Actually it can partially be done with GL_ARB_shader_image_load_store
extension. However all drivers that support shader_image have
texture barrier too.
The idea is to use a floating texture to accumulate the data and
then do a final postprocessing pass to apply the modulo
v2:
* use bounding box to
* fix vertex corruption issue
* use negative number in shader which allow to use half float (+12
fps@4x)
Basically the code does the alpha multiplication in the shader therefore
the blend unit only does a pure addition. This way the multiplication is
accurate and accurate_blending doesn't requires a costly barrier.
This code also avoid variable duplication to make the code more separated.
Hopefully blending can be done in a separated function
It is preliminary work to support fast color clipping with HDR
v2: fix assertion compilation failure
v3: fix regression in not accurate mode
v3: Cs * As/Af is not an accumulation
Those cases don't need the Cd addition and were already optimized anyway
Fix a regression on GoW2
Do DATE algo selection before blending. This way we can detect bad
interaction.
Regroup all blending/colclip in a single block. Avoid to check abe &&
rt multiple times.
v2: only enable sw blending when abe is true
The updated medium level will run for all sprites. It helps sotc blooming effect and it remains
fast enough to be enabled by default (at least on 3D games)
The new high level will run for all sprites + color clipping
The idea is that sprites are often use for post-processing effect (ofc except 2D games)
Most of the time post-processing supports SW blending with a small speed penality. SW
blending is more accurate so it is better to use it.
Gain: 1% at 4x on SotC (it partially compensates recent additions)
When the color is constant and equal to 128, the MODULATE mode is
equivalent to the DECAL mode. It saves 5 instructions on the FS.
Accurate options do a better jobs. Technically it can still
be useful for old gpu/driver that doesn't support the GL4.5 extension.
On Windows, you can still rely on Dx
On linux, free driver support it (except Intel)
Code is not yet enabled because it requires extensive test
The idea is to replace point by a 1 pixels sprite with the help of
a geometry shader. In 4x, point will be replaced by a 4x4 sprite.
// GL42 interact very badly with sw blending. GL42 uses the primitiveID to find the primitive
// that write the bad alpha value. Sw blending will force the draw to run primitive by primitive
// (therefore primitiveID will be constant to 1)
It might help to fix a bit the color on a couple of games
accurate_fbmask = 1
Code uses GL4.5 extensions. So far it seems the effect is ony used a couple
of time and often in non-overlapping primitive. Speed impact will likely remain small
GS doesn't supports texture shuffle/swizzle so it is emulated in a
complex way.
The idea is to read/write the 32 bits color format as a 16 bit format.
This way, RG (16 lsb bits) or BA (16 msb bits) can be read or written with
square texture that targets pixels 1-8 or pixels 8-16.
However shuffle is limited. For example you can copy the green channel
to either the alpha channel or another green channel.
Note: Partial masking of channel is not yet implemented
V2: improve logging
V3: better support of green channel in shader
V4: improve detection of destination (issue due to rounding)
Gow uses 24 bits buffer, so only color is updated but blending is configured as Cd
so it is a NOP
In this case, we don't lookup the target in the texture cache. It reduces the complexity
to handle depth which can be located at same address as RT
Note: please test DX renderer