pcsx2/plugins/spu2-x/src/Reverb.cpp

429 lines
14 KiB
C++
Raw Normal View History

/* SPU2-X, A plugin for Emulating the Sound Processing Unit of the Playstation 2
* Developed and maintained by the Pcsx2 Development Team.
*
* Original portions from SPU2ghz are (c) 2008 by David Quintana [gigaherz]
*
* SPU2-X is free software: you can redistribute it and/or modify it under the terms
* of the GNU Lesser General Public License as published by the Free Software Found-
* ation, either version 3 of the License, or (at your option) any later version.
*
* SPU2-X is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY;
* without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR
* PURPOSE. See the GNU Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public License
* along with SPU2-X. If not, see <http://www.gnu.org/licenses/>.
*/
#include "Global.h"
#include "Lowpass.h"
// Low pass filters: Change these to 32 for a speedup (benchmarks needed to see if
// the speed gain is worth the quality drop)
//static LowPassFilter64 lowpass_left( 11000, SampleRate );
//static LowPassFilter64 lowpass_right( 11000, SampleRate );
__forceinline s32 V_Core::RevbGetIndexer( s32 offset )
{
u32 pos = ReverbX + offset & 0xFFFFF; // Apparently some reverb presets use offsets outside of the ps2 memory ...
// Fast and simple single step wrapping, made possible by the preparation of the
// effects buffer addresses.
if( pos > EffectsEndA )
{
pos -= EffectsEndA+1;
pos += EffectsStartA;
}
return pos;
}
u32 WrapAround(V_Core& thiscore, u32 offset)
{
return (thiscore.ReverbX + offset) % thiscore.EffectsBufferSize;
}
void V_Core::Reverb_AdvanceBuffer()
{
if( RevBuffers.NeedsUpdated )
UpdateEffectsBufferSize();
if( (Cycles & 1) && (EffectsBufferSize > 0) )
{
ReverbX += 1;
if( ReverbX >= (u32)EffectsBufferSize ) ReverbX = 0;
}
}
/////////////////////////////////////////////////////////////////////////////////////////
StereoOut32 V_Core::DoReverb( const StereoOut32& Input )
{
static const s32 downcoeffs[8] =
{
1283, 5344, 10895, 15243,
15243, 10895, 5344, 1283
};
downbuf[dbpos] = Input;
dbpos = (dbpos+1) & 7;
// Reverb processing occurs at 24khz, so we skip processing every other sample,
// and use the previous calculation for this core instead.
if( (Cycles&1) == 0 )
{
// Important: Factor silence into the upsampler here, otherwise the reverb engine
// develops a nasty feedback loop.
upbuf[ubpos] = StereoOut32::Empty;
}
else
{
if( EffectsBufferSize <= 0 )
{
ubpos = (ubpos+1) & 7;
return StereoOut32::Empty;
}
// Advance the current reverb buffer pointer, and cache the read/write addresses we'll be
// needing for this session of reverb.
const u32 src_a0 = RevbGetIndexer( RevBuffers.IIR_SRC_A0 );
const u32 src_a1 = RevbGetIndexer( RevBuffers.IIR_SRC_A1 );
const u32 src_b0 = RevbGetIndexer( RevBuffers.IIR_SRC_B0 );
const u32 src_b1 = RevbGetIndexer( RevBuffers.IIR_SRC_B1 );
const u32 dest_a0 = RevbGetIndexer( RevBuffers.IIR_DEST_A0 );
const u32 dest_a1 = RevbGetIndexer( RevBuffers.IIR_DEST_A1 );
const u32 dest_b0 = RevbGetIndexer( RevBuffers.IIR_DEST_B0 );
const u32 dest_b1 = RevbGetIndexer( RevBuffers.IIR_DEST_B1 );
const u32 dest2_a0 = RevbGetIndexer( RevBuffers.IIR_DEST_A0 + 1 );
const u32 dest2_a1 = RevbGetIndexer( RevBuffers.IIR_DEST_A1 + 1 );
const u32 dest2_b0 = RevbGetIndexer( RevBuffers.IIR_DEST_B0 + 1 );
const u32 dest2_b1 = RevbGetIndexer( RevBuffers.IIR_DEST_B1 + 1 );
const u32 acc_src_a0 = RevbGetIndexer( RevBuffers.ACC_SRC_A0 );
const u32 acc_src_b0 = RevbGetIndexer( RevBuffers.ACC_SRC_B0 );
const u32 acc_src_c0 = RevbGetIndexer( RevBuffers.ACC_SRC_C0 );
const u32 acc_src_d0 = RevbGetIndexer( RevBuffers.ACC_SRC_D0 );
const u32 acc_src_a1 = RevbGetIndexer( RevBuffers.ACC_SRC_A1 );
const u32 acc_src_b1 = RevbGetIndexer( RevBuffers.ACC_SRC_B1 );
const u32 acc_src_c1 = RevbGetIndexer( RevBuffers.ACC_SRC_C1 );
const u32 acc_src_d1 = RevbGetIndexer( RevBuffers.ACC_SRC_D1 );
const u32 fb_src_a0 = RevbGetIndexer( RevBuffers.FB_SRC_A0 );
const u32 fb_src_a1 = RevbGetIndexer( RevBuffers.FB_SRC_A1 );
const u32 fb_src_b0 = RevbGetIndexer( RevBuffers.FB_SRC_B0 );
const u32 fb_src_b1 = RevbGetIndexer( RevBuffers.FB_SRC_B1 );
const u32 mix_dest_a0 = RevbGetIndexer( RevBuffers.MIX_DEST_A0 );
const u32 mix_dest_a1 = RevbGetIndexer( RevBuffers.MIX_DEST_A1 );
const u32 mix_dest_b0 = RevbGetIndexer( RevBuffers.MIX_DEST_B0 );
const u32 mix_dest_b1 = RevbGetIndexer( RevBuffers.MIX_DEST_B1 );
// -----------------------------------------
// Optimized IRQ Testing !
// -----------------------------------------
// This test is enhanced by using the reverb effects area begin/end test as a
// shortcut, since all buffer addresses are within that area. If the IRQA isn't
// within that zone then the "bulk" of the test is skipped, so this should only
// be a slowdown on a few evil games.
for( uint i=0; i<2; i++ )
{
if( Cores[i].IRQEnable && ((Cores[i].IRQA >= EffectsStartA) && (Cores[i].IRQA <= EffectsEndA)) )
{
if( (Cores[i].IRQA == src_a0) || (Cores[i].IRQA == src_a1) ||
(Cores[i].IRQA == src_b0) || (Cores[i].IRQA == src_b1) ||
(Cores[i].IRQA == dest_a0) || (Cores[i].IRQA == dest_a1) ||
(Cores[i].IRQA == dest_b0) || (Cores[i].IRQA == dest_b1) ||
(Cores[i].IRQA == dest2_a0) || (Cores[i].IRQA == dest2_a1) ||
(Cores[i].IRQA == dest2_b0) || (Cores[i].IRQA == dest2_b1) ||
(Cores[i].IRQA == acc_src_a0) || (Cores[i].IRQA == acc_src_a1) ||
(Cores[i].IRQA == acc_src_b0) || (Cores[i].IRQA == acc_src_b1) ||
(Cores[i].IRQA == acc_src_c0) || (Cores[i].IRQA == acc_src_c1) ||
(Cores[i].IRQA == acc_src_d0) || (Cores[i].IRQA == acc_src_d1) ||
(Cores[i].IRQA == fb_src_a0) || (Cores[i].IRQA == fb_src_a1) ||
(Cores[i].IRQA == fb_src_b0) || (Cores[i].IRQA == fb_src_b1) ||
(Cores[i].IRQA == mix_dest_a0) || (Cores[i].IRQA == mix_dest_a1) ||
(Cores[i].IRQA == mix_dest_b0) || (Cores[i].IRQA == mix_dest_b1) )
{
//printf("Core %d IRQ Called (Reverb). IRQA = %x\n",i,addr);
SetIrqCall(i);
}
}
}
// -----------------------------------------
// Begin Reverb Processing !
// -----------------------------------------
StereoOut32 INPUT_SAMPLE;
for( int x=0; x<8; ++x )
{
INPUT_SAMPLE.Left += (downbuf[(dbpos+x)&7].Left * downcoeffs[x]);
INPUT_SAMPLE.Right += (downbuf[(dbpos+x)&7].Right * downcoeffs[x]);
}
// This is gotta be a Schroeder Reverberator:
// http://cnx.org/content/m15491/latest/
//////////////////////////////////////////////////////////////
// Part 1: Input filter block (FIR filter)
// Purpose: Filter and write data to the sample queues for the echos below
INPUT_SAMPLE.Left >>= 16;
INPUT_SAMPLE.Right >>= 16;
s32 input_L = (INPUT_SAMPLE.Left * Revb.IN_COEF_L);
s32 input_R = (INPUT_SAMPLE.Right * Revb.IN_COEF_R);
const s32 IIR_A0 = (_spu2mem[src_a0] * Revb.IIR_COEF) + input_L;
const s32 IIR_A1 = (_spu2mem[src_a1] * Revb.IIR_COEF) + input_R;
const s32 IIR_B0 = (_spu2mem[src_b0] * Revb.IIR_COEF) + input_L;
const s32 IIR_B1 = (_spu2mem[src_b1] * Revb.IIR_COEF) + input_R;
const s32 IIR_C0 = _spu2mem[dest_a0]* Revb.IIR_ALPHA;
const s32 IIR_C1 = _spu2mem[dest_a1]* Revb.IIR_ALPHA;
const s32 IIR_D0 = _spu2mem[dest_b0]* Revb.IIR_ALPHA;
const s32 IIR_D1 = _spu2mem[dest_b1]* Revb.IIR_ALPHA;
_spu2mem[dest2_a0] = clamp_mix( (IIR_A0-IIR_C0) >> 16 );
_spu2mem[dest2_a1] = clamp_mix( (IIR_A1-IIR_C1) >> 16 );
_spu2mem[dest2_b0] = clamp_mix( (IIR_B0-IIR_D0) >> 16 );
_spu2mem[dest2_b1] = clamp_mix( (IIR_B1-IIR_D1) >> 16 );
//////////////////////////////////////////////////////////////
// Part 2: Comb filters (echos)
// Purpose: Create the primary reflections on the virtual walls
s32 ACC0 = (
((_spu2mem[acc_src_a0] * Revb.ACC_COEF_A)) +
((_spu2mem[acc_src_b0] * Revb.ACC_COEF_B)) +
((_spu2mem[acc_src_c0] * Revb.ACC_COEF_C)) +
((_spu2mem[acc_src_d0] * Revb.ACC_COEF_D))
); // >> 16;
s32 ACC1 = (
((_spu2mem[acc_src_a1] * Revb.ACC_COEF_A)) +
((_spu2mem[acc_src_b1] * Revb.ACC_COEF_B)) +
((_spu2mem[acc_src_c1] * Revb.ACC_COEF_C)) +
((_spu2mem[acc_src_d1] * Revb.ACC_COEF_D))
); // >> 16;
//////////////////////////////////////////////////////////////
// Part 3: All-pass filters
// Purpose: Create actual reverberation sound effect
// First
// Take delayed input
s32 FB_A0 = _spu2mem[fb_src_a0]; // 16
s32 FB_A1 = _spu2mem[fb_src_a1];
// Apply gain and add to input
s32 MIX_A0 = (ACC0 + FB_A0 * Revb.FB_ALPHA)>>16; // 32 + 16*16 = 32
s32 MIX_A1 = (ACC1 + FB_A1 * Revb.FB_ALPHA)>>16;
// Write to queue
_spu2mem[mix_dest_a0] = clamp_mix(MIX_A0);
_spu2mem[mix_dest_a1] = clamp_mix(MIX_A1);
// Apply second gain and add
ACC0 += (FB_A0 << 16) - MIX_A0 * Revb.FB_ALPHA;
ACC1 += (FB_A1 << 16) - MIX_A1 * Revb.FB_ALPHA;
//////////////////////////////////////////////////////////////
// Second
// Take delayed input
s32 FB_B0 = _spu2mem[fb_src_b0]; // 16
s32 FB_B1 = _spu2mem[fb_src_b1];
// Apply gain and add to input
s32 MIX_B0 = (ACC0 + FB_B0 * Revb.FB_X)>>16; // 32 + 16*16 = 32
s32 MIX_B1 = (ACC1 + FB_B1 * Revb.FB_X)>>16;
// Write to queue
_spu2mem[mix_dest_b0] = clamp_mix(MIX_B0);
_spu2mem[mix_dest_b1] = clamp_mix(MIX_B1);
// Apply second gain and add
ACC0 += (FB_B0 << 16) - MIX_B0 * Revb.FB_X;
ACC1 += (FB_B1 << 16) - MIX_B1 * Revb.FB_X;
upbuf[ubpos] = clamp_mix( StereoOut32(
ACC0>>16, // left
ACC1>>16 // right
) );
}
StereoOut32 retval;
//for( int x=0; x<8; ++x )
//{
// retval.Left += (upbuf[(ubpos+x)&7].Left*downcoeffs[x]);
// retval.Right += (upbuf[(ubpos+x)&7].Right*downcoeffs[x]);
//}
if( (Cycles&1) == 0 )
{
retval.Left = (upbuf[(ubpos+5)&7].Left + upbuf[(ubpos+7)&7].Left)>>1;
retval.Right = (upbuf[(ubpos+5)&7].Right + upbuf[(ubpos+7)&7].Right)>>1;
}
else
{
retval.Left = upbuf[(ubpos+6)&7].Left;
retval.Right = upbuf[(ubpos+6)&7].Right;
}
// Notes:
// the first -1 is to adjust for the null padding in every other upbuf sample (which
// halves the overall volume).
// The second +1 divides by two, which is part of Neill's suggestion to divide by 3.
//
// According Neill the final result should be divided by 3, but currently the output
// is way too quiet for that to fly. In fact no division at all might be better.
// In any case the problem always seems to be that the reverb isn't resonating enough
// (indicating short buffers or bad coefficient math?), not that it isn't loud enough.
//retval.Left >>= (16-1 + 1);
//retval.Right >>= (16-1 + 1);
ubpos = (ubpos+1) & 7;
return retval;
}
StereoOut32 V_Core::DoReverb_Fake( const StereoOut32& Input )
{
if(!FakeReverbActive /*|| (Cycles&1) == 0*/)
return StereoOut32::Empty;
V_Core& thiscore(Cores[Index]);
s16* Base = GetMemPtr(thiscore.EffectsStartA);
s32 accL = 0;
s32 accR = 0;
///////////////////////////////////////////////////////////
// part 0: Parameters
// Input volumes
const s32 InputL = -0x3fff;
const s32 InputR = -0x3fff;
// Echo 1: Positive, short delay
const u32 Echo1L = 0x3700;
const u32 Echo1R = 0x2704;
const s32 Echo1A = 0x5000 / 8;
// Echo 2: Negative, slightly longer delay, quiet
const u32 Echo2L = 0x2f10;
const u32 Echo2R = 0x1f04;
const s32 Echo2A = 0x4c00 / 8;
// Echo 3: Negative, longer delay, full feedback
const u32 Echo3L = 0x2800;
const u32 Echo3R = 0x1b34;
const s32 Echo3A = 0xb800 / 8;
// Echo 4: Negative, longer delay, full feedback
const u32 Echo4L = 0x2708;
const u32 Echo4R = 0x1704;
const s32 Echo4A = 0xbc00 / 8;
// Output control:
const u32 Mix1L = thiscore.Revb.MIX_DEST_A0;
const u32 Mix1R = thiscore.Revb.MIX_DEST_A1;
const u32 Mix2L = thiscore.Revb.MIX_DEST_B0;
const u32 Mix2R = thiscore.Revb.MIX_DEST_B1;
const u32 CrossChannelL = 0x4694;
const u32 CrossChannelR = 0x52e4;
const u32 CrossChannelA = thiscore.Revb.FB_ALPHA / 8;
///////////////////////////////////////////////////////////
// part 1: input
const s32 inL = Input.Left * InputL;
const s32 inR = Input.Right * InputR;
accL += inL;
accR += inR;
///////////////////////////////////////////////////////////
// part 2: straight echos
s32 e1L = Base[WrapAround(thiscore,Echo1L )] * Echo1A;
s32 e1R = Base[WrapAround(thiscore,Echo1R+1)] * Echo1A;
accL += e1L;
accR += e1R;
s32 e2L = Base[WrapAround(thiscore,Echo2L )] * Echo2A;
s32 e2R = Base[WrapAround(thiscore,Echo2R+1)] * Echo2A;
accL += e2L;
accR += e2R;
s32 e3L = Base[WrapAround(thiscore,Echo3L )] * Echo3A;
s32 e3R = Base[WrapAround(thiscore,Echo3R+1)] * Echo3A;
accL += e3L;
accR += e3R;
s32 e4L = Base[WrapAround(thiscore,Echo4L )] * Echo4A;
s32 e4R = Base[WrapAround(thiscore,Echo4R+1)] * Echo4A;
accL += e4L;
accR += e4R;
///////////////////////////////////////////////////////////
// part 4: cross-channel feedback
s32 ccL = Base[WrapAround(thiscore,CrossChannelL+1)] * CrossChannelA;
s32 ccR = Base[WrapAround(thiscore,CrossChannelR )] * CrossChannelA;
accL += ccL;
accR += ccR;
///////////////////////////////////////////////////////////
// part N-1: normalize output
accL >>= 15;
accR >>= 15;
///////////////////////////////////////////////////////////
// part N: write output
s32 tmpL = accL>>5; // reduce the volume
s32 tmpR = accR>>5;
Base[WrapAround(thiscore,Mix1L)] = clamp_mix(accL-tmpL);
Base[WrapAround(thiscore,Mix1R)] = clamp_mix(accR-tmpR);
Base[WrapAround(thiscore,Mix2L)] = clamp_mix(accL-tmpL);
Base[WrapAround(thiscore,Mix2R)] = clamp_mix(accR-tmpR);
s32 returnL = Base[WrapAround(thiscore,Mix1L)] + Base[WrapAround(thiscore,Mix2L)];
s32 returnR = Base[WrapAround(thiscore,Mix1R)] + Base[WrapAround(thiscore,Mix2R)];
return StereoOut32(returnL,returnR);
}