans;
BitField<7, 1, u32> unused; // 1 bit unused?
BitField<8, 1, bool, u32> flat_shading; // unconfirmed
BitField<9, 1, bool, u32> multisampling;
// This value is 1 less than the actual number (0-15 map to 1-16).
// In other words there is always at least 1 tev stage
BitField<10, 4, u32> numtevstages;
BitField<14, 2, CullMode> cullmode;
BitField<16, 3, u32> numindstages;
BitField<19, 1, bool, u32> zfreeze;
u32 hex;
};
template <>
struct fmt::formatter<GenMode>
{
constexpr auto parse(format_parse_context& ctx) { return ctx.begin(); }
template <typename FormatContext>
auto format(const GenMode& mode, FormatContext& ctx) const
{
return fmt::format_to(ctx.out(),
"Num tex gens: {}\n"
"Num color channels: {}\n"
"Unused bit: {}\n"
"Flat shading (unconfirmed): {}\n"
"Multisampling: {}\n"
"Num TEV stages: {}\n"
"Cull mode: {}\n"
"Num indirect stages: {}\n"
"ZFreeze: {}",
mode.numtexgens, mode.numcolchans, mode.unused,
mode.flat_shading ? "Yes" : "No", mode.multisampling ? "Yes" : "No",
mode.numtevstages + 1, mode.cullmode, mode.numindstages,
mode.zfreeze ? "Yes" : "No");
}
};
enum class AspectRatioAdjustment
{
DontAdjust = 0,
Adjust = 1,
};
template <>
struct fmt::formatter<AspectRatioAdjustment> : EnumFormatter<AspectRatioAdjustment::Adjust>
{
constexpr formatter() : EnumFormatter({"Don't adjust", "Adjust"}) {}
};
union LPSize
{
BitField<0, 8, u32> linesize; // in 1/6th pixels
BitField<8, 8, u32> pointsize; // in 1/6th pixels
BitField<16, 3, u32> lineoff;
BitField<19, 3, u32> pointoff;
// interlacing: adjust for pixels having AR of 1/2
BitField<22, 1, AspectRatioAdjustment> adjust_for_aspect_ratio;
u32 hex;
};
template <>
struct fmt::formatter<LPSize>
{
constexpr auto parse(format_parse_context& ctx) { return ctx.begin(); }
template <typename FormatContext>
auto format(const LPSize& lp, FormatContext& ctx) const
{
return fmt::format_to(ctx.out(),
"Line size: {} ({:.3} pixels)\n"
"Point size: {} ({:.3} pixels)\n"
"Line offset: {}\n"
"Point offset: {}\n"
"Adjust line aspect ratio: {}",
lp.linesize, lp.linesize / 6.f, lp.pointsize, lp.pointsize / 6.f,
lp.lineoff, lp.pointoff, lp.adjust_for_aspect_ratio);
}
};
union ScissorPos
{
// The top bit is ignored, and not included in the mask used by GX SDK functions
// (though libogc includes it for the bottom coordinate (only) for some reason)
// x_full and y_full include that bit for the FIFO analyzer, though it is usually unset.
// The SDK also adds 342 to these values.
BitField<0, 11, u32> y;
BitField<0, 12, u32> y_full;
BitField<12, 11, u32> x;
BitField<12, 12, u32> x_full;
u32 hex;
};
template <>
struct fmt::formatter<ScissorPos>
{
constexpr auto parse(format_parse_context& ctx) { return ctx.begin(); }
template <typename FormatContext>
auto format(const ScissorPos& pos, FormatContext& ctx)
{
2022-05-10 23:38:21 +00:00
return fmt::format_to(ctx.out(),
"X: {} (raw: {})\n"
"Y: {} (raw: {})",
pos.x - 342, pos.x_full, pos.y - 342, pos.y_full);
}
};
union ScissorOffset
{
// The scissor offset ignores the top bit (though it isn't masked off by the GX SDK).
// Each value is also divided by 2 (so 0-511 map to 0-1022).
// x_full and y_full include that top bit for the FIFO analyzer, though it is usually unset.
// The SDK also adds 342 to each value (before dividing it).
BitField<0, 9, u32> x;
BitField<0, 10, u32> x_full;
BitField<10, 9, u32> y;
BitField<10, 10, u32> y_full;
u32 hex;
};
template <>
struct fmt::formatter<ScissorOffset>
{
constexpr auto parse(format_parse_context& ctx) { return ctx.begin(); }
template <typename FormatContext>
auto format(const ScissorOffset& off, FormatContext& ctx)
{
2022-05-10 23:38:21 +00:00
return fmt::format_to(ctx.out(),
"X: {} (raw: {})\n"
"Y: {} (raw: {})",
(off.x << 1) - 342, off.x_full, (off.y << 1) - 342, off.y_full);
}
};
union X10Y10
{
BitField<0, 10, u32> x;
BitField<10, 10, u32> y;
u32 hex;
};
// Framebuffer/pixel stuff (incl fog)
enum class SrcBlendFactor : u32
{
Zero = 0,
One = 1,
DstClr = 2,
InvDstClr = 3,
SrcAlpha = 4,
InvSrcAlpha = 5,
DstAlpha = 6,
InvDstAlpha = 7
};
template <>
struct fmt::formatter<SrcBlendFactor> : EnumFormatter<SrcBlendFactor::InvDstAlpha>
{
static constexpr array_type names = {"0", "1", "dst_color", "1-dst_color",
"src_alpha", "1-src_alpha", "dst_alpha", "1-dst_alpha"};
constexpr formatter() : EnumFormatter(names) {}
};
enum class DstBlendFactor : u32
{
Zero = 0,
One = 1,
SrcClr = 2,
InvSrcClr = 3,
SrcAlpha = 4,
InvSrcAlpha = 5,
DstAlpha = 6,
InvDstAlpha = 7
};
template <>
struct fmt::formatter<DstBlendFactor> : EnumFormatter<DstBlendFactor::InvDstAlpha>
{
static constexpr array_type names = {"0", "1", "src_color", "1-src_color",
"src_alpha", "1-src_alpha", "dst_alpha", "1-dst_alpha"};
constexpr formatter() : EnumFormatter(names) {}
};
enum class LogicOp : u32
{
Clear = 0,
And = 1,
AndReverse = 2,
Copy = 3,
AndInverted = 4,
NoOp = 5,
Xor = 6,
Or = 7,
Nor = 8,
Equiv = 9,
Invert = 10,
OrReverse = 11,
CopyInverted = 12,
OrInverted = 13,
Nand = 14,
Set = 15
};
template <>
struct fmt::formatter<LogicOp> : EnumFormatter<LogicOp::Set>
{
static constexpr array_type names = {
"Clear (0)",
"And (src & dst)",
"And Reverse (src & ~dst)",
"Copy (src)",
"And Inverted (~src & dst)",
"NoOp (dst)",
"Xor (src ^ dst)",
"Or (src | dst)",
"Nor (~(src | dst))",
"Equiv (~(src ^ dst))",
"Invert (~dst)",
"Or Reverse (src | ~dst)",
"Copy Inverted (~src)",
"Or Inverted (~src | dst)",
"Nand (~(src & dst))",
"Set (1)",
};
constexpr formatter() : EnumFormatter(names) {}
};
union BlendMode
{
BitField<0, 1, bool, u32> blendenable;
BitField<1, 1, bool, u32> logicopenable;
BitField<2, 1, bool, u32> dither;
BitField<3, 1, bool, u32> colorupdate;
BitField<4, 1, bool, u32> alphaupdate;
BitField<5, 3, DstBlendFactor> dstfactor;
BitField<8, 3, SrcBlendFactor> srcfactor;
BitField<11, 1, bool, u32> subtract;
BitField<12, 4, LogicOp> logicmode;
u32 hex;
bool UseLogicOp() const;
};
template <>
struct fmt::formatter<BlendMode>
{
constexpr auto parse(format_parse_context& ctx) { return ctx.begin(); }
template <typename FormatContext>
auto format(const BlendMode& mode, FormatContext& ctx) const
{
static constexpr std::array<const char*, 2> no_yes = {"No", "Yes"};
return fmt::format_to(ctx.out(),
"Enable: {}\n"
"Logic ops: {}\n"
"Dither: {}\n"
"Color write: {}\n"
"Alpha write: {}\n"
"Dest factor: {}\n"
"Source factor: {}\n"
"Subtract: {}\n"
"Logic mode: {}",
no_yes[mode.blendenable], no_yes[mode.logicopenable], no_yes[mode.dither],
no_yes[mode.colorupdate], no_yes[mode.alphaupdate], mode.dstfactor,
mode.srcfactor, no_yes[mode.subtract], mode.logicmode);
}
};
union FogParam0
{
BitField<0, 11, u32> mant;
BitField<11, 8, u32> exp;
BitField<19, 1, u32> sign;
u32 hex;
float FloatValue() const;
};
template <>
struct fmt::formatter<FogParam0>
{
constexpr auto parse(format_parse_context& ctx) { return ctx.begin(); }
template <typename FormatContext>
auto format(const FogParam0& param, FormatContext& ctx) const
{
return fmt::format_to(ctx.out(), "A value: {}\nMantissa: {}\nExponent: {}\nSign: {}",
param.FloatValue(), param.mant, param.exp, param.sign ? '-' : '+');
}
};
enum class FogProjection : u32
{
Perspective = 0,
Orthographic = 1,
};
template <>
struct fmt::formatter<FogProjection> : EnumFormatter<FogProjection::Orthographic>
{
constexpr formatter() : EnumFormatter({"Perspective", "Orthographic"}) {}
};
enum class FogType : u32
{
Off = 0,
Linear = 2,
Exp = 4,
ExpSq = 5,
BackwardsExp = 6,
BackwardsExpSq = 7,
};
template <>
struct fmt::formatter<FogType> : EnumFormatter<FogType::BackwardsExpSq>
{
static constexpr array_type names = {
"Off (no fog)",
nullptr,
"Linear fog",
nullptr,
"Exponential fog",
"Exponential-squared fog",
"Backwards exponential fog",
"Backwards exponenential-sequared fog",
};
constexpr formatter() : EnumFormatter(names) {}
};
union FogParam3
{
BitField<0, 11, u32> c_mant;
BitField<11, 8, u32> c_exp;
BitField<19, 1, u32> c_sign;
BitField<20, 1, FogProjection> proj;
BitField<21, 3, FogType> fsel;
u32 hex;
float FloatValue() const;
};
template <>
struct fmt::formatter<FogParam3>
{
constexpr auto parse(format_parse_context& ctx) { return ctx.begin(); }
template <typename FormatContext>
auto format(const FogParam3& param, FormatContext& ctx) const
{
return fmt::format_to(
ctx.out(), "C value: {}\nMantissa: {}\nExponent: {}\nSign: {}\nProjection: {}\nFsel: {}",
param.FloatValue(), param.c_mant, param.c_exp, param.c_sign ? '-' : '+', param.proj,
param.fsel);
}
};
union FogRangeKElement
{
BitField<0, 12, u32> HI;
BitField<12, 12, u32> LO;
// TODO: Which scaling coefficient should we use here? This is just a guess!
float GetValue(int i) const { return (i ? HI.Value() : LO.Value()) / 256.f; }
u32 HEX;
};
struct FogRangeParams
{
union RangeBase
{
BitField<0, 10, u32> Center; // viewport center + 342
BitField<10, 1, bool, u32> Enabled;
u32 hex;
};
RangeBase Base;
FogRangeKElement K[5];
};
template <>
struct fmt::formatter<FogRangeParams::RangeBase>
{
constexpr auto parse(format_parse_context& ctx) { return ctx.begin(); }
template <typename FormatContext>
auto format(const FogRangeParams::RangeBase& range, FormatContext& ctx) const
{
return fmt::format_to(ctx.out(), "Center: {}\nEnabled: {}", range.Center,
range.Enabled ? "Yes" : "No");
}
};
template <>
struct fmt::formatter<FogRangeKElement>
{
constexpr auto parse(format_parse_context& ctx) { return ctx.begin(); }
template <typename FormatContext>
auto format(const FogRangeKElement& range, FormatContext& ctx) const
{
return fmt::format_to(ctx.out(), "High: {}\nLow: {}", range.HI, range.LO);
}
};
// final eq: ze = A/(B_MAG - (Zs>>B_SHF));
struct FogParams
{
FogParam0 a;
u32 b_magnitude;
u32 b_shift; // b's exp + 1?
FogParam3 c_proj_fsel;
union FogColor
{
BitField<0, 8, u32> b;
BitField<8, 8, u32> g;
BitField<16, 8, u32> r;
u32 hex;
};
FogColor color; // 0:b 8:g 16:r - nice!
// Special case where a and c are infinite and the sign matches, resulting in a result of NaN.
bool IsNaNCase() const;
float GetA() const;
// amount to subtract from eyespacez after range adjustment
float GetC() const;
};
template <>
struct fmt::formatter<FogParams::FogColor>
{
constexpr auto parse(format_parse_context& ctx) { return ctx.begin(); }
template <typename FormatContext>
auto format(const FogParams::FogColor& color, FormatContext& ctx) const
{
return fmt::format_to(ctx.out(), "Red: {}\nGreen: {}\nBlue: {}", color.r, color.g, color.b);
}
};
enum class CompareMode : u32
{
Never = 0,
Less = 1,
Equal = 2,
LEqual = 3,
Greater = 4,
NEqual = 5,
GEqual = 6,
Always = 7
};
template <>
struct fmt::formatter<CompareMode> : EnumFormatter<CompareMode::Always>
{
static constexpr array_type names = {"Never", "Less", "Equal", "LEqual",
"Greater", "NEqual", "GEqual", "Always"};
constexpr formatter() : EnumFormatter(names) {}
};
union ZMode
{
BitField<0, 1, bool, u32> testenable;
BitField<1, 3, CompareMode> func;
BitField<4, 1, bool, u32> updateenable;
u32 hex;
};
template <>
struct fmt::formatter<ZMode>
{
constexpr auto parse(format_parse_context& ctx) { return ctx.begin(); }
template <typename FormatContext>
auto format(const ZMode& mode, FormatContext& ctx) const
{
return fmt::format_to(ctx.out(),
"Enable test: {}\n"
"Compare function: {}\n"
"Enable updates: {}",
mode.testenable ? "Yes" : "No", mode.func,
mode.updateenable ? "Yes" : "No");
}
};
union ConstantAlpha
{
BitField<0, 8, u32> alpha;
BitField<8, 1, bool, u32> enable;
u32 hex;
};
template <>
struct fmt::formatter<ConstantAlpha>
{
constexpr auto parse(format_parse_context& ctx) { return ctx.begin(); }
template <typename FormatContext>
auto format(const ConstantAlpha& c, FormatContext& ctx) const
{
return fmt::format_to(ctx.out(),
"Enable: {}\n"
"Alpha value: {:02x}",
c.enable ? "Yes" : "No", c.alpha);
}
};
union FieldMode
{
// adjust vertex tex LOD computation to account for interlacing
BitField<0, 1, AspectRatioAdjustment> texLOD;
u32 hex;
};
template <>
struct fmt::formatter<FieldMode>
{
constexpr auto parse(format_parse_context& ctx) { return ctx.begin(); }
template <typename FormatContext>
auto format(const FieldMode& mode, FormatContext& ctx) const
{
return fmt::format_to(
ctx.out(), "Adjust vertex tex LOD computation to account for interlacing: {}", mode.texLOD);
}
};
enum class FieldMaskState : u32
{
Skip = 0,
Write = 1,
};
template <>
struct fmt::formatter<FieldMaskState> : EnumFormatter<FieldMaskState::Write>
{
constexpr formatter() : EnumFormatter({"Skipped", "Written"}) {}
};
union FieldMask
{
// Fields are written to the EFB only if their bit is set to write.
BitField<0, 1, FieldMaskState> odd;
BitField<1, 1, FieldMaskState> even;
u32 hex;
};
template <>
struct fmt::formatter<FieldMask>
{
constexpr auto parse(format_parse_context& ctx) { return ctx.begin(); }
template <typename FormatContext>
auto format(const FieldMask& mask, FormatContext& ctx) const
{
return fmt::format_to(ctx.out(), "Odd field: {}\nEven field: {}", mask.odd, mask.even);
}
};
enum class PixelFormat : u32
{
RGB8_Z24 = 0,
RGBA6_Z24 = 1,
RGB565_Z16 = 2,
Z24 = 3,
Y8 = 4,
U8 = 5,
V8 = 6,
YUV420 = 7,
INVALID_FMT = 0xffffffff, // Used by Dolphin to represent a missing value.
};
template <>
struct fmt::formatter<PixelFormat> : EnumFormatter<PixelFormat::YUV420>
{
static constexpr array_type names = {"RGB8_Z24", "RGBA6_Z24", "RGB565_Z16", "Z24",
"Y8", "U8", "V8", "YUV420"};
constexpr formatter() : EnumFormatter(names) {}
};
enum class DepthFormat : u32
{
ZLINEAR = 0,
ZNEAR = 1,
ZMID = 2,
ZFAR = 3,
// It seems these Z formats aren't supported/were removed ?
ZINV_LINEAR = 4,
ZINV_NEAR = 5,
ZINV_MID = 6,
ZINV_FAR = 7
};
template <>
struct fmt::formatter<DepthFormat> : EnumFormatter<DepthFormat::ZINV_FAR>
{
static constexpr array_type names = {
"linear", "compressed (near)", "compressed (mid)", "compressed (far)",
"inv linear", "compressed (inv near)", "compressed (inv mid)", "compressed (inv far)",
};
constexpr formatter() : EnumFormatter(names) {}
};
union PEControl
{
BitField<0, 3, PixelFormat> pixel_format;
BitField<3, 3, DepthFormat> zformat;
BitField<6, 1, bool, u32> early_ztest;
u32 hex;
};
template <>
struct fmt::formatter<PEControl>
{
constexpr auto parse(format_parse_context& ctx) { return ctx.begin(); }
template <typename FormatContext>
auto format(const PEControl& config, FormatContext& ctx) const
{
return fmt::format_to(ctx.out(),
"EFB pixel format: {}\n"
"Depth format: {}\n"
"Early depth test: {}",
config.pixel_format, config.zformat, config.early_ztest ? "Yes" : "No");
}
};
// Texture coordinate stuff
union TCInfo
{
BitField<0, 16, u32> scale_minus_1;
BitField<16, 1, bool, u32> range_bias;
BitField<17, 1, bool, u32> cylindric_wrap;
// These bits only have effect in the s field of TCoordInfo
BitField<18, 1, bool, u32> line_offset;
BitField<19, 1, bool, u32> point_offset;
u32 hex;
};
template <>
struct fmt::formatter<std::pair<bool, TCInfo>>
{
constexpr auto parse(format_parse_context& ctx) { return ctx.begin(); }
template <typename FormatContext>
auto format(const std::pair<bool, TCInfo>& p, FormatContext& ctx) const
{
const auto& [is_s, info] = p;
auto out = fmt::format_to(ctx.out(),
"{0} coord scale: {1}\n"
"{0} coord range bias: {2}\n"
"{0} coord cylindric wrap: {3}",
is_s ? 'S' : 'T', info.scale_minus_1 + 1,
info.range_bias ? "Yes" : "No", info.cylindric_wrap ? "Yes" : "No");
if (is_s)
{
out = fmt::format_to(out,
"\nUse line offset: {}"
"\nUse point offset: {}",
info.line_offset ? "Yes" : "No", info.point_offset ? "Yes" : "No");
}
return out;
}
};
struct TCoordInfo
{
TCInfo s;
TCInfo t;
};
enum class TevRegType : u32
{
Color = 0,
Constant = 1,
};
template <>
struct fmt::formatter<TevRegType> : EnumFormatter<TevRegType::Constant>
{
constexpr formatter() : EnumFormatter({"Color", "Constant"}) {}
};
struct TevReg
{
// TODO: Check if Konst uses all 11 bits or just 8
union RA
{
u32 hex;
BitField<0, 11, s32> red;
BitField<12, 11, s32> alpha;
BitField<23, 1, TevRegType, u32> type;
};
union BG
{
u32 hex;
BitField<0, 11, s32> blue;
BitField<12, 11, s32> green;
BitField<23, 1, TevRegType, u32> type;
};
RA ra;
BG bg;
};
template <>
struct fmt::formatter<TevReg::RA>
{
constexpr auto parse(format_parse_context& ctx) { return ctx.begin(); }
template <typename FormatContext>
auto format(const TevReg::RA& ra, FormatContext& ctx) const
{
return fmt::format_to(ctx.out(), "Type: {}\nAlpha: {:03x}\nRed: {:03x}", ra.type, ra.alpha,
ra.red);
}
};
template <>
struct fmt::formatter<TevReg::BG>
{
constexpr auto parse(format_parse_context& ctx) { return ctx.begin(); }
template <typename FormatContext>
auto format(const TevReg::BG& bg, FormatContext& ctx) const
{
return fmt::format_to(ctx.out(), "Type: {}\nGreen: {:03x}\nBlue: {:03x}", bg.type, bg.green,
bg.blue);
}
};
template <>
struct fmt::formatter<TevReg>
{
constexpr auto parse(format_parse_context& ctx) { return ctx.begin(); }
template <typename FormatContext>
auto format(const TevReg& reg, FormatContext& ctx) const
{
return fmt::format_to(ctx.out(), "{}\n{}", reg.ra, reg.bg);
}
};
enum class ColorChannel : u32
{
Red = 0,
Green = 1,
Blue = 2,
Alpha = 3,
};
template <>
struct fmt::formatter<ColorChannel> : EnumFormatter<ColorChannel::Alpha>
{
constexpr formatter() : EnumFormatter({"Red", "Green", "Blue", "Alpha"}) {}
};
enum class KonstSel : u32
{
V1 = 0,
V7_8 = 1,
V3_4 = 2,
V5_8 = 3,
V1_2 = 4,
V3_8 = 5,
V1_4 = 6,
V1_8 = 7,
// 8-11 are invalid values that output 0 (8-15 for alpha)
K0 = 12, // Color only
K1 = 13, // Color only
K2 = 14, // Color only
K3 = 15, // Color only
K0_R = 16,
K1_R = 17,
K2_R = 18,
K3_R = 19,
K0_G = 20,
K1_G = 21,
K2_G = 22,
K3_G = 23,
K0_B = 24,
K1_B = 25,
K2_B = 26,
K3_B = 27,
K0_A = 28,
K1_A = 29,
K2_A = 30,
K3_A = 31,
};
template <>
struct fmt::formatter<KonstSel> : EnumFormatter<KonstSel::K3_A>
{
static constexpr array_type names = {
"1",
"7/8",
"3/4",
"5/8",
"1/2",
"3/8",
"1/4",
"1/8",
nullptr,
nullptr,
nullptr,
nullptr,
"Konst 0 RGB (invalid for alpha)",
"Konst 1 RGB (invalid for alpha)",
"Konst 2 RGB (invalid for alpha)",
"Konst 3 RGB (invalid for alpha)",
"Konst 0 Red",
"Konst 1 Red",
"Konst 2 Red",
"Konst 3 Red",
"Konst 0 Green",
"Konst 1 Green",
"Konst 2 Green",
"Konst 3 Green",
"Konst 0 Blue",
"Konst 1 Blue",
"Konst 2 Blue",
"Konst 3 Blue",
"Konst 0 Alpha",
"Konst 1 Alpha",
"Konst 2 Alpha",
"Konst 3 Alpha",
};
constexpr formatter() : EnumFormatter(names) {}
};
union TevKSel
{
BitField<0, 2, ColorChannel> swap_rb; // Odd ksel number: red; even: blue
BitField<2, 2, ColorChannel> swap_ga; // Odd ksel number: green; even: alpha
BitField<4, 5, KonstSel> kcsel_even;
BitField<9, 5, KonstSel> kasel_even;
BitField<14, 5, KonstSel> kcsel_odd;
BitField<19, 5, KonstSel> kasel_odd;
u32 hex;
};
template <>
struct fmt::formatter<std::pair<u8, TevKSel>>
{
constexpr auto parse(format_parse_context& ctx) { return ctx.begin(); }
template <typename FormatContext>
auto format(const std::pair<u8, TevKSel>& p, FormatContext& ctx) const
{
const auto& [cmd, ksel] = p;
const u8 swap_number = (cmd - BPMEM_TEV_KSEL) / 2;
const bool swap_ba = (cmd - BPMEM_TEV_KSEL) & 1;
const u8 even_stage = (cmd - BPMEM_TEV_KSEL) * 2;
const u8 odd_stage = even_stage + 1;
return fmt::format_to(ctx.out(),
"Swap table {0}: {1} channel comes from input's {2} channel\n"
"Swap table {0}: {3} channel comes from input's {4} channel\n"
"TEV stage {5} konst color: {6}\n"
"TEV stage {5} konst alpha: {7}\n"
"TEV stage {8} konst color: {9}\n"
"TEV stage {8} konst alpha: {10}",
swap_number, swap_ba ? "Blue" : "Red", ksel.swap_rb,
swap_ba ? "Alpha" : "Green", ksel.swap_ga, even_stage, ksel.kcsel_even,
ksel.kasel_even, odd_stage, ksel.kcsel_odd, ksel.kasel_odd);
}
};
struct AllTevKSels
{
std::array<TevKSel, 8> ksel;
KonstSel GetKonstColor(u32 tev_stage) const
{
const u32 ksel_num = tev_stage >> 1;
const bool odd = tev_stage & 1;
const auto& cur_ksel = ksel[ksel_num];
return odd ? cur_ksel.kcsel_odd.Value() : cur_ksel.kcsel_even.Value();
}
KonstSel GetKonstAlpha(u32 tev_stage) const
{
const u32 ksel_num = tev_stage >> 1;
const bool odd = tev_stage & 1;
const auto& cur_ksel = ksel[ksel_num];
return odd ? cur_ksel.kasel_odd.Value() : cur_ksel.kasel_even.Value();
}
Common::EnumMap<ColorChannel, ColorChannel::Alpha> GetSwapTable(u32 swap_table_id) const
{
const u32 rg_ksel_num = swap_table_id << 1;
const u32 ba_ksel_num = rg_ksel_num + 1;
const auto& rg_ksel = ksel[rg_ksel_num];
const auto& ba_ksel = ksel[ba_ksel_num];
return {rg_ksel.swap_rb, rg_ksel.swap_ga, ba_ksel.swap_rb, ba_ksel.swap_ga};
}
};
enum class AlphaTestOp : u32
{
And = 0,
Or = 1,
Xor = 2,
Xnor = 3
};
template <>
struct fmt::formatter<AlphaTestOp> : EnumFormatter<AlphaTestOp::Xnor>
{
constexpr formatter() : EnumFormatter({"And", "Or", "Xor", "Xnor"}) {}
};
enum class AlphaTestResult
{
Undetermined = 0,
Fail = 1,
Pass = 2,
};
union AlphaTest
{
BitField<0, 8, u32> ref0;
BitField<8, 8, u32> ref1;
BitField<16, 3, CompareMode> comp0;
BitField<19, 3, CompareMode> comp1;
BitField<22, 2, AlphaTestOp> logic;
u32 hex;
DOLPHIN_FORCE_INLINE AlphaTestResult TestResult() const
2013-08-12 10:52:28 +00:00
{
switch (logic)
2013-08-12 10:52:28 +00:00
{
case AlphaTestOp::And:
if (comp0 == CompareMode::Always && comp1 == CompareMode::Always)
return AlphaTestResult::Pass;
if (comp0 == CompareMode::Never || comp1 == CompareMode::Never)
return AlphaTestResult::Fail;
2013-08-12 10:52:28 +00:00
break;
case AlphaTestOp::Or:
if (comp0 == CompareMode::Always || comp1 == CompareMode::Always)
return AlphaTestResult::Pass;
if (comp0 == CompareMode::Never && comp1 == CompareMode::Never)
return AlphaTestResult::Fail;
2013-08-12 10:52:28 +00:00
break;
case AlphaTestOp::Xor:
if ((comp0 == CompareMode::Always && comp1 == CompareMode::Never) ||
(comp0 == CompareMode::Never && comp1 == CompareMode::Always))
return AlphaTestResult::Pass;
if ((comp0 == CompareMode::Always && comp1 == CompareMode::Always) ||
(comp0 == CompareMode::Never && comp1 == CompareMode::Never))
return AlphaTestResult::Fail;
2013-08-12 10:52:28 +00:00
break;
case AlphaTestOp::Xnor:
if ((comp0 == CompareMode::Always && comp1 == CompareMode::Never) ||
(comp0 == CompareMode::Never && comp1 == CompareMode::Always))
return AlphaTestResult::Fail;
if ((comp0 == CompareMode::Always && comp1 == CompareMode::Always) ||
(comp0 == CompareMode::Never && comp1 == CompareMode::Never))
return AlphaTestResult::Pass;
2013-08-12 10:52:28 +00:00
break;
default:
return AlphaTestResult::Undetermined;
2013-08-12 10:52:28 +00:00
}
return AlphaTestResult::Undetermined;
2013-08-12 10:52:28 +00:00
}
};
template <>
struct fmt::formatter<AlphaTest>
{
constexpr auto parse(format_parse_context& ctx) { return ctx.begin(); }
template <typename FormatContext>
auto format(const AlphaTest& test, FormatContext& ctx) const
{
return fmt::format_to(ctx.out(),
"Test 1: {} (ref: 0x{:02x})\n"
"Test 2: {} (ref: 0x{:02x})\n"
"Logic: {}\n",
test.comp0, test.ref0, test.comp1, test.ref1, test.logic);
}
};
enum class FrameToField : u32
{
Progressive = 0,
InterlacedEven = 2,
InterlacedOdd = 3,
};
template <>
struct fmt::formatter<FrameToField> : EnumFormatter<FrameToField::InterlacedOdd>
{
static constexpr array_type names = {"Progressive", nullptr, "Interlaced (even lines)",
"Interlaced (odd lines)"};
constexpr formatter() : EnumFormatter(names) {}
};
enum class GammaCorrection : u32
{
Gamma1_0 = 0,
Gamma1_7 = 1,
Gamma2_2 = 2,
// Hardware testing indicates this behaves the same as Gamma2_2
Invalid2_2 = 3,
};
template <>
struct fmt::formatter<GammaCorrection> : EnumFormatter<GammaCorrection::Invalid2_2>
{
constexpr formatter() : EnumFormatter({"1.0", "1.7", "2.2", "Invalid 2.2"}) {}
};
union UPE_Copy
{
u32 Hex;
BitField<0, 1, bool, u32> clamp_top; // if set clamp top
BitField<1, 1, bool, u32> clamp_bottom; // if set clamp bottom
BitField<2, 1, u32> unknown_bit;
BitField<3, 4, u32> target_pixel_format; // realformat is (fmt/2)+((fmt&1)*8).... for some reason
// the msb is the lsb (pattern: cycling right shift)
BitField<7, 2, GammaCorrection> gamma;
// "mipmap" filter... false = no filter (scale 1:1) ; true = box filter (scale 2:1)
BitField<9, 1, bool, u32> half_scale;
BitField<10, 1, bool, u32> scale_invert; // if set vertical scaling is on
BitField<11, 1, bool, u32> clear;
BitField<12, 2, FrameToField> frame_to_field;
BitField<14, 1, bool, u32> copy_to_xfb;
BitField<15, 1, bool, u32> intensity_fmt; // if set, is an intensity format (I4,I8,IA4,IA8)
// if false automatic color conversion by texture format and pixel type
BitField<16, 1, bool, u32> auto_conv;
EFBCopyFormat tp_realFormat() const
{
return static_cast<EFBCopyFormat>(target_pixel_format / 2 + (target_pixel_format & 1) * 8);
}
};
template <>
struct fmt::formatter<UPE_Copy>
{
constexpr auto parse(format_parse_context& ctx) { return ctx.begin(); }
template <typename FormatContext>
auto format(const UPE_Copy& copy, FormatContext& ctx) const
{
static constexpr std::array<const char*, 2> no_yes = {"No", "Yes"};
std::string_view clamp;
if (copy.clamp_top)
{
if (copy.clamp_bottom)
clamp = "Top and Bottom";
else
clamp = "Top only";
}
else
{
if (copy.clamp_bottom)
clamp = "Bottom only";
else
clamp = "None";
}
return fmt::format_to(ctx.out(),
"Clamping: {}\n"
"Unknown bit: {}\n"
"Target pixel format: {}\n"
"Gamma correction: {}\n"
"Half scale: {}\n"
"Vertical scaling: {}\n"
"Clear: {}\n"
"Frame to field: {}\n"
"Copy to XFB: {}\n"
"Intensity format: {}\n"
"Automatic color conversion: {}",
clamp, copy.unknown_bit, copy.tp_realFormat(), copy.gamma,
no_yes[copy.half_scale], no_yes[copy.scale_invert], no_yes[copy.clear],
copy.frame_to_field, no_yes[copy.copy_to_xfb], no_yes[copy.intensity_fmt],
no_yes[copy.auto_conv]);
}
};
union CopyFilterCoefficients
{
using Values = std::array<u8, 7>;
u64 Hex;
BitField<0, 32, u32, u64> Low;
BitField<0, 6, u64> w0;
BitField<6, 6, u64> w1;
BitField<12, 6, u64> w2;
BitField<18, 6, u64> w3;
BitField<32, 32, u32, u64> High;
BitField<32, 6, u64> w4;
BitField<38, 6, u64> w5;
BitField<44, 6, u64> w6;
Values GetCoefficients() const
{
return {{
static_cast<u8>(w0),
static_cast<u8>(w1),
static_cast<u8>(w2),
static_cast<u8>(w3),
static_cast<u8>(w4),
static_cast<u8>(w5),
static_cast<u8>(w6),
}};
}
};
union BPU_PreloadTileInfo
{
BitField<0, 15, u32> count;
BitField<15, 2, u32> type;
2012-01-29 20:17:22 +00:00
u32 hex;
};
template <>
struct fmt::formatter<BPU_PreloadTileInfo>
{
constexpr auto parse(format_parse_context& ctx) { return ctx.begin(); }
template <typename FormatContext>
auto format(const BPU_PreloadTileInfo& info, FormatContext& ctx) const
{
return fmt::format_to(ctx.out(), "Type: {}\nCount: {}", info.type, info.count);
}
};
2012-01-29 20:17:22 +00:00
struct BPS_TmemConfig
{
u32 preload_addr;
u32 preload_tmem_even;
u32 preload_tmem_odd;
BPU_PreloadTileInfo preload_tile_info;
u32 tlut_src;
u32 tlut_dest;
u32 texinvalidate;
};
union AllTexUnits;
// The addressing of the texture units is a bit non-obvious.
// This struct abstracts the complexity away.
union TexUnitAddress
{
enum class Register : u32
{
SETMODE0 = 0,
SETMODE1 = 1,
SETIMAGE0 = 2,
SETIMAGE1 = 3,
SETIMAGE2 = 4,
SETIMAGE3 = 5,
SETTLUT = 6,
UNKNOWN = 7,
};
BitField<0, 2, u32> UnitIdLow;
BitField<2, 3, Register> Reg;
BitField<5, 1, u32> UnitIdHigh;
BitField<0, 6, u32> FullAddress;
u32 hex;
TexUnitAddress() : hex(0) {}
TexUnitAddress(u32 unit_id, Register reg = Register::SETMODE0) : hex(0)
{
UnitIdLow = unit_id & 3;
UnitIdHigh = unit_id >> 2;
Reg = reg;
}
static TexUnitAddress FromBPAddress(u32 Address)
{
TexUnitAddress Val;
// Clear upper two bits (which should always be 0x80)
Val.FullAddress = Address & 0x3f;
return Val;
}
u32 GetUnitID() const { return UnitIdLow | (UnitIdHigh << 2); }
private:
friend AllTexUnits;
size_t GetOffset() const { return FullAddress; }
size_t GetBPAddress() const { return FullAddress | 0x80; }
static constexpr size_t ComputeOffset(u32 unit_id)
{
// FIXME: Would be nice to construct a TexUnitAddress and get its offset,
// but that doesn't seem to be possible in c++17
// So we manually re-implement the calculation
return (unit_id & 3) | ((unit_id & 4) << 3);
}
};
static_assert(sizeof(TexUnitAddress) == sizeof(u32));
// A view of the registers of a single TexUnit
struct TexUnit
{
TexMode0 texMode0;
u32 : 32; // doing u32 : 96 is legal according to the standard, but msvc
u32 : 32; // doesn't like it. So we stack multiple lines of u32 : 32;
u32 : 32;
TexMode1 texMode1;
u32 : 32;
u32 : 32;
u32 : 32;
TexImage0 texImage0;
u32 : 32;
u32 : 32;
u32 : 32;
TexImage1 texImage1;
u32 : 32;
u32 : 32;
u32 : 32;
TexImage2 texImage2;
u32 : 32;
u32 : 32;
u32 : 32;
TexImage3 texImage3;
u32 : 32;
u32 : 32;
u32 : 32;
TexTLUT texTlut;
u32 : 32;
u32 : 32;
u32 : 32;
u32 unknown;
};
static_assert(sizeof(TexUnit) == sizeof(u32) * 4 * 7 + sizeof(u32));
union AllTexUnits
{
std::array<u32, 8 * 8> AllRegisters;
const TexUnit& GetUnit(u32 UnitId) const
{
auto address = TexUnitAddress(UnitId);
const u32* ptr = &AllRegisters[address.GetOffset()];
return *reinterpret_cast<const TexUnit*>(ptr);
}
private:
// For debuggers since GetUnit can be optimised out in release builds
template <u32 UnitId>
struct TexUnitPadding
{
static_assert(UnitId != 0, "Can't use 0 as sizeof(std::array<u32, 0>) != 0");
std::array<u32, TexUnitAddress::ComputeOffset(UnitId)> pad;
};
TexUnit tex0;
struct
{
TexUnitPadding<1> pad1;
TexUnit tex1;
};
struct
{
TexUnitPadding<2> pad2;
TexUnit tex2;
};
struct
{
TexUnitPadding<3> pad3;
TexUnit tex3;
};
struct
{
TexUnitPadding<4> pad4;
TexUnit tex4;
};
struct
{
TexUnitPadding<5> pad5;
TexUnit tex5;
};
struct
{
TexUnitPadding<6> pad6;
TexUnit tex6;
};
struct
{
TexUnitPadding<7> pad7;
TexUnit tex7;
};
};
static_assert(sizeof(AllTexUnits) == 8 * 8 * sizeof(u32));
// All of BP memory
struct BPCmd
{
int address;
int changes;
int newvalue;
};
enum class EmulatedZ : u32
{
Disabled = 0,
Early = 1,
Late = 2,
ForcedEarly = 3,
EarlyWithFBFetch = 4,
EarlyWithZComplocHack = 5,
};
struct BPMemory
{
GenMode genMode; // 0x00
u32 display_copy_filter[4]; // 0x01-0x04
u32 unknown; // 0x05
// indirect matrices (set by GXSetIndTexMtx, selected by TevStageIndirect::matrix_index)
// abc form a 2x3 offset matrix, there's 3 such matrices
// the 3 offset matrices can either be indirect type, S-type, or T-type
// 6bit scale factor s is distributed across IND_MTXA/B/C.
// before using matrices scale by 2^-(s-17)
IND_MTX indmtx[3]; // 0x06-0x0e: GXSetIndTexMtx, 2x3 matrices
IND_IMASK imask; // 0x0f
TevStageIndirect tevind[16]; // 0x10-0x1f: GXSetTevIndirect
ScissorPos scissorTL; // 0x20
ScissorPos scissorBR; // 0x21
LPSize lineptwidth; // 0x22
u32 sucounter; // 0x23
u32 rascounter; // 0x24
TEXSCALE texscale[2]; // 0x25,0x26: GXSetIndTexCoordScale
RAS1_IREF tevindref; // 0x27: GXSetIndTexOrder
TwoTevStageOrders tevorders[8]; // 0x28-0x2f
TCoordInfo texcoords[8]; // 0x30-0x4f: s,t,s,t,s,t,s,t...
ZMode zmode; // 0x40
BlendMode blendmode; // 0x41
ConstantAlpha dstalpha; // 0x42
PEControl zcontrol; // 0x43: GXSetZCompLoc, GXPixModeSync
FieldMask fieldmask; // 0x44
u32 drawdone; // 0x45: bit1=1 if end of list
u32 unknown5; // 0x46: clock?
u32 petoken; // 0x47
u32 petokenint; // 0x48
X10Y10 copyTexSrcXY; // 0x49
X10Y10 copyTexSrcWH; // 0x4a
u32 copyTexDest; // 0x4b: CopyAddress (GXDispCopy and GXTexCopy use it)
u32 unknown6; // 0x4c
// usually set to 4 when dest is single channel, 8 when dest is 2 channel, 16 when dest is RGBA
// also, doubles whenever mipmap box filter option is set (excent on RGBA). Probably to do
// with number of bytes to look at when smoothing
u32 copyMipMapStrideChannels; // 0x4d
u32 dispcopyyscale; // 0x4e
u32 clearcolorAR; // 0x4f
u32 clearcolorGB; // 0x50
u32 clearZValue; // 0x51
UPE_Copy triggerEFBCopy; // 0x52
CopyFilterCoefficients copyfilter; // 0x53,0x54
u32 boundbox0; // 0x55
u32 boundbox1; // 0x56
u32 unknown7[2]; // 0x57,0x58
ScissorOffset scissorOffset; // 0x59
u32 unknown8[6]; // 0x5a-0x5f
BPS_TmemConfig tmem_config; // 0x60-0x66
u32 metric; // 0x67
FieldMode fieldmode; // 0x68
u32 unknown10[7]; // 0x69-0x6f
u32 unknown11[16]; // 0x70-0x7f
AllTexUnits tex; // 0x80-0xbf
TevStageCombiner combiners[16]; // 0xc0-0xdf
TevReg tevregs[4]; // 0xe0-0xe7
FogRangeParams fogRange; // 0xe8-0xed
FogParams fog; // 0xee-0xf2
AlphaTest alpha_test; // 0xf3
ZTex1 ztex1; // 0xf4
ZTex2 ztex2; // 0xf5
AllTevKSels tevksel; // 0xf6-0xfd
u32 bpMask; // 0xfe
u32 unknown18; // 0xff
EmulatedZ GetEmulatedZ() const
{
if (!zmode.testenable)
return EmulatedZ::Disabled;
if (zcontrol.early_ztest)
return EmulatedZ::Early;
else
return EmulatedZ::Late;
}
};
#pragma pack()
extern BPMemory bpmem;
void LoadBPReg(u8 reg, u32 value, int cycles_into_future);
void LoadBPRegPreprocess(u8 reg, u32 value, int cycles_into_future);
std::pair<std::string, std::string> GetBPRegInfo(u8 cmd, u32 cmddata);