dolphin/Source/Core/VideoCommon/Src/VertexShaderManager.cpp

497 lines
19 KiB
C++
Raw Normal View History

// Copyright (C) 2003-2008 Dolphin Project.
// This program is free software: you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation, version 2.0.
// This program is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU General Public License 2.0 for more details.
// A copy of the GPL 2.0 should have been included with the program.
// If not, see http://www.gnu.org/licenses/
// Official SVN repository and contact information can be found at
// http://code.google.com/p/dolphin-emu/
#include "Common.h"
#include "MathUtil.h"
#include "Profiler.h"
#include <cmath>
#include "Statistics.h"
#include "VertexShaderGen.h"
#include "VertexShaderManager.h"
#include "BPMemory.h"
#include "CPMemory.h"
#include "XFMemory.h"
#include "VideoCommon.h"
// Temporary ugly declaration.
namespace VertexManager
{
void Flush();
}
static float s_fMaterials[16];
// track changes
static bool bTexMatricesChanged[2], bPosNormalMatrixChanged, bProjectionChanged, bViewportChanged;
static int nMaterialsChanged;
static int nTransformMatricesChanged[2]; // min,max
static int nNormalMatricesChanged[2]; // min,max
static int nPostTransformMatricesChanged[2]; // min,max
static int nLightsChanged[2]; // min,max
static Matrix33 s_viewRotationMatrix;
static Matrix33 s_viewInvRotationMatrix;
static float s_fViewTranslationVector[3];
static float s_fViewRotation[2];
void UpdateViewport();
void VertexShaderManager::Init()
{
nTransformMatricesChanged[0] = nTransformMatricesChanged[1] = -1;
nNormalMatricesChanged[0] = nNormalMatricesChanged[1] = -1;
nPostTransformMatricesChanged[0] = nPostTransformMatricesChanged[1] = -1;
nLightsChanged[0] = nLightsChanged[1] = -1;
bTexMatricesChanged[0] = bTexMatricesChanged[1] = false;
bPosNormalMatrixChanged = bProjectionChanged = bViewportChanged = false;
nMaterialsChanged = 0;
memset(&xfregs, 0, sizeof(xfregs));
memset(xfmem, 0, sizeof(xfmem));
ResetView();
}
void VertexShaderManager::Shutdown()
{
}
// =======================================================================================
// Syncs the shader constant buffers with xfmem
// ----------------
void VertexShaderManager::SetConstants(bool proj_hax_1,bool Hack_hack1 ,float Hack_value1 ,bool Hack_hack2 ,float Hack_value2 ,bool freeLook)
{
//nTransformMatricesChanged[0] = 0; nTransformMatricesChanged[1] = 256;
//nNormalMatricesChanged[0] = 0; nNormalMatricesChanged[1] = 96;
//nPostTransformMatricesChanged[0] = 0; nPostTransformMatricesChanged[1] = 256;
//nLightsChanged[0] = 0; nLightsChanged[1] = 0x80;
//bPosNormalMatrixChanged = true;
//bTexMatricesChanged[0] = bTexMatricesChanged[1] = true;
//bProjectionChanged = true;
// bPosNormalMatrixChanged = bTexMatricesChanged[0] = bTexMatricesChanged[1] = true;
// nMaterialsChanged = 15;
if (nTransformMatricesChanged[0] >= 0) {
int startn = nTransformMatricesChanged[0]/4;
int endn = (nTransformMatricesChanged[1]+3)/4;
const float* pstart = (const float*)&xfmem[startn*4];
for(int i = startn; i < endn; ++i, pstart += 4)
SetVSConstant4fv(C_TRANSFORMMATRICES+i, pstart);
nTransformMatricesChanged[0] = nTransformMatricesChanged[1] = -1;
}
if (nNormalMatricesChanged[0] >= 0) {
int startn = nNormalMatricesChanged[0]/3;
int endn = (nNormalMatricesChanged[1]+2)/3;
const float* pnstart = (const float*)&xfmem[XFMEM_NORMALMATRICES+3*startn];
for(int i = startn; i < endn; ++i, pnstart += 3)
SetVSConstant4fv(C_NORMALMATRICES+i, pnstart);
nNormalMatricesChanged[0] = nNormalMatricesChanged[1] = -1;
}
if (nPostTransformMatricesChanged[0] >= 0) {
int startn = nPostTransformMatricesChanged[0]/4;
int endn = (nPostTransformMatricesChanged[1]+3)/4;
const float* pstart = (const float*)&xfmem[XFMEM_POSTMATRICES + startn*4];
for(int i = startn; i < endn; ++i, pstart += 4)
SetVSConstant4fv(C_POSTTRANSFORMMATRICES + i, pstart);
}
if (nLightsChanged[0] >= 0) {
// lights don't have a 1 to 1 mapping, the color component needs to be converted to 4 floats
int istart = nLightsChanged[0] / 0x10;
int iend = (nLightsChanged[1] + 15) / 0x10;
const float* xfmemptr = (const float*)&xfmem[0x10*istart + XFMEM_LIGHTS];
for (int i = istart; i < iend; ++i) {
u32 color = *(const u32*)(xfmemptr + 3);
SetVSConstant4f(C_LIGHTS + 5*i,
((color >> 24) & 0xFF)/255.0f,
((color >> 16) & 0xFF)/255.0f,
((color >> 8) & 0xFF)/255.0f,
((color) & 0xFF)/255.0f);
xfmemptr += 4;
for (int j = 0; j < 4; ++j, xfmemptr += 3) {
if (j == 1 &&
fabs(xfmemptr[0]) < 0.00001f &&
fabs(xfmemptr[1]) < 0.00001f &&
fabs(xfmemptr[2]) < 0.00001f) {
// dist attenuation, make sure not equal to 0!!!
SetVSConstant4f(C_LIGHTS+5*i+j+1, 0.00001f, xfmemptr[1], xfmemptr[2], 0);
}
else
SetVSConstant4fv(C_LIGHTS+5*i+j+1, xfmemptr);
}
}
nLightsChanged[0] = nLightsChanged[1] = -1;
}
if (nMaterialsChanged) {
for (int i = 0; i < 4; ++i) {
if (nMaterialsChanged & (1 << i))
SetVSConstant4fv(C_MATERIALS + i, &s_fMaterials[4*i]);
}
nMaterialsChanged = 0;
}
if (bPosNormalMatrixChanged) {
bPosNormalMatrixChanged = false;
float* pos = (float*)xfmem + MatrixIndexA.PosNormalMtxIdx * 4;
float* norm = (float*)xfmem + XFMEM_NORMALMATRICES + 3 * (MatrixIndexA.PosNormalMtxIdx & 31);
SetVSConstant4fv(C_POSNORMALMATRIX, pos);
SetVSConstant4fv(C_POSNORMALMATRIX+1, pos+4);
SetVSConstant4fv(C_POSNORMALMATRIX+2, pos+8);
SetVSConstant4fv(C_POSNORMALMATRIX+3, norm);
SetVSConstant4fv(C_POSNORMALMATRIX+4, norm+3);
SetVSConstant4fv(C_POSNORMALMATRIX+5, norm+6);
}
if (bTexMatricesChanged[0]) {
bTexMatricesChanged[0] = false;
float* fptrs[] = {
(float*)xfmem + MatrixIndexA.Tex0MtxIdx * 4, (float*)xfmem + MatrixIndexA.Tex1MtxIdx * 4,
(float*)xfmem + MatrixIndexA.Tex2MtxIdx * 4, (float*)xfmem + MatrixIndexA.Tex3MtxIdx * 4
};
for (int i = 0; i < 4; ++i) {
SetVSConstant4fv(C_TEXMATRICES+3*i, fptrs[i]);
SetVSConstant4fv(C_TEXMATRICES+3*i+1, fptrs[i]+4);
SetVSConstant4fv(C_TEXMATRICES+3*i+2, fptrs[i]+8);
}
}
if (bTexMatricesChanged[1]) {
bTexMatricesChanged[1] = false;
float* fptrs[] = {(float*)xfmem + MatrixIndexB.Tex4MtxIdx * 4, (float*)xfmem + MatrixIndexB.Tex5MtxIdx * 4,
(float*)xfmem + MatrixIndexB.Tex6MtxIdx * 4, (float*)xfmem + MatrixIndexB.Tex7MtxIdx * 4 };
for (int i = 0; i < 4; ++i) {
SetVSConstant4fv(C_TEXMATRICES+3*i+12, fptrs[i]);
SetVSConstant4fv(C_TEXMATRICES+3*i+12+1, fptrs[i]+4);
SetVSConstant4fv(C_TEXMATRICES+3*i+12+2, fptrs[i]+8);
}
}
if (bViewportChanged) {
bViewportChanged = false;
// This is so implementation-dependent that we can't have it here.
UpdateViewport();
}
if (bProjectionChanged) {
bProjectionChanged = false;
static float GC_ALIGNED16(g_fProjectionMatrix[16]);
if (xfregs.rawProjection[6] == 0) { // Perspective
g_fProjectionMatrix[0] = xfregs.rawProjection[0];
g_fProjectionMatrix[1] = 0.0f;
g_fProjectionMatrix[2] = xfregs.rawProjection[1];
g_fProjectionMatrix[3] = 0.0f;
g_fProjectionMatrix[4] = 0.0f;
g_fProjectionMatrix[5] = xfregs.rawProjection[2];
g_fProjectionMatrix[6] = xfregs.rawProjection[3];
g_fProjectionMatrix[7] = 0.0f;
g_fProjectionMatrix[8] = 0.0f;
g_fProjectionMatrix[9] = 0.0f;
g_fProjectionMatrix[10] = xfregs.rawProjection[4];
g_fProjectionMatrix[11] = xfregs.rawProjection[5];
g_fProjectionMatrix[12] = 0.0f;
g_fProjectionMatrix[13] = 0.0f;
// donkopunchstania: GC GPU rounds differently?
// -(1 + epsilon) so objects are clipped as they are on the real HW
g_fProjectionMatrix[14] = -1.00000011921f;
g_fProjectionMatrix[15] = 0.0f;
SETSTAT_FT(stats.gproj_0, g_fProjectionMatrix[0]);
SETSTAT_FT(stats.gproj_1, g_fProjectionMatrix[1]);
SETSTAT_FT(stats.gproj_2, g_fProjectionMatrix[2]);
SETSTAT_FT(stats.gproj_3, g_fProjectionMatrix[3]);
SETSTAT_FT(stats.gproj_4, g_fProjectionMatrix[4]);
SETSTAT_FT(stats.gproj_5, g_fProjectionMatrix[5]);
SETSTAT_FT(stats.gproj_6, g_fProjectionMatrix[6]);
SETSTAT_FT(stats.gproj_7, g_fProjectionMatrix[7]);
SETSTAT_FT(stats.gproj_8, g_fProjectionMatrix[8]);
SETSTAT_FT(stats.gproj_9, g_fProjectionMatrix[9]);
SETSTAT_FT(stats.gproj_10, g_fProjectionMatrix[10]);
SETSTAT_FT(stats.gproj_11, g_fProjectionMatrix[11]);
SETSTAT_FT(stats.gproj_12, g_fProjectionMatrix[12]);
SETSTAT_FT(stats.gproj_13, g_fProjectionMatrix[13]);
SETSTAT_FT(stats.gproj_14, g_fProjectionMatrix[14]);
SETSTAT_FT(stats.gproj_15, g_fProjectionMatrix[15]);
}
else { // Orthographic Projection
g_fProjectionMatrix[0] = xfregs.rawProjection[0];
g_fProjectionMatrix[1] = 0.0f;
g_fProjectionMatrix[2] = 0.0f;
g_fProjectionMatrix[3] = xfregs.rawProjection[1];
g_fProjectionMatrix[4] = 0.0f;
g_fProjectionMatrix[5] = xfregs.rawProjection[2];
g_fProjectionMatrix[6] = 0.0f;
g_fProjectionMatrix[7] = xfregs.rawProjection[3];
g_fProjectionMatrix[8] = 0.0f;
g_fProjectionMatrix[9] = 0.0f;
g_fProjectionMatrix[10] = (Hack_hack1 ? -(Hack_value1 + xfregs.rawProjection[4]) : xfregs.rawProjection[4]);
g_fProjectionMatrix[11] = (Hack_hack2 ? -(Hack_value2 + xfregs.rawProjection[5]) : xfregs.rawProjection[5]) + (proj_hax_1 ? 0.1f : 0.0f);
g_fProjectionMatrix[12] = 0.0f;
g_fProjectionMatrix[13] = 0.0f;
g_fProjectionMatrix[14] = 0.0f;
g_fProjectionMatrix[15] = 1.0f;
SETSTAT_FT(stats.g2proj_0, g_fProjectionMatrix[0]);
SETSTAT_FT(stats.g2proj_1, g_fProjectionMatrix[1]);
SETSTAT_FT(stats.g2proj_2, g_fProjectionMatrix[2]);
SETSTAT_FT(stats.g2proj_3, g_fProjectionMatrix[3]);
SETSTAT_FT(stats.g2proj_4, g_fProjectionMatrix[4]);
SETSTAT_FT(stats.g2proj_5, g_fProjectionMatrix[5]);
SETSTAT_FT(stats.g2proj_6, g_fProjectionMatrix[6]);
SETSTAT_FT(stats.g2proj_7, g_fProjectionMatrix[7]);
SETSTAT_FT(stats.g2proj_8, g_fProjectionMatrix[8]);
SETSTAT_FT(stats.g2proj_9, g_fProjectionMatrix[9]);
SETSTAT_FT(stats.g2proj_10, g_fProjectionMatrix[10]);
SETSTAT_FT(stats.g2proj_11, g_fProjectionMatrix[11]);
SETSTAT_FT(stats.g2proj_12, g_fProjectionMatrix[12]);
SETSTAT_FT(stats.g2proj_13, g_fProjectionMatrix[13]);
SETSTAT_FT(stats.g2proj_14, g_fProjectionMatrix[14]);
SETSTAT_FT(stats.g2proj_15, g_fProjectionMatrix[15]);
SETSTAT_FT(stats.proj_0, xfregs.rawProjection[0]);
SETSTAT_FT(stats.proj_1, xfregs.rawProjection[1]);
SETSTAT_FT(stats.proj_2, xfregs.rawProjection[2]);
SETSTAT_FT(stats.proj_3, xfregs.rawProjection[3]);
SETSTAT_FT(stats.proj_4, xfregs.rawProjection[4]);
SETSTAT_FT(stats.proj_5, xfregs.rawProjection[5]);
SETSTAT_FT(stats.proj_6, xfregs.rawProjection[6]);
}
PRIM_LOG("Projection: %f %f %f %f %f %f\n", xfregs.rawProjection[0], xfregs.rawProjection[1], xfregs.rawProjection[2], xfregs.rawProjection[3], xfregs.rawProjection[4], xfregs.rawProjection[5]);
if (freeLook) {
Matrix44 mtxA;
Matrix44 mtxB;
Matrix44 viewMtx;
Matrix44::Translate(mtxA, s_fViewTranslationVector);
Matrix44::LoadMatrix33(mtxB, s_viewRotationMatrix);
Matrix44::Multiply(mtxB, mtxA, viewMtx); // view = rotation x translation
Matrix44::Set(mtxB, g_fProjectionMatrix);
Matrix44::Multiply(mtxB, viewMtx, mtxA); // mtxA = projection x view
SetVSConstant4fv(C_PROJECTION, &mtxA.data[0]);
SetVSConstant4fv(C_PROJECTION+1, &mtxA.data[4]);
SetVSConstant4fv(C_PROJECTION+2, &mtxA.data[8]);
SetVSConstant4fv(C_PROJECTION+3, &mtxA.data[12]);
}
else {
SetVSConstant4fv(C_PROJECTION, &g_fProjectionMatrix[0]);
SetVSConstant4fv(C_PROJECTION+1, &g_fProjectionMatrix[4]);
SetVSConstant4fv(C_PROJECTION+2, &g_fProjectionMatrix[8]);
SetVSConstant4fv(C_PROJECTION+3, &g_fProjectionMatrix[12]);
}
}
}
void VertexShaderManager::InvalidateXFRange(int start, int end)
{
if (((u32)start >= (u32)MatrixIndexA.PosNormalMtxIdx*4 &&
(u32)start < (u32)MatrixIndexA.PosNormalMtxIdx*4 + 12) ||
((u32)start >= XFMEM_NORMALMATRICES + ((u32)MatrixIndexA.PosNormalMtxIdx & 31)*3 &&
(u32)start < XFMEM_NORMALMATRICES + ((u32)MatrixIndexA.PosNormalMtxIdx & 31)*3 + 9)) {
bPosNormalMatrixChanged = true;
}
if (((u32)start >= (u32)MatrixIndexA.Tex0MtxIdx*4 && (u32)start < (u32)MatrixIndexA.Tex0MtxIdx*4+12) ||
((u32)start >= (u32)MatrixIndexA.Tex1MtxIdx*4 && (u32)start < (u32)MatrixIndexA.Tex1MtxIdx*4+12) ||
((u32)start >= (u32)MatrixIndexA.Tex2MtxIdx*4 && (u32)start < (u32)MatrixIndexA.Tex2MtxIdx*4+12) ||
((u32)start >= (u32)MatrixIndexA.Tex3MtxIdx*4 && (u32)start < (u32)MatrixIndexA.Tex3MtxIdx*4+12)) {
bTexMatricesChanged[0] = true;
}
if (((u32)start >= (u32)MatrixIndexB.Tex4MtxIdx*4 && (u32)start < (u32)MatrixIndexB.Tex4MtxIdx*4+12) ||
((u32)start >= (u32)MatrixIndexB.Tex5MtxIdx*4 && (u32)start < (u32)MatrixIndexB.Tex5MtxIdx*4+12) ||
((u32)start >= (u32)MatrixIndexB.Tex6MtxIdx*4 && (u32)start < (u32)MatrixIndexB.Tex6MtxIdx*4+12) ||
((u32)start >= (u32)MatrixIndexB.Tex7MtxIdx*4 && (u32)start < (u32)MatrixIndexB.Tex7MtxIdx*4+12)) {
bTexMatricesChanged[1] = true;
}
if (start < XFMEM_POSMATRICES_END) {
if (nTransformMatricesChanged[0] == -1) {
nTransformMatricesChanged[0] = start;
nTransformMatricesChanged[1] = end>XFMEM_POSMATRICES_END?XFMEM_POSMATRICES_END:end;
}
else {
if (nTransformMatricesChanged[0] > start) nTransformMatricesChanged[0] = start;
if (nTransformMatricesChanged[1] < end) nTransformMatricesChanged[1] = end>XFMEM_POSMATRICES_END?XFMEM_POSMATRICES_END:end;
}
}
if (start < XFMEM_NORMALMATRICES_END && end > XFMEM_NORMALMATRICES) {
int _start = start < XFMEM_NORMALMATRICES ? 0 : start-XFMEM_NORMALMATRICES;
int _end = end < XFMEM_NORMALMATRICES_END ? end-XFMEM_NORMALMATRICES : XFMEM_NORMALMATRICES_END-XFMEM_NORMALMATRICES;
if (nNormalMatricesChanged[0] == -1 ) {
nNormalMatricesChanged[0] = _start;
nNormalMatricesChanged[1] = _end;
}
else {
if (nNormalMatricesChanged[0] > _start) nNormalMatricesChanged[0] = _start;
if (nNormalMatricesChanged[1] < _end) nNormalMatricesChanged[1] = _end;
}
}
if (start < XFMEM_POSTMATRICES_END && end > XFMEM_POSTMATRICES) {
int _start = start < XFMEM_POSTMATRICES ? XFMEM_POSTMATRICES : start-XFMEM_POSTMATRICES;
int _end = end < XFMEM_POSTMATRICES_END ? end-XFMEM_POSTMATRICES : XFMEM_POSTMATRICES_END-XFMEM_POSTMATRICES;
if (nPostTransformMatricesChanged[0] == -1 ) {
nPostTransformMatricesChanged[0] = _start;
nPostTransformMatricesChanged[1] = _end;
}
else {
if (nPostTransformMatricesChanged[0] > _start) nPostTransformMatricesChanged[0] = _start;
if (nPostTransformMatricesChanged[1] < _end) nPostTransformMatricesChanged[1] = _end;
}
}
if (start < XFMEM_LIGHTS_END && end > XFMEM_LIGHTS) {
int _start = start < XFMEM_LIGHTS ? XFMEM_LIGHTS : start-XFMEM_LIGHTS;
int _end = end < XFMEM_LIGHTS_END ? end-XFMEM_LIGHTS : XFMEM_LIGHTS_END-XFMEM_LIGHTS;
if (nLightsChanged[0] == -1 ) {
nLightsChanged[0] = _start;
nLightsChanged[1] = _end;
}
else {
if (nLightsChanged[0] > _start) nLightsChanged[0] = _start;
if (nLightsChanged[1] < _end) nLightsChanged[1] = _end;
}
}
}
void VertexShaderManager::SetTexMatrixChangedA(u32 Value)
{
if (MatrixIndexA.Hex != Value) {
VertexManager::Flush();
if (MatrixIndexA.PosNormalMtxIdx != (Value&0x3f))
bPosNormalMatrixChanged = true;
bTexMatricesChanged[0] = true;
MatrixIndexA.Hex = Value;
}
}
void VertexShaderManager::SetTexMatrixChangedB(u32 Value)
{
if (MatrixIndexB.Hex != Value) {
VertexManager::Flush();
bTexMatricesChanged[1] = true;
MatrixIndexB.Hex = Value;
}
}
void VertexShaderManager::SetViewport(float* _Viewport)
{
// Workaround for paper mario, yep this is bizarre.
for (size_t i = 0; i < ARRAYSIZE(xfregs.rawViewport); ++i) {
if (*(u32*)(_Viewport + i) == 0x7f800000) // invalid fp number
return;
}
memcpy(xfregs.rawViewport, _Viewport, sizeof(xfregs.rawViewport));
bViewportChanged = true;
}
void VertexShaderManager::SetViewportChanged()
{
bViewportChanged = true;
}
void VertexShaderManager::SetProjection(float* _pProjection, int constantIndex)
{
memcpy(xfregs.rawProjection, _pProjection, sizeof(xfregs.rawProjection));
bProjectionChanged = true;
}
void VertexShaderManager::SetMaterialColor(int index, u32 data)
{
int ind = index * 4;
nMaterialsChanged |= (1 << index);
s_fMaterials[ind++] = ((data>>24)&0xFF)/255.0f;
s_fMaterials[ind++] = ((data>>16)&0xFF)/255.0f;
s_fMaterials[ind++] = ((data>>8)&0xFF)/255.0f;
s_fMaterials[ind] = ((data)&0xFF)/255.0f;
}
void VertexShaderManager::TranslateView(float x, float y)
{
float result[3];
float vector[3] = { x,0,y };
Matrix33::Multiply(s_viewInvRotationMatrix, vector, result);
for(int i = 0; i < 3; i++) {
s_fViewTranslationVector[i] += result[i];
}
bProjectionChanged = true;
}
void VertexShaderManager::RotateView(float x, float y)
{
s_fViewRotation[0] += x;
s_fViewRotation[1] += y;
Matrix33 mx;
Matrix33 my;
Matrix33::RotateX(mx, s_fViewRotation[1]);
Matrix33::RotateY(my, s_fViewRotation[0]);
Matrix33::Multiply(mx, my, s_viewRotationMatrix);
// reverse rotation
Matrix33::RotateX(mx, -s_fViewRotation[1]);
Matrix33::RotateY(my, -s_fViewRotation[0]);
Matrix33::Multiply(my, mx, s_viewInvRotationMatrix);
bProjectionChanged = true;
}
void VertexShaderManager::ResetView()
{
memset(s_fViewTranslationVector, 0, sizeof(s_fViewTranslationVector));
Matrix33::LoadIdentity(s_viewRotationMatrix);
Matrix33::LoadIdentity(s_viewInvRotationMatrix);
s_fViewRotation[0] = s_fViewRotation[1] = 0.0f;
bProjectionChanged = true;
}