dolphin/Source/Core/VideoBackends/Vulkan/VKTexture.cpp

Ignoring revisions in .git-blame-ignore-revs. Click here to bypass and see the normal blame view.

1082 lines
44 KiB
C++
Raw Normal View History

// Copyright 2017 Dolphin Emulator Project
// SPDX-License-Identifier: GPL-2.0-or-later
2021-12-10 02:22:16 +00:00
#include "VideoBackends/Vulkan/VKTexture.h"
#include <algorithm>
#include <cstddef>
#include <cstring>
#include "Common/Align.h"
#include "Common/Assert.h"
#include "Common/CommonTypes.h"
#include "Common/Logging/Log.h"
#include "Common/MsgHandler.h"
#include "VideoBackends/Vulkan/CommandBufferManager.h"
#include "VideoBackends/Vulkan/ObjectCache.h"
#include "VideoBackends/Vulkan/StagingBuffer.h"
#include "VideoBackends/Vulkan/StateTracker.h"
#include "VideoBackends/Vulkan/VKRenderer.h"
#include "VideoBackends/Vulkan/VKStreamBuffer.h"
#include "VideoBackends/Vulkan/VulkanContext.h"
#include "VideoCommon/DriverDetails.h"
#include "VideoCommon/VideoConfig.h"
namespace Vulkan
{
VKTexture::VKTexture(const TextureConfig& tex_config, VmaAllocation alloc, VkImage image,
std::string_view name, VkImageLayout layout /* = VK_IMAGE_LAYOUT_UNDEFINED */,
ComputeImageLayout compute_layout /* = ComputeImageLayout::Undefined */)
: AbstractTexture(tex_config), m_alloc(alloc), m_image(image), m_layout(layout),
m_compute_layout(compute_layout), m_name(name)
{
if (!m_name.empty() && g_ActiveConfig.backend_info.bSupportsSettingObjectNames)
{
VkDebugUtilsObjectNameInfoEXT name_info = {};
name_info.sType = VK_STRUCTURE_TYPE_DEBUG_UTILS_OBJECT_NAME_INFO_EXT;
name_info.objectType = VK_OBJECT_TYPE_IMAGE;
name_info.objectHandle = reinterpret_cast<uint64_t>(image);
name_info.pObjectName = m_name.c_str();
vkSetDebugUtilsObjectNameEXT(g_vulkan_context->GetDevice(), &name_info);
}
}
VKTexture::~VKTexture()
{
StateTracker::GetInstance()->UnbindTexture(m_view);
g_command_buffer_mgr->DeferImageViewDestruction(m_view);
// If we don't have device memory allocated, the image is not owned by us (e.g. swapchain)
if (m_alloc != VK_NULL_HANDLE)
{
g_command_buffer_mgr->DeferImageDestruction(m_image, m_alloc);
}
}
std::unique_ptr<VKTexture> VKTexture::Create(const TextureConfig& tex_config, std::string_view name)
{
// Determine image usage, we need to flag as an attachment if it can be used as a rendertarget.
VkImageUsageFlags usage = VK_IMAGE_USAGE_TRANSFER_SRC_BIT | VK_IMAGE_USAGE_TRANSFER_DST_BIT |
VK_IMAGE_USAGE_SAMPLED_BIT;
if (tex_config.IsRenderTarget())
{
usage |= IsDepthFormat(tex_config.format) ? VK_IMAGE_USAGE_DEPTH_STENCIL_ATTACHMENT_BIT :
VK_IMAGE_USAGE_COLOR_ATTACHMENT_BIT;
}
if (tex_config.IsComputeImage())
usage |= VK_IMAGE_USAGE_STORAGE_BIT;
VkImageCreateInfo image_info = {VK_STRUCTURE_TYPE_IMAGE_CREATE_INFO,
nullptr,
0,
VK_IMAGE_TYPE_2D,
GetVkFormatForHostTextureFormat(tex_config.format),
{tex_config.width, tex_config.height, 1},
tex_config.levels,
tex_config.layers,
static_cast<VkSampleCountFlagBits>(tex_config.samples),
VK_IMAGE_TILING_OPTIMAL,
usage,
VK_SHARING_MODE_EXCLUSIVE,
0,
nullptr,
VK_IMAGE_LAYOUT_UNDEFINED};
VmaAllocationCreateInfo alloc_create_info = {};
alloc_create_info.flags = VMA_ALLOCATION_CREATE_WITHIN_BUDGET_BIT;
alloc_create_info.usage = VMA_MEMORY_USAGE_AUTO_PREFER_DEVICE;
alloc_create_info.pool = VK_NULL_HANDLE;
alloc_create_info.pUserData = nullptr;
alloc_create_info.priority =
tex_config.IsComputeImage() || tex_config.IsRenderTarget() ? 1.0 : 0.0;
alloc_create_info.requiredFlags = 0;
alloc_create_info.preferredFlags = 0;
VkImage image = VK_NULL_HANDLE;
VmaAllocation alloc = VK_NULL_HANDLE;
VkResult res = vmaCreateImage(g_vulkan_context->GetMemoryAllocator(), &image_info,
&alloc_create_info, &image, &alloc, nullptr);
if (res != VK_SUCCESS)
{
LOG_VULKAN_ERROR(res, "vmaCreateImage failed: ");
return nullptr;
}
std::unique_ptr<VKTexture> texture = std::make_unique<VKTexture>(
tex_config, alloc, image, name, VK_IMAGE_LAYOUT_UNDEFINED, ComputeImageLayout::Undefined);
if (!texture->CreateView(VK_IMAGE_VIEW_TYPE_2D_ARRAY))
return nullptr;
return texture;
}
std::unique_ptr<VKTexture> VKTexture::CreateAdopted(const TextureConfig& tex_config, VkImage image,
VkImageViewType view_type, VkImageLayout layout)
{
std::unique_ptr<VKTexture> texture = std::make_unique<VKTexture>(
tex_config, VmaAllocation(VK_NULL_HANDLE), image, "", layout, ComputeImageLayout::Undefined);
if (!texture->CreateView(view_type))
return nullptr;
return texture;
}
bool VKTexture::CreateView(VkImageViewType type)
{
VkImageViewCreateInfo view_info = {
VK_STRUCTURE_TYPE_IMAGE_VIEW_CREATE_INFO,
nullptr,
0,
m_image,
type,
GetVkFormat(),
{VK_COMPONENT_SWIZZLE_IDENTITY, VK_COMPONENT_SWIZZLE_IDENTITY, VK_COMPONENT_SWIZZLE_IDENTITY,
VK_COMPONENT_SWIZZLE_IDENTITY},
{GetImageViewAspectForFormat(GetFormat()), 0, GetLevels(), 0, GetLayers()}};
VkResult res = vkCreateImageView(g_vulkan_context->GetDevice(), &view_info, nullptr, &m_view);
if (res != VK_SUCCESS)
{
LOG_VULKAN_ERROR(res, "vkCreateImageView failed: ");
return false;
}
return true;
}
VkFormat VKTexture::GetLinearFormat(VkFormat format)
{
switch (format)
{
case VK_FORMAT_R8_SRGB:
return VK_FORMAT_R8_UNORM;
case VK_FORMAT_R8G8_SRGB:
return VK_FORMAT_R8G8_UNORM;
case VK_FORMAT_R8G8B8_SRGB:
return VK_FORMAT_R8G8B8_UNORM;
case VK_FORMAT_R8G8B8A8_SRGB:
return VK_FORMAT_R8G8B8A8_UNORM;
case VK_FORMAT_B8G8R8_SRGB:
return VK_FORMAT_B8G8R8_UNORM;
case VK_FORMAT_B8G8R8A8_SRGB:
return VK_FORMAT_B8G8R8A8_UNORM;
default:
return format;
}
}
VkFormat VKTexture::GetVkFormatForHostTextureFormat(AbstractTextureFormat format)
{
switch (format)
{
case AbstractTextureFormat::DXT1:
return VK_FORMAT_BC1_RGBA_UNORM_BLOCK;
case AbstractTextureFormat::DXT3:
return VK_FORMAT_BC2_UNORM_BLOCK;
case AbstractTextureFormat::DXT5:
return VK_FORMAT_BC3_UNORM_BLOCK;
case AbstractTextureFormat::BPTC:
return VK_FORMAT_BC7_UNORM_BLOCK;
case AbstractTextureFormat::RGBA8:
return VK_FORMAT_R8G8B8A8_UNORM;
case AbstractTextureFormat::BGRA8:
return VK_FORMAT_B8G8R8A8_UNORM;
case AbstractTextureFormat::R16:
return VK_FORMAT_R16_UNORM;
case AbstractTextureFormat::D16:
return VK_FORMAT_D16_UNORM;
case AbstractTextureFormat::D24_S8:
return VK_FORMAT_D24_UNORM_S8_UINT;
case AbstractTextureFormat::R32F:
return VK_FORMAT_R32_SFLOAT;
case AbstractTextureFormat::D32F:
return VK_FORMAT_D32_SFLOAT;
case AbstractTextureFormat::D32F_S8:
return VK_FORMAT_D32_SFLOAT_S8_UINT;
case AbstractTextureFormat::Undefined:
return VK_FORMAT_UNDEFINED;
default:
PanicAlertFmt("Unhandled texture format.");
return VK_FORMAT_R8G8B8A8_UNORM;
}
}
VkImageAspectFlags VKTexture::GetImageAspectForFormat(AbstractTextureFormat format)
{
switch (format)
{
case AbstractTextureFormat::D24_S8:
case AbstractTextureFormat::D32F_S8:
return VK_IMAGE_ASPECT_DEPTH_BIT | VK_IMAGE_ASPECT_STENCIL_BIT;
case AbstractTextureFormat::D16:
case AbstractTextureFormat::D32F:
return VK_IMAGE_ASPECT_DEPTH_BIT;
default:
return VK_IMAGE_ASPECT_COLOR_BIT;
}
}
VkImageAspectFlags VKTexture::GetImageViewAspectForFormat(AbstractTextureFormat format)
{
switch (format)
{
case AbstractTextureFormat::D16:
case AbstractTextureFormat::D24_S8:
case AbstractTextureFormat::D32F_S8:
case AbstractTextureFormat::D32F:
return VK_IMAGE_ASPECT_DEPTH_BIT;
default:
return VK_IMAGE_ASPECT_COLOR_BIT;
}
}
void VKTexture::CopyRectangleFromTexture(const AbstractTexture* src,
const MathUtil::Rectangle<int>& src_rect, u32 src_layer,
u32 src_level, const MathUtil::Rectangle<int>& dst_rect,
u32 dst_layer, u32 dst_level)
{
const VKTexture* src_texture = static_cast<const VKTexture*>(src);
ASSERT_MSG(VIDEO,
static_cast<u32>(src_rect.GetWidth()) <= src_texture->GetWidth() &&
static_cast<u32>(src_rect.GetHeight()) <= src_texture->GetHeight(),
"Source rect is too large for CopyRectangleFromTexture");
ASSERT_MSG(VIDEO,
static_cast<u32>(dst_rect.GetWidth()) <= m_config.width &&
static_cast<u32>(dst_rect.GetHeight()) <= m_config.height,
"Dest rect is too large for CopyRectangleFromTexture");
const u32 copy_layer_count = 1;
VkImageCopy image_copy = {
{VK_IMAGE_ASPECT_COLOR_BIT, src_level, src_layer, copy_layer_count},
{src_rect.left, src_rect.top, 0},
{VK_IMAGE_ASPECT_COLOR_BIT, dst_level, dst_layer, copy_layer_count},
{dst_rect.left, dst_rect.top, 0},
{static_cast<uint32_t>(src_rect.GetWidth()), static_cast<uint32_t>(src_rect.GetHeight()), 1}};
// Must be called outside of a render pass.
StateTracker::GetInstance()->EndRenderPass();
const VkImageLayout old_src_layout = src_texture->GetLayout();
src_texture->TransitionToLayout(g_command_buffer_mgr->GetCurrentCommandBuffer(),
VK_IMAGE_LAYOUT_TRANSFER_SRC_OPTIMAL);
TransitionToLayout(g_command_buffer_mgr->GetCurrentCommandBuffer(),
VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL);
vkCmdCopyImage(g_command_buffer_mgr->GetCurrentCommandBuffer(), src_texture->m_image,
VK_IMAGE_LAYOUT_TRANSFER_SRC_OPTIMAL, m_image,
VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL, 1, &image_copy);
// Only restore the source layout. Destination is restored by FinishedRendering().
src_texture->TransitionToLayout(g_command_buffer_mgr->GetCurrentCommandBuffer(), old_src_layout);
}
void VKTexture::ResolveFromTexture(const AbstractTexture* src, const MathUtil::Rectangle<int>& rect,
u32 layer, u32 level)
{
const VKTexture* srcentry = static_cast<const VKTexture*>(src);
DEBUG_ASSERT(m_config.samples == 1 && m_config.width == srcentry->m_config.width &&
m_config.height == srcentry->m_config.height && srcentry->m_config.samples > 1);
DEBUG_ASSERT(rect.left + rect.GetWidth() <= static_cast<int>(srcentry->m_config.width) &&
rect.top + rect.GetHeight() <= static_cast<int>(srcentry->m_config.height));
// Resolving is considered to be a transfer operation.
StateTracker::GetInstance()->EndRenderPass();
VkImageLayout old_src_layout = srcentry->m_layout;
srcentry->TransitionToLayout(g_command_buffer_mgr->GetCurrentCommandBuffer(),
VK_IMAGE_LAYOUT_TRANSFER_SRC_OPTIMAL);
TransitionToLayout(g_command_buffer_mgr->GetCurrentCommandBuffer(),
VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL);
VkImageResolve resolve = {
{VK_IMAGE_ASPECT_COLOR_BIT, level, layer, 1}, // srcSubresource
{rect.left, rect.top, 0}, // srcOffset
{VK_IMAGE_ASPECT_COLOR_BIT, level, layer, 1}, // dstSubresource
{rect.left, rect.top, 0}, // dstOffset
{static_cast<u32>(rect.GetWidth()), static_cast<u32>(rect.GetHeight()), 1} // extent
};
vkCmdResolveImage(g_command_buffer_mgr->GetCurrentCommandBuffer(), srcentry->m_image,
srcentry->m_layout, m_image, m_layout, 1, &resolve);
srcentry->TransitionToLayout(g_command_buffer_mgr->GetCurrentCommandBuffer(), old_src_layout);
}
void VKTexture::Load(u32 level, u32 width, u32 height, u32 row_length, const u8* buffer,
size_t buffer_size, u32 layer)
{
// Can't copy data larger than the texture extents.
width = std::max(1u, std::min(width, GetWidth() >> level));
height = std::max(1u, std::min(height, GetHeight() >> level));
// We don't care about the existing contents of the texture, so we could the image layout to
// VK_IMAGE_LAYOUT_UNDEFINED here. However, under section 2.2.1, Queue Operation of the Vulkan
// specification, it states:
//
// Command buffer submissions to a single queue must always adhere to command order and
// API order, but otherwise may overlap or execute out of order.
//
// Therefore, if a previous frame's command buffer is still sampling from this texture, and we
// overwrite it without a pipeline barrier, a texture sample could occur in parallel with the
// texture upload/copy. I'm not sure if any drivers currently take advantage of this, but we
// should insert an explicit pipeline barrier just in case (done by TransitionToLayout).
//
// We transition to TRANSFER_DST, ready for the image copy, and leave the texture in this state.
// When the last mip level is uploaded, we transition to SHADER_READ_ONLY, ready for use. This is
// because we can't transition in a render pass, and we don't necessarily know when this texture
// is going to be used.
TransitionToLayout(g_command_buffer_mgr->GetCurrentInitCommandBuffer(),
VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL);
// For unaligned textures, we can save some memory in the transfer buffer by skipping the rows
// that lie outside of the texture's dimensions.
const u32 upload_alignment = static_cast<u32>(g_vulkan_context->GetBufferImageGranularity());
const u32 block_size = GetBlockSizeForFormat(GetFormat());
const u32 num_rows = Common::AlignUp(height, block_size) / block_size;
const u32 source_pitch = CalculateStrideForFormat(m_config.format, row_length);
const u32 upload_size = source_pitch * num_rows;
std::unique_ptr<StagingBuffer> temp_buffer;
VkBuffer upload_buffer;
VkDeviceSize upload_buffer_offset;
// Does this texture data fit within the streaming buffer?
if (upload_size <= STAGING_TEXTURE_UPLOAD_THRESHOLD)
{
StreamBuffer* stream_buffer = g_object_cache->GetTextureUploadBuffer();
if (!stream_buffer->ReserveMemory(upload_size, upload_alignment))
{
// Execute the command buffer first.
WARN_LOG_FMT(VIDEO,
"Executing command list while waiting for space in texture upload buffer");
Renderer::GetInstance()->ExecuteCommandBuffer(false);
// Try allocating again. This may cause a fence wait.
if (!stream_buffer->ReserveMemory(upload_size, upload_alignment))
PanicAlertFmt("Failed to allocate space in texture upload buffer");
}
// Copy to the streaming buffer.
upload_buffer = stream_buffer->GetBuffer();
upload_buffer_offset = stream_buffer->GetCurrentOffset();
std::memcpy(stream_buffer->GetCurrentHostPointer(), buffer, upload_size);
stream_buffer->CommitMemory(upload_size);
}
else
{
// Create a temporary staging buffer that is destroyed after the image is copied.
temp_buffer = StagingBuffer::Create(STAGING_BUFFER_TYPE_UPLOAD, upload_size,
VK_BUFFER_USAGE_TRANSFER_SRC_BIT);
if (!temp_buffer || !temp_buffer->Map())
{
PanicAlertFmt("Failed to allocate staging texture for large texture upload.");
return;
}
upload_buffer = temp_buffer->GetBuffer();
upload_buffer_offset = 0;
temp_buffer->Write(0, buffer, upload_size, true);
temp_buffer->Unmap();
}
// Copy from the streaming buffer to the actual image.
VkBufferImageCopy image_copy = {
upload_buffer_offset, // VkDeviceSize bufferOffset
row_length, // uint32_t bufferRowLength
0, // uint32_t bufferImageHeight
{VK_IMAGE_ASPECT_COLOR_BIT, level, layer, 1}, // VkImageSubresourceLayers imageSubresource
{0, 0, 0}, // VkOffset3D imageOffset
{width, height, 1} // VkExtent3D imageExtent
};
vkCmdCopyBufferToImage(g_command_buffer_mgr->GetCurrentInitCommandBuffer(), upload_buffer,
m_image, VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL, 1, &image_copy);
// Preemptively transition to shader read only after uploading the last mip level, as we're
// likely finished with writes to this texture for now. We can't do this in common with a
// FinishedRendering() call because the upload happens in the init command buffer, and we
// don't want to interrupt the render pass with calls which were executed ages before.
if (level == (m_config.levels - 1) && layer == (m_config.layers - 1))
{
TransitionToLayout(g_command_buffer_mgr->GetCurrentInitCommandBuffer(),
VK_IMAGE_LAYOUT_SHADER_READ_ONLY_OPTIMAL);
}
}
void VKTexture::FinishedRendering()
{
if (m_layout == VK_IMAGE_LAYOUT_SHADER_READ_ONLY_OPTIMAL)
return;
StateTracker::GetInstance()->EndRenderPass();
TransitionToLayout(g_command_buffer_mgr->GetCurrentCommandBuffer(),
VK_IMAGE_LAYOUT_SHADER_READ_ONLY_OPTIMAL);
}
void VKTexture::OverrideImageLayout(VkImageLayout new_layout)
{
m_layout = new_layout;
}
void VKTexture::TransitionToLayout(VkCommandBuffer command_buffer, VkImageLayout new_layout) const
{
if (m_layout == new_layout)
return;
VkImageMemoryBarrier barrier = {
VK_STRUCTURE_TYPE_IMAGE_MEMORY_BARRIER, // VkStructureType sType
nullptr, // const void* pNext
0, // VkAccessFlags srcAccessMask
0, // VkAccessFlags dstAccessMask
m_layout, // VkImageLayout oldLayout
new_layout, // VkImageLayout newLayout
VK_QUEUE_FAMILY_IGNORED, // uint32_t srcQueueFamilyIndex
VK_QUEUE_FAMILY_IGNORED, // uint32_t dstQueueFamilyIndex
m_image, // VkImage image
{GetImageAspectForFormat(GetFormat()), 0, GetLevels(), 0,
GetLayers()} // VkImageSubresourceRange subresourceRange
};
// srcStageMask -> Stages that must complete before the barrier
// dstStageMask -> Stages that must wait for after the barrier before beginning
VkPipelineStageFlags srcStageMask, dstStageMask;
switch (m_layout)
{
case VK_IMAGE_LAYOUT_UNDEFINED:
// Layout undefined therefore contents undefined, and we don't care what happens to it.
barrier.srcAccessMask = 0;
srcStageMask = VK_PIPELINE_STAGE_BOTTOM_OF_PIPE_BIT;
break;
case VK_IMAGE_LAYOUT_PREINITIALIZED:
// Image has been pre-initialized by the host, so ensure all writes have completed.
barrier.srcAccessMask = VK_ACCESS_HOST_WRITE_BIT;
srcStageMask = VK_PIPELINE_STAGE_HOST_BIT;
break;
case VK_IMAGE_LAYOUT_COLOR_ATTACHMENT_OPTIMAL:
// Image was being used as a color attachment, so ensure all writes have completed.
barrier.srcAccessMask =
VK_ACCESS_COLOR_ATTACHMENT_READ_BIT | VK_ACCESS_COLOR_ATTACHMENT_WRITE_BIT;
srcStageMask = VK_PIPELINE_STAGE_COLOR_ATTACHMENT_OUTPUT_BIT;
break;
case VK_IMAGE_LAYOUT_DEPTH_STENCIL_ATTACHMENT_OPTIMAL:
// Image was being used as a depthstencil attachment, so ensure all writes have completed.
barrier.srcAccessMask =
VK_ACCESS_DEPTH_STENCIL_ATTACHMENT_READ_BIT | VK_ACCESS_DEPTH_STENCIL_ATTACHMENT_WRITE_BIT;
srcStageMask =
VK_PIPELINE_STAGE_EARLY_FRAGMENT_TESTS_BIT | VK_PIPELINE_STAGE_LATE_FRAGMENT_TESTS_BIT;
break;
case VK_IMAGE_LAYOUT_SHADER_READ_ONLY_OPTIMAL:
// Image was being used as a shader resource, make sure all reads have finished.
barrier.srcAccessMask = VK_ACCESS_SHADER_READ_BIT;
srcStageMask = VK_PIPELINE_STAGE_FRAGMENT_SHADER_BIT;
break;
case VK_IMAGE_LAYOUT_TRANSFER_SRC_OPTIMAL:
// Image was being used as a copy source, ensure all reads have finished.
barrier.srcAccessMask = VK_ACCESS_TRANSFER_READ_BIT;
srcStageMask = VK_PIPELINE_STAGE_TRANSFER_BIT;
break;
case VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL:
// Image was being used as a copy destination, ensure all writes have finished.
barrier.srcAccessMask = VK_ACCESS_TRANSFER_WRITE_BIT;
srcStageMask = VK_PIPELINE_STAGE_TRANSFER_BIT;
break;
default:
srcStageMask = VK_PIPELINE_STAGE_BOTTOM_OF_PIPE_BIT;
break;
}
switch (new_layout)
{
case VK_IMAGE_LAYOUT_UNDEFINED:
barrier.dstAccessMask = 0;
dstStageMask = VK_PIPELINE_STAGE_BOTTOM_OF_PIPE_BIT;
break;
case VK_IMAGE_LAYOUT_COLOR_ATTACHMENT_OPTIMAL:
barrier.dstAccessMask =
VK_ACCESS_COLOR_ATTACHMENT_READ_BIT | VK_ACCESS_COLOR_ATTACHMENT_WRITE_BIT;
dstStageMask = VK_PIPELINE_STAGE_COLOR_ATTACHMENT_OUTPUT_BIT;
break;
case VK_IMAGE_LAYOUT_DEPTH_STENCIL_ATTACHMENT_OPTIMAL:
barrier.dstAccessMask =
VK_ACCESS_DEPTH_STENCIL_ATTACHMENT_READ_BIT | VK_ACCESS_DEPTH_STENCIL_ATTACHMENT_WRITE_BIT;
dstStageMask =
VK_PIPELINE_STAGE_EARLY_FRAGMENT_TESTS_BIT | VK_PIPELINE_STAGE_LATE_FRAGMENT_TESTS_BIT;
break;
case VK_IMAGE_LAYOUT_SHADER_READ_ONLY_OPTIMAL:
barrier.dstAccessMask = VK_ACCESS_SHADER_READ_BIT;
dstStageMask = VK_PIPELINE_STAGE_FRAGMENT_SHADER_BIT;
break;
case VK_IMAGE_LAYOUT_TRANSFER_SRC_OPTIMAL:
barrier.dstAccessMask = VK_ACCESS_TRANSFER_READ_BIT;
dstStageMask = VK_PIPELINE_STAGE_TRANSFER_BIT;
break;
case VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL:
barrier.dstAccessMask = VK_ACCESS_TRANSFER_WRITE_BIT;
dstStageMask = VK_PIPELINE_STAGE_TRANSFER_BIT;
break;
case VK_IMAGE_LAYOUT_PRESENT_SRC_KHR:
srcStageMask = VK_PIPELINE_STAGE_ALL_COMMANDS_BIT;
dstStageMask = VK_PIPELINE_STAGE_BOTTOM_OF_PIPE_BIT;
break;
default:
dstStageMask = VK_PIPELINE_STAGE_TOP_OF_PIPE_BIT;
break;
}
// If we were using a compute layout, the stages need to reflect that
switch (m_compute_layout)
{
case ComputeImageLayout::Undefined:
break;
case ComputeImageLayout::ReadOnly:
barrier.srcAccessMask = VK_ACCESS_SHADER_READ_BIT;
srcStageMask = VK_PIPELINE_STAGE_COMPUTE_SHADER_BIT;
break;
case ComputeImageLayout::WriteOnly:
barrier.srcAccessMask = VK_ACCESS_SHADER_WRITE_BIT;
srcStageMask = VK_PIPELINE_STAGE_COMPUTE_SHADER_BIT;
break;
case ComputeImageLayout::ReadWrite:
barrier.srcAccessMask = VK_ACCESS_SHADER_READ_BIT | VK_ACCESS_SHADER_WRITE_BIT;
srcStageMask = VK_PIPELINE_STAGE_COMPUTE_SHADER_BIT;
break;
}
m_compute_layout = ComputeImageLayout::Undefined;
vkCmdPipelineBarrier(command_buffer, srcStageMask, dstStageMask, 0, 0, nullptr, 0, nullptr, 1,
&barrier);
m_layout = new_layout;
}
void VKTexture::TransitionToLayout(VkCommandBuffer command_buffer,
ComputeImageLayout new_layout) const
{
ASSERT(new_layout != ComputeImageLayout::Undefined);
if (m_compute_layout == new_layout)
return;
VkImageMemoryBarrier barrier = {
VK_STRUCTURE_TYPE_IMAGE_MEMORY_BARRIER, // VkStructureType sType
nullptr, // const void* pNext
0, // VkAccessFlags srcAccessMask
0, // VkAccessFlags dstAccessMask
m_layout, // VkImageLayout oldLayout
VK_IMAGE_LAYOUT_GENERAL, // VkImageLayout newLayout
VK_QUEUE_FAMILY_IGNORED, // uint32_t srcQueueFamilyIndex
VK_QUEUE_FAMILY_IGNORED, // uint32_t dstQueueFamilyIndex
m_image, // VkImage image
{GetImageAspectForFormat(GetFormat()), 0, GetLevels(), 0,
GetLayers()} // VkImageSubresourceRange subresourceRange
};
VkPipelineStageFlags srcStageMask, dstStageMask;
switch (m_layout)
{
case VK_IMAGE_LAYOUT_UNDEFINED:
// Layout undefined therefore contents undefined, and we don't care what happens to it.
barrier.srcAccessMask = 0;
srcStageMask = VK_PIPELINE_STAGE_BOTTOM_OF_PIPE_BIT;
break;
case VK_IMAGE_LAYOUT_PREINITIALIZED:
// Image has been pre-initialized by the host, so ensure all writes have completed.
barrier.srcAccessMask = VK_ACCESS_HOST_WRITE_BIT;
srcStageMask = VK_PIPELINE_STAGE_HOST_BIT;
break;
case VK_IMAGE_LAYOUT_COLOR_ATTACHMENT_OPTIMAL:
// Image was being used as a color attachment, so ensure all writes have completed.
barrier.srcAccessMask =
VK_ACCESS_COLOR_ATTACHMENT_READ_BIT | VK_ACCESS_COLOR_ATTACHMENT_WRITE_BIT;
srcStageMask = VK_PIPELINE_STAGE_COLOR_ATTACHMENT_OUTPUT_BIT;
break;
case VK_IMAGE_LAYOUT_DEPTH_STENCIL_ATTACHMENT_OPTIMAL:
// Image was being used as a depthstencil attachment, so ensure all writes have completed.
barrier.srcAccessMask =
VK_ACCESS_DEPTH_STENCIL_ATTACHMENT_READ_BIT | VK_ACCESS_DEPTH_STENCIL_ATTACHMENT_WRITE_BIT;
srcStageMask =
VK_PIPELINE_STAGE_EARLY_FRAGMENT_TESTS_BIT | VK_PIPELINE_STAGE_LATE_FRAGMENT_TESTS_BIT;
break;
case VK_IMAGE_LAYOUT_SHADER_READ_ONLY_OPTIMAL:
// Image was being used as a shader resource, make sure all reads have finished.
barrier.srcAccessMask = VK_ACCESS_SHADER_READ_BIT;
srcStageMask = VK_PIPELINE_STAGE_FRAGMENT_SHADER_BIT;
break;
case VK_IMAGE_LAYOUT_TRANSFER_SRC_OPTIMAL:
// Image was being used as a copy source, ensure all reads have finished.
barrier.srcAccessMask = VK_ACCESS_TRANSFER_READ_BIT;
srcStageMask = VK_PIPELINE_STAGE_TRANSFER_BIT;
break;
case VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL:
// Image was being used as a copy destination, ensure all writes have finished.
barrier.srcAccessMask = VK_ACCESS_TRANSFER_WRITE_BIT;
srcStageMask = VK_PIPELINE_STAGE_TRANSFER_BIT;
break;
default:
srcStageMask = VK_PIPELINE_STAGE_BOTTOM_OF_PIPE_BIT;
break;
}
switch (new_layout)
{
case ComputeImageLayout::ReadOnly:
barrier.dstAccessMask = VK_ACCESS_SHADER_READ_BIT;
barrier.newLayout = VK_IMAGE_LAYOUT_SHADER_READ_ONLY_OPTIMAL;
dstStageMask = VK_PIPELINE_STAGE_COMPUTE_SHADER_BIT;
break;
case ComputeImageLayout::WriteOnly:
barrier.dstAccessMask = VK_ACCESS_SHADER_WRITE_BIT;
barrier.newLayout = VK_IMAGE_LAYOUT_GENERAL;
dstStageMask = VK_PIPELINE_STAGE_COMPUTE_SHADER_BIT;
break;
case ComputeImageLayout::ReadWrite:
barrier.dstAccessMask = VK_ACCESS_SHADER_READ_BIT | VK_ACCESS_SHADER_WRITE_BIT;
barrier.newLayout = VK_IMAGE_LAYOUT_GENERAL;
dstStageMask = VK_PIPELINE_STAGE_COMPUTE_SHADER_BIT;
break;
default:
dstStageMask = 0;
break;
}
m_layout = barrier.newLayout;
m_compute_layout = new_layout;
vkCmdPipelineBarrier(command_buffer, srcStageMask, dstStageMask, 0, 0, nullptr, 0, nullptr, 1,
&barrier);
}
VKStagingTexture::VKStagingTexture(PrivateTag, StagingTextureType type, const TextureConfig& config,
std::unique_ptr<StagingBuffer> buffer, VkImage linear_image,
VmaAllocation linear_image_alloc)
: AbstractStagingTexture(type, config), m_staging_buffer(std::move(buffer)),
m_linear_image(linear_image), m_linear_image_alloc(linear_image_alloc)
{
}
VKStagingTexture::~VKStagingTexture()
{
if (m_linear_image != VK_NULL_HANDLE)
{
g_command_buffer_mgr->DeferImageDestruction(m_linear_image, m_linear_image_alloc);
}
}
std::unique_ptr<VKStagingTexture> VKStagingTexture::Create(StagingTextureType type,
const TextureConfig& config)
{
size_t stride = config.GetStride();
size_t buffer_size = stride * static_cast<size_t>(config.height);
STAGING_BUFFER_TYPE buffer_type;
VkImageUsageFlags buffer_usage;
if (type == StagingTextureType::Readback)
{
buffer_type = STAGING_BUFFER_TYPE_READBACK;
buffer_usage = VK_IMAGE_USAGE_TRANSFER_DST_BIT;
}
else if (type == StagingTextureType::Upload)
{
buffer_type = STAGING_BUFFER_TYPE_UPLOAD;
buffer_usage = VK_IMAGE_USAGE_TRANSFER_SRC_BIT;
}
else
{
buffer_type = STAGING_BUFFER_TYPE_READBACK;
buffer_usage = VK_IMAGE_USAGE_TRANSFER_SRC_BIT | VK_IMAGE_USAGE_TRANSFER_DST_BIT;
}
VkBuffer buffer;
VmaAllocation alloc;
char* map_ptr;
if (!StagingBuffer::AllocateBuffer(buffer_type, buffer_size, buffer_usage, &buffer, &alloc,
&map_ptr))
{
return nullptr;
}
// Linear image
VkImage linear_image = VK_NULL_HANDLE;
VmaAllocation linear_image_alloc = VK_NULL_HANDLE;
if (DriverDetails::HasBug(DriverDetails::BUG_SLOW_OPTIMAL_IMAGE_TO_BUFFER_COPY) &&
type == StagingTextureType::Readback && config.samples == 1)
{
std::tie(linear_image, linear_image_alloc) = CreateLinearImage(type, config);
}
std::unique_ptr<StagingBuffer> staging_buffer =
std::make_unique<StagingBuffer>(buffer_type, buffer, alloc, buffer_size, map_ptr);
std::unique_ptr<VKStagingTexture> staging_tex = std::make_unique<VKStagingTexture>(
PrivateTag{}, type, config, std::move(staging_buffer), linear_image, linear_image_alloc);
// Use persistent mapping.
if (!staging_tex->m_staging_buffer->Map())
return nullptr;
staging_tex->m_map_pointer = staging_tex->m_staging_buffer->GetMapPointer();
staging_tex->m_map_stride = stride;
return staging_tex;
}
std::pair<VkImage, VmaAllocation> VKStagingTexture::CreateLinearImage(StagingTextureType type,
const TextureConfig& config)
{
// Create a intermediate texture with linear tiling
VkImageCreateInfo image_info = {VK_STRUCTURE_TYPE_IMAGE_CREATE_INFO,
nullptr,
0,
VK_IMAGE_TYPE_2D,
VKTexture::GetVkFormatForHostTextureFormat(config.format),
{config.width, config.height, 1},
1,
1,
VK_SAMPLE_COUNT_1_BIT,
VK_IMAGE_TILING_LINEAR,
VK_IMAGE_USAGE_TRANSFER_SRC_BIT | VK_IMAGE_USAGE_TRANSFER_DST_BIT,
VK_SHARING_MODE_EXCLUSIVE,
0,
nullptr,
VK_IMAGE_LAYOUT_UNDEFINED};
VkImageFormatProperties format_properties;
VkResult res = vkGetPhysicalDeviceImageFormatProperties(
g_vulkan_context->GetPhysicalDevice(), image_info.format, image_info.imageType,
image_info.tiling, image_info.usage, image_info.flags, &format_properties);
if (res != VK_SUCCESS)
{
LOG_VULKAN_ERROR(res, "Linear images are not supported for the staging texture: ");
return std::make_pair(VK_NULL_HANDLE, VK_NULL_HANDLE);
}
VmaAllocationCreateInfo alloc_create_info = {};
alloc_create_info.flags = VMA_ALLOCATION_CREATE_WITHIN_BUDGET_BIT;
alloc_create_info.usage = VMA_MEMORY_USAGE_AUTO_PREFER_DEVICE;
alloc_create_info.pool = VK_NULL_HANDLE;
alloc_create_info.pUserData = nullptr;
alloc_create_info.priority = 0.0;
alloc_create_info.requiredFlags = 0;
alloc_create_info.preferredFlags = 0;
VkImage image;
VmaAllocation alloc;
res = vmaCreateImage(g_vulkan_context->GetMemoryAllocator(), &image_info, &alloc_create_info,
&image, &alloc, nullptr);
if (res != VK_SUCCESS)
{
LOG_VULKAN_ERROR(res, "vmaCreateImage failed: ");
return std::make_pair(VK_NULL_HANDLE, VK_NULL_HANDLE);
}
return std::make_pair(image, alloc);
}
void VKStagingTexture::CopyFromTexture(const AbstractTexture* src,
const MathUtil::Rectangle<int>& src_rect, u32 src_layer,
u32 src_level, const MathUtil::Rectangle<int>& dst_rect)
{
const VKTexture* src_tex = static_cast<const VKTexture*>(src);
ASSERT(m_type == StagingTextureType::Readback || m_type == StagingTextureType::Mutable);
ASSERT(src_rect.GetWidth() == dst_rect.GetWidth() &&
src_rect.GetHeight() == dst_rect.GetHeight());
ASSERT(src_rect.left >= 0 && static_cast<u32>(src_rect.right) <= src_tex->GetWidth() &&
src_rect.top >= 0 && static_cast<u32>(src_rect.bottom) <= src_tex->GetHeight());
ASSERT(dst_rect.left >= 0 && static_cast<u32>(dst_rect.right) <= m_config.width &&
dst_rect.top >= 0 && static_cast<u32>(dst_rect.bottom) <= m_config.height);
StateTracker::GetInstance()->EndRenderPass();
VkImageLayout old_layout = src_tex->GetLayout();
src_tex->TransitionToLayout(g_command_buffer_mgr->GetCurrentCommandBuffer(),
VK_IMAGE_LAYOUT_TRANSFER_SRC_OPTIMAL);
// Issue the image->buffer copy, but delay it for now.
VkBufferImageCopy image_copy = {};
const VkImageAspectFlags aspect = VKTexture::GetImageViewAspectForFormat(src_tex->GetFormat());
image_copy.bufferOffset =
static_cast<VkDeviceSize>(static_cast<size_t>(dst_rect.top) * m_config.GetStride() +
static_cast<size_t>(dst_rect.left) * m_texel_size);
image_copy.bufferRowLength = static_cast<u32>(m_config.width);
image_copy.bufferImageHeight = 0;
image_copy.imageSubresource = {aspect, src_level, src_layer, 1};
image_copy.imageOffset = {src_rect.left, src_rect.top, 0};
image_copy.imageExtent = {static_cast<u32>(src_rect.GetWidth()),
static_cast<u32>(src_rect.GetHeight()), 1u};
VkImage src_image = src_tex->GetImage();
if (m_linear_image != VK_NULL_HANDLE)
{
CopyFromTextureToLinearImage(src_tex, src_rect, src_layer, src_level, dst_rect);
src_image = m_linear_image;
image_copy.imageOffset = {0, 0, 0};
}
vkCmdCopyImageToBuffer(g_command_buffer_mgr->GetCurrentCommandBuffer(), src_image,
VK_IMAGE_LAYOUT_TRANSFER_SRC_OPTIMAL, m_staging_buffer->GetBuffer(), 1,
&image_copy);
// Restore old source texture layout.
src_tex->TransitionToLayout(g_command_buffer_mgr->GetCurrentCommandBuffer(), old_layout);
m_needs_flush = true;
m_flush_fence_counter = g_command_buffer_mgr->GetCurrentFenceCounter();
}
void VKStagingTexture::CopyFromTextureToLinearImage(const VKTexture* src_tex,
const MathUtil::Rectangle<int>& src_rect,
u32 src_layer, u32 src_level,
const MathUtil::Rectangle<int>& dst_rect)
{
// The proprietary Qualcomm driver allocates a temporary image when copying from an image
// with optimal tiling (VK_IMAGE_TILING_OPTIMAL) to a buffer.
// That allocation is very slow, so we just do it ourself and reuse the intermediate image.
const VkImageAspectFlags aspect = VKTexture::GetImageViewAspectForFormat(src_tex->GetFormat());
VkImageMemoryBarrier linear_image_barrier = {};
linear_image_barrier.sType = VK_STRUCTURE_TYPE_IMAGE_MEMORY_BARRIER;
linear_image_barrier.pNext = nullptr;
linear_image_barrier.srcAccessMask = 0;
linear_image_barrier.dstAccessMask = VK_ACCESS_TRANSFER_WRITE_BIT | VK_ACCESS_TRANSFER_READ_BIT;
linear_image_barrier.oldLayout = VK_IMAGE_LAYOUT_UNDEFINED;
linear_image_barrier.newLayout = VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL;
linear_image_barrier.image = m_linear_image;
linear_image_barrier.subresourceRange = {aspect, 0, 1, 0, 1};
vkCmdPipelineBarrier(g_command_buffer_mgr->GetCurrentCommandBuffer(),
VK_PIPELINE_STAGE_TRANSFER_BIT, VK_PIPELINE_STAGE_TRANSFER_BIT, 0, 0,
nullptr, 0, nullptr, 1, &linear_image_barrier);
VkImageBlit blit;
blit.srcSubresource = {aspect, src_level, src_layer, 1};
blit.dstSubresource.layerCount = 1;
blit.dstSubresource.baseArrayLayer = 0;
blit.dstSubresource.mipLevel = 0;
blit.dstSubresource.aspectMask = linear_image_barrier.subresourceRange.aspectMask;
blit.srcOffsets[0] = {src_rect.left, src_rect.top, 0};
blit.srcOffsets[1] = {static_cast<s32>(blit.srcOffsets[0].x + src_rect.GetWidth()),
static_cast<s32>(blit.srcOffsets[0].y + src_rect.GetHeight()), 1};
blit.dstOffsets[0] = {0, 0, 0};
blit.dstOffsets[1] = {dst_rect.GetWidth(), dst_rect.GetHeight(), 1u};
vkCmdBlitImage(g_command_buffer_mgr->GetCurrentCommandBuffer(), src_tex->GetImage(),
VK_IMAGE_LAYOUT_TRANSFER_SRC_OPTIMAL, m_linear_image,
VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL, 1, &blit, VK_FILTER_NEAREST);
linear_image_barrier.srcAccessMask = VK_ACCESS_TRANSFER_WRITE_BIT;
linear_image_barrier.oldLayout = VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL;
linear_image_barrier.newLayout = VK_IMAGE_LAYOUT_TRANSFER_SRC_OPTIMAL;
vkCmdPipelineBarrier(g_command_buffer_mgr->GetCurrentCommandBuffer(),
VK_PIPELINE_STAGE_TRANSFER_BIT, VK_PIPELINE_STAGE_TRANSFER_BIT, 0, 0,
nullptr, 0, nullptr, 1, &linear_image_barrier);
}
void VKStagingTexture::CopyToTexture(const MathUtil::Rectangle<int>& src_rect, AbstractTexture* dst,
const MathUtil::Rectangle<int>& dst_rect, u32 dst_layer,
u32 dst_level)
{
const VKTexture* dst_tex = static_cast<const VKTexture*>(dst);
ASSERT(m_type == StagingTextureType::Upload || m_type == StagingTextureType::Mutable);
ASSERT(src_rect.GetWidth() == dst_rect.GetWidth() &&
src_rect.GetHeight() == dst_rect.GetHeight());
ASSERT(src_rect.left >= 0 && static_cast<u32>(src_rect.right) <= m_config.width &&
src_rect.top >= 0 && static_cast<u32>(src_rect.bottom) <= m_config.height);
ASSERT(dst_rect.left >= 0 && static_cast<u32>(dst_rect.right) <= dst_tex->GetWidth() &&
dst_rect.top >= 0 && static_cast<u32>(dst_rect.bottom) <= dst_tex->GetHeight());
// Flush caches before copying.
m_staging_buffer->FlushCPUCache();
StateTracker::GetInstance()->EndRenderPass();
VkImageLayout old_layout = dst_tex->GetLayout();
dst_tex->TransitionToLayout(g_command_buffer_mgr->GetCurrentCommandBuffer(),
VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL);
// Issue the image->buffer copy, but delay it for now.
VkBufferImageCopy image_copy = {};
image_copy.bufferOffset =
static_cast<VkDeviceSize>(static_cast<size_t>(src_rect.top) * m_config.GetStride() +
static_cast<size_t>(src_rect.left) * m_texel_size);
image_copy.bufferRowLength = static_cast<u32>(m_config.width);
image_copy.bufferImageHeight = 0;
image_copy.imageSubresource = {VK_IMAGE_ASPECT_COLOR_BIT, dst_level, dst_layer, 1};
image_copy.imageOffset = {dst_rect.left, dst_rect.top, 0};
image_copy.imageExtent = {static_cast<u32>(dst_rect.GetWidth()),
static_cast<u32>(dst_rect.GetHeight()), 1u};
vkCmdCopyBufferToImage(g_command_buffer_mgr->GetCurrentCommandBuffer(),
m_staging_buffer->GetBuffer(), dst_tex->GetImage(),
VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL, 1, &image_copy);
// Restore old source texture layout.
dst_tex->TransitionToLayout(g_command_buffer_mgr->GetCurrentCommandBuffer(), old_layout);
m_needs_flush = true;
m_flush_fence_counter = g_command_buffer_mgr->GetCurrentFenceCounter();
}
bool VKStagingTexture::Map()
{
// Always mapped.
return true;
}
void VKStagingTexture::Unmap()
{
// Always mapped.
}
void VKStagingTexture::Flush()
{
if (!m_needs_flush)
return;
// Is this copy in the current command buffer?
if (g_command_buffer_mgr->GetCurrentFenceCounter() == m_flush_fence_counter)
{
// Execute the command buffer and wait for it to finish.
Renderer::GetInstance()->ExecuteCommandBuffer(false, true);
}
else
{
// Wait for the GPU to finish with it.
g_command_buffer_mgr->WaitForFenceCounter(m_flush_fence_counter);
}
// For readback textures, invalidate the CPU cache as there is new data there.
if (m_type == StagingTextureType::Readback || m_type == StagingTextureType::Mutable)
m_staging_buffer->InvalidateCPUCache();
m_needs_flush = false;
}
VKFramebuffer::VKFramebuffer(VKTexture* color_attachment, VKTexture* depth_attachment, u32 width,
u32 height, u32 layers, u32 samples, VkFramebuffer fb,
VkRenderPass load_render_pass, VkRenderPass discard_render_pass,
VkRenderPass clear_render_pass)
: AbstractFramebuffer(
color_attachment, depth_attachment,
color_attachment ? color_attachment->GetFormat() : AbstractTextureFormat::Undefined,
depth_attachment ? depth_attachment->GetFormat() : AbstractTextureFormat::Undefined,
width, height, layers, samples),
m_fb(fb), m_load_render_pass(load_render_pass), m_discard_render_pass(discard_render_pass),
m_clear_render_pass(clear_render_pass)
{
}
VKFramebuffer::~VKFramebuffer()
{
g_command_buffer_mgr->DeferFramebufferDestruction(m_fb);
}
std::unique_ptr<VKFramebuffer> VKFramebuffer::Create(VKTexture* color_attachment,
VKTexture* depth_attachment)
{
if (!ValidateConfig(color_attachment, depth_attachment))
return nullptr;
const VkFormat vk_color_format =
color_attachment ? color_attachment->GetVkFormat() : VK_FORMAT_UNDEFINED;
const VkFormat vk_depth_format =
depth_attachment ? depth_attachment->GetVkFormat() : VK_FORMAT_UNDEFINED;
const VKTexture* either_attachment = color_attachment ? color_attachment : depth_attachment;
const u32 width = either_attachment->GetWidth();
const u32 height = either_attachment->GetHeight();
const u32 layers = either_attachment->GetLayers();
const u32 samples = either_attachment->GetSamples();
std::array<VkImageView, 2> attachment_views{};
u32 num_attachments = 0;
if (color_attachment)
attachment_views[num_attachments++] = color_attachment->GetView();
if (depth_attachment)
attachment_views[num_attachments++] = depth_attachment->GetView();
VkRenderPass load_render_pass = g_object_cache->GetRenderPass(
vk_color_format, vk_depth_format, samples, VK_ATTACHMENT_LOAD_OP_LOAD);
VkRenderPass discard_render_pass = g_object_cache->GetRenderPass(
vk_color_format, vk_depth_format, samples, VK_ATTACHMENT_LOAD_OP_DONT_CARE);
VkRenderPass clear_render_pass = g_object_cache->GetRenderPass(
vk_color_format, vk_depth_format, samples, VK_ATTACHMENT_LOAD_OP_CLEAR);
if (load_render_pass == VK_NULL_HANDLE || discard_render_pass == VK_NULL_HANDLE ||
clear_render_pass == VK_NULL_HANDLE)
{
return nullptr;
}
VkFramebufferCreateInfo framebuffer_info = {VK_STRUCTURE_TYPE_FRAMEBUFFER_CREATE_INFO,
nullptr,
0,
load_render_pass,
num_attachments,
attachment_views.data(),
width,
height,
layers};
VkFramebuffer fb;
VkResult res =
vkCreateFramebuffer(g_vulkan_context->GetDevice(), &framebuffer_info, nullptr, &fb);
if (res != VK_SUCCESS)
{
LOG_VULKAN_ERROR(res, "vkCreateFramebuffer failed: ");
return nullptr;
}
return std::make_unique<VKFramebuffer>(color_attachment, depth_attachment, width, height, layers,
samples, fb, load_render_pass, discard_render_pass,
clear_render_pass);
}
void VKFramebuffer::TransitionForRender()
{
if (m_color_attachment)
{
static_cast<VKTexture*>(m_color_attachment)
->TransitionToLayout(g_command_buffer_mgr->GetCurrentCommandBuffer(),
VK_IMAGE_LAYOUT_COLOR_ATTACHMENT_OPTIMAL);
}
if (m_depth_attachment)
{
static_cast<VKTexture*>(m_depth_attachment)
->TransitionToLayout(g_command_buffer_mgr->GetCurrentCommandBuffer(),
VK_IMAGE_LAYOUT_DEPTH_STENCIL_ATTACHMENT_OPTIMAL);
}
}
} // namespace Vulkan