Now that we've extracted all of the stateless functions that can be
hidden, it's time to make the index generator a regular class with
active data members.
This can just be a member that sits within the vertex manager base
class. By deglobalizing the state of the index generator we also get rid
of the wonky dual-initializing that was going on within the OpenGL
backend.
Since the renderer is always initialized before the vertex manager, we
now only call Init() once throughout the execution lifecycle.
This header doesn't actually make use of MathUtil.h within itself, so
this can be removed. Many other source files used VideoCommon.h as an
indirect include to include MathUtil.h, so these includes can also be
adjusted.
While we're at it, we can also migrate valid inclusions of VideoCommon.h
into cpp files where it can feasibly be done to minimize propagating it
via other headers.
The path to the MoltenVK library can be specified by the
LIBMOLTENVK_PATH environment variable, otherwise it assumes it is
located in the application bundle's Contents/MacOS directory.
The current approach results in the UI thread creating a graphics device
whilst the core is running, leading to races on function pointers, and
potentially crashing.
Given this is a base class, we should clearly state what the parameters
to the functions in its exposed interface actually mean or represent.
This avoids needing to hunt for the definition of the functions in cpp
files.
While we're at it, normalize said parameter names so they follow our
naming guidelines.
Given that this only contains functions from the VideoBackendBase class,
it makes more sense to move these to the relevant cpp file to keep them
all together.
There's no official implementation of the Vulkan API,
and Dolphin currently isn't set-up to work with the
single, commercially-available third-party implementation.
This branch is the final step of fully supporting both OpenGL and OpenGL ES in the same binary.
This of course only applies to EGL and won't work for GLX/AGL/WGL since they don't really support GL ES.
The changes here actually aren't too terrible, basically change every #ifdef USE_GLES to a runtime check.
This adds a DetectMode() function to the EGL context backend.
EGL will iterate through each of the configs and check for GL, GLES3_KHR, and GLES2 bits
After that it'll change the mode from _DETECT to whichever one is the best supported.
After that point we'll just create a context with the mode that was detected