dolphin/Source/Core/VideoBackends/Software/SWVertexLoader.cpp

Ignoring revisions in .git-blame-ignore-revs. Click here to bypass and see the normal blame view.

244 lines
8.4 KiB
C++
Raw Permalink Normal View History

// Copyright 2009 Dolphin Emulator Project
// SPDX-License-Identifier: GPL-2.0-or-later
#include "VideoBackends/Software/SWVertexLoader.h"
#include <cstddef>
2014-12-22 16:25:05 +00:00
#include <limits>
#include "Common/Assert.h"
#include "Common/CommonTypes.h"
#include "Common/Logging/Log.h"
#include "Core/System.h"
#include "VideoBackends/Software/NativeVertexFormat.h"
#include "VideoBackends/Software/Rasterizer.h"
#include "VideoBackends/Software/SWRenderer.h"
#include "VideoBackends/Software/Tev.h"
#include "VideoBackends/Software/TransformUnit.h"
#include "VideoCommon/BoundingBox.h"
#include "VideoCommon/CPMemory.h"
#include "VideoCommon/DataReader.h"
#include "VideoCommon/IndexGenerator.h"
#include "VideoCommon/OpcodeDecoding.h"
#include "VideoCommon/PixelShaderManager.h"
#include "VideoCommon/Statistics.h"
#include "VideoCommon/VertexLoaderBase.h"
#include "VideoCommon/VertexLoaderManager.h"
#include "VideoCommon/VertexShaderManager.h"
#include "VideoCommon/VideoConfig.h"
#include "VideoCommon/XFMemory.h"
SWVertexLoader::SWVertexLoader() = default;
SWVertexLoader::~SWVertexLoader() = default;
2018-11-27 07:16:53 +00:00
DataReader SWVertexLoader::PrepareForAdditionalData(OpcodeDecoder::Primitive primitive, u32 count,
u32 stride, bool cullall)
{
// The software renderer needs cullall to be false for zfreeze to work
return VertexManagerBase::PrepareForAdditionalData(primitive, count, stride, false);
}
2018-11-27 07:16:53 +00:00
void SWVertexLoader::DrawCurrentBatch(u32 base_index, u32 num_indices, u32 base_vertex)
{
using OpcodeDecoder::Primitive;
Primitive primitive_type = Primitive::GX_DRAW_QUADS;
switch (m_current_primitive_type)
{
case PrimitiveType::Points:
primitive_type = Primitive::GX_DRAW_POINTS;
break;
case PrimitiveType::Lines:
primitive_type = Primitive::GX_DRAW_LINES;
break;
case PrimitiveType::Triangles:
primitive_type = Primitive::GX_DRAW_TRIANGLES;
break;
case PrimitiveType::TriangleStrip:
primitive_type = Primitive::GX_DRAW_TRIANGLE_STRIP;
break;
}
// Flush bounding box here because software overrides the base function
if (g_bounding_box->IsEnabled())
g_bounding_box->Flush();
m_setup_unit.Init(primitive_type);
Rasterizer::SetTevKonstColors();
for (u32 i = 0; i < m_index_generator.GetIndexLen(); i++)
{
const u16 index = m_cpu_index_buffer[i];
memset(static_cast<void*>(&m_vertex), 0, sizeof(m_vertex));
// parse the videocommon format to our own struct format (m_vertex)
SetFormat();
ParseVertex(VertexLoaderManager::GetCurrentVertexFormat()->GetVertexDeclaration(), index);
// transform this vertex so that it can be used for rasterization (outVertex)
OutputVertexData* outVertex = m_setup_unit.GetVertex();
TransformUnit::TransformPosition(&m_vertex, outVertex);
outVertex->normal = {};
if (VertexLoaderManager::g_current_components & VB_HAS_NORMAL)
TransformUnit::TransformNormal(&m_vertex, outVertex);
TransformUnit::TransformColor(&m_vertex, outVertex);
TransformUnit::TransformTexCoord(&m_vertex, outVertex);
// assemble and rasterize the primitive
m_setup_unit.SetupVertex();
INCSTAT(g_stats.this_frame.num_vertices_loaded);
}
INCSTAT(g_stats.this_frame.num_drawn_objects);
}
void SWVertexLoader::SetFormat()
{
m_vertex.posMtx = xfmem.MatrixIndexA.PosNormalMtxIdx;
m_vertex.texMtx[0] = xfmem.MatrixIndexA.Tex0MtxIdx;
m_vertex.texMtx[1] = xfmem.MatrixIndexA.Tex1MtxIdx;
m_vertex.texMtx[2] = xfmem.MatrixIndexA.Tex2MtxIdx;
m_vertex.texMtx[3] = xfmem.MatrixIndexA.Tex3MtxIdx;
m_vertex.texMtx[4] = xfmem.MatrixIndexB.Tex4MtxIdx;
m_vertex.texMtx[5] = xfmem.MatrixIndexB.Tex5MtxIdx;
m_vertex.texMtx[6] = xfmem.MatrixIndexB.Tex6MtxIdx;
m_vertex.texMtx[7] = xfmem.MatrixIndexB.Tex7MtxIdx;
}
template <typename T, typename I>
static T ReadNormalized(I value)
{
T casted = (T)value;
if (!std::numeric_limits<T>::is_integer && std::numeric_limits<I>::is_integer)
{
// normalize if non-float is converted to a float
casted *= (T)(1.0 / std::numeric_limits<I>::max());
}
return casted;
}
template <typename T, bool swap = false>
static void ReadVertexAttribute(T* dst, DataReader src, const AttributeFormat& format,
int base_component, int components, bool reverse)
{
if (format.enable)
{
src.Skip(format.offset);
2021-06-26 19:48:28 +00:00
src.Skip(base_component * GetElementSize(format.type));
int i;
for (i = 0; i < std::min(format.components - base_component, components); i++)
{
int i_dst = reverse ? components - i - 1 : i;
switch (format.type)
{
2021-06-26 19:48:28 +00:00
case ComponentFormat::UByte:
dst[i_dst] = ReadNormalized<T, u8>(src.Read<u8, swap>());
break;
2021-06-26 19:48:28 +00:00
case ComponentFormat::Byte:
dst[i_dst] = ReadNormalized<T, s8>(src.Read<s8, swap>());
break;
2021-06-26 19:48:28 +00:00
case ComponentFormat::UShort:
dst[i_dst] = ReadNormalized<T, u16>(src.Read<u16, swap>());
break;
2021-06-26 19:48:28 +00:00
case ComponentFormat::Short:
dst[i_dst] = ReadNormalized<T, s16>(src.Read<s16, swap>());
break;
2021-06-26 19:48:28 +00:00
case ComponentFormat::Float:
Fix out of bounds accesses for invalid vertex component formats On all platforms, this would result in out of bounds accesses when getting the component sizes (which uses stuff from VertexLoader_Position.h/VertexLoader_TextCoord.h/VertexLoader_Normal.h). On platforms other than x64 and ARM64, this would also be out of bounds accesses when getting function pointers for the non-JIT vertex loader (in VertexLoader_Position.cpp etc.). Usually both of these would get data from other entries in the same multi-dimensional array, but the last few entries would be truly out of bounds. This does mean that an out of bounds function pointer can be called on platforms that don't have a JIT vertex loader, but it is limited to invalid component formats with values 5/6/7 due to the size of the bitfield the formats come from, so it seems unlikely that this could be exploited in practice. This issue affects a few games; Def Jam: Fight for New York (https://bugs.dolphin-emu.org/issues/12719) and Fifa Street are known to be affected. I have not done any hardware testing for this PR specifically, though I *think* I previously determined that at least a value of 5 behaves the same as float (4). That's what I implemented in any case. I did previously determine that both Def Jam: Fight for New York and Fifa Street use an invalid normal format, but don't actually have lighting enabled when that normal vector is used, so it doesn't change rendering in practice. The color component format also has two invalid values, but VertexLoader_Color.h/.cpp do check for those invalid ones and return a default value instead of doing an out of bounds access.
2024-04-02 04:37:11 +00:00
case ComponentFormat::InvalidFloat5:
case ComponentFormat::InvalidFloat6:
case ComponentFormat::InvalidFloat7:
dst[i_dst] = ReadNormalized<T, float>(src.Read<float, swap>());
break;
}
Fix out of bounds accesses for invalid vertex component formats On all platforms, this would result in out of bounds accesses when getting the component sizes (which uses stuff from VertexLoader_Position.h/VertexLoader_TextCoord.h/VertexLoader_Normal.h). On platforms other than x64 and ARM64, this would also be out of bounds accesses when getting function pointers for the non-JIT vertex loader (in VertexLoader_Position.cpp etc.). Usually both of these would get data from other entries in the same multi-dimensional array, but the last few entries would be truly out of bounds. This does mean that an out of bounds function pointer can be called on platforms that don't have a JIT vertex loader, but it is limited to invalid component formats with values 5/6/7 due to the size of the bitfield the formats come from, so it seems unlikely that this could be exploited in practice. This issue affects a few games; Def Jam: Fight for New York (https://bugs.dolphin-emu.org/issues/12719) and Fifa Street are known to be affected. I have not done any hardware testing for this PR specifically, though I *think* I previously determined that at least a value of 5 behaves the same as float (4). That's what I implemented in any case. I did previously determine that both Def Jam: Fight for New York and Fifa Street use an invalid normal format, but don't actually have lighting enabled when that normal vector is used, so it doesn't change rendering in practice. The color component format also has two invalid values, but VertexLoader_Color.h/.cpp do check for those invalid ones and return a default value instead of doing an out of bounds access.
2024-04-02 04:37:11 +00:00
ASSERT_MSG(VIDEO, !format.integer || (format.type < ComponentFormat::Float),
"only non-float values are allowed to be streamed as integer");
}
for (; i < components; i++)
{
int i_dst = reverse ? components - i - 1 : i;
dst[i_dst] = i == 3;
}
}
}
static void ParseColorAttributes(InputVertexData* dst, DataReader& src,
const PortableVertexDeclaration& vdec)
{
const auto set_default_color = [](std::array<u8, 4>& color) {
color[Tev::ALP_C] = g_ActiveConfig.iMissingColorValue & 0xFF;
color[Tev::BLU_C] = (g_ActiveConfig.iMissingColorValue >> 8) & 0xFF;
color[Tev::GRN_C] = (g_ActiveConfig.iMissingColorValue >> 16) & 0xFF;
color[Tev::RED_C] = (g_ActiveConfig.iMissingColorValue >> 24) & 0xFF;
};
if (vdec.colors[0].enable)
{
// Use color0 for channel 0, and color1 for channel 1 if both colors 0 and 1 are present.
ReadVertexAttribute<u8>(dst->color[0].data(), src, vdec.colors[0], 0, 4, true);
if (vdec.colors[1].enable)
ReadVertexAttribute<u8>(dst->color[1].data(), src, vdec.colors[1], 0, 4, true);
else
set_default_color(dst->color[1]);
}
else
{
// If only one of the color attributes is enabled, it is directed to color 0.
if (vdec.colors[1].enable)
ReadVertexAttribute<u8>(dst->color[0].data(), src, vdec.colors[1], 0, 4, true);
else
set_default_color(dst->color[0]);
set_default_color(dst->color[1]);
}
}
void SWVertexLoader::ParseVertex(const PortableVertexDeclaration& vdec, int index)
{
DataReader src(m_cpu_vertex_buffer.data(),
m_cpu_vertex_buffer.data() + m_cpu_vertex_buffer.size());
src.Skip(index * vdec.stride);
ReadVertexAttribute<float>(&m_vertex.position[0], src, vdec.position, 0, 3, false);
for (std::size_t i = 0; i < m_vertex.normal.size(); i++)
{
ReadVertexAttribute<float>(&m_vertex.normal[i][0], src, vdec.normals[i], 0, 3, false);
}
if (!vdec.normals[1].enable)
{
auto& system = Core::System::GetInstance();
auto& vertex_shader_manager = system.GetVertexShaderManager();
m_vertex.normal[1][0] = vertex_shader_manager.constants.cached_tangent[0];
m_vertex.normal[1][1] = vertex_shader_manager.constants.cached_tangent[1];
m_vertex.normal[1][2] = vertex_shader_manager.constants.cached_tangent[2];
}
if (!vdec.normals[2].enable)
{
auto& system = Core::System::GetInstance();
auto& vertex_shader_manager = system.GetVertexShaderManager();
m_vertex.normal[2][0] = vertex_shader_manager.constants.cached_binormal[0];
m_vertex.normal[2][1] = vertex_shader_manager.constants.cached_binormal[1];
m_vertex.normal[2][2] = vertex_shader_manager.constants.cached_binormal[2];
}
ParseColorAttributes(&m_vertex, src, vdec);
for (std::size_t i = 0; i < m_vertex.texCoords.size(); i++)
{
ReadVertexAttribute<float>(m_vertex.texCoords[i].data(), src, vdec.texcoords[i], 0, 2, false);
// the texmtr is stored as third component of the texCoord
if (vdec.texcoords[i].components >= 3)
{
ReadVertexAttribute<u8>(&m_vertex.texMtx[i], src, vdec.texcoords[i], 2, 1, false);
}
}
ReadVertexAttribute<u8>(&m_vertex.posMtx, src, vdec.posmtx, 0, 1, false);
}