melonDS/src/SPU.cpp

1225 lines
29 KiB
C++
Raw Normal View History

/*
2022-01-09 01:15:50 +00:00
Copyright 2016-2022 melonDS team
This file is part of melonDS.
melonDS is free software: you can redistribute it and/or modify it under
the terms of the GNU General Public License as published by the Free
Software Foundation, either version 3 of the License, or (at your option)
any later version.
melonDS is distributed in the hope that it will be useful, but WITHOUT ANY
WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details.
You should have received a copy of the GNU General Public License along
with melonDS. If not, see http://www.gnu.org/licenses/.
*/
#include <stdio.h>
#include <string.h>
#include <cmath>
2020-11-11 16:54:27 +00:00
#include "Platform.h"
#include "NDS.h"
#include "DSi.h"
#include "SPU.h"
using Platform::Log;
using Platform::LogLevel;
2017-05-09 01:54:37 +00:00
// SPU TODO
2019-05-14 13:10:58 +00:00
// * capture addition modes, overflow bugs
// * channel hold
2017-05-09 01:54:37 +00:00
namespace SPU
{
const s8 ADPCMIndexTable[8] = {-1, -1, -1, -1, 2, 4, 6, 8};
const u16 ADPCMTable[89] =
{
0x0007, 0x0008, 0x0009, 0x000A, 0x000B, 0x000C, 0x000D, 0x000E,
0x0010, 0x0011, 0x0013, 0x0015, 0x0017, 0x0019, 0x001C, 0x001F,
0x0022, 0x0025, 0x0029, 0x002D, 0x0032, 0x0037, 0x003C, 0x0042,
0x0049, 0x0050, 0x0058, 0x0061, 0x006B, 0x0076, 0x0082, 0x008F,
0x009D, 0x00AD, 0x00BE, 0x00D1, 0x00E6, 0x00FD, 0x0117, 0x0133,
0x0151, 0x0173, 0x0198, 0x01C1, 0x01EE, 0x0220, 0x0256, 0x0292,
0x02D4, 0x031C, 0x036C, 0x03C3, 0x0424, 0x048E, 0x0502, 0x0583,
0x0610, 0x06AB, 0x0756, 0x0812, 0x08E0, 0x09C3, 0x0ABD, 0x0BD0,
0x0CFF, 0x0E4C, 0x0FBA, 0x114C, 0x1307, 0x14EE, 0x1706, 0x1954,
0x1BDC, 0x1EA5, 0x21B6, 0x2515, 0x28CA, 0x2CDF, 0x315B, 0x364B,
0x3BB9, 0x41B2, 0x4844, 0x4F7E, 0x5771, 0x602F, 0x69CE, 0x7462,
0x7FFF
};
const s16 PSGTable[8][8] =
{
{-0x7FFF, -0x7FFF, -0x7FFF, -0x7FFF, -0x7FFF, -0x7FFF, -0x7FFF, 0x7FFF},
{-0x7FFF, -0x7FFF, -0x7FFF, -0x7FFF, -0x7FFF, -0x7FFF, 0x7FFF, 0x7FFF},
{-0x7FFF, -0x7FFF, -0x7FFF, -0x7FFF, -0x7FFF, 0x7FFF, 0x7FFF, 0x7FFF},
{-0x7FFF, -0x7FFF, -0x7FFF, -0x7FFF, 0x7FFF, 0x7FFF, 0x7FFF, 0x7FFF},
{-0x7FFF, -0x7FFF, -0x7FFF, 0x7FFF, 0x7FFF, 0x7FFF, 0x7FFF, 0x7FFF},
{-0x7FFF, -0x7FFF, 0x7FFF, 0x7FFF, 0x7FFF, 0x7FFF, 0x7FFF, 0x7FFF},
{-0x7FFF, 0x7FFF, 0x7FFF, 0x7FFF, 0x7FFF, 0x7FFF, 0x7FFF, 0x7FFF},
{-0x7FFF, -0x7FFF, -0x7FFF, -0x7FFF, -0x7FFF, -0x7FFF, -0x7FFF, -0x7FFF}
};
// audio interpolation is an improvement upon the original hardware
// (which performs no interpolation)
int InterpType;
s16 InterpCos[0x100];
s16 InterpCubic[0x100][4];
2020-11-11 16:54:27 +00:00
const u32 OutputBufferSize = 2*2048;
s16 OutputBackbuffer[2 * OutputBufferSize];
u32 OutputBackbufferWritePosition;
2017-04-06 17:44:34 +00:00
2020-11-11 16:54:27 +00:00
s16 OutputFrontBuffer[2 * OutputBufferSize];
u32 OutputFrontBufferWritePosition;
u32 OutputFrontBufferReadPosition;
Platform::Mutex* AudioLock;
2017-04-06 17:44:34 +00:00
u16 Cnt;
u8 MasterVolume;
u16 Bias;
bool ApplyBias;
bool Degrade10Bit;
2017-04-06 17:44:34 +00:00
Channel* Channels[16];
CaptureUnit* Capture[2];
bool Init()
{
NDS::RegisterEventFunc(NDS::Event_SPU, 0, Mix);
2017-04-06 17:44:34 +00:00
for (int i = 0; i < 16; i++)
Channels[i] = new Channel(i);
Capture[0] = new CaptureUnit(0);
Capture[1] = new CaptureUnit(1);
2020-11-11 16:54:27 +00:00
AudioLock = Platform::Mutex_Create();
InterpType = 0;
ApplyBias = true;
Degrade10Bit = false;
// generate interpolation tables
// values are 1:1:14 fixed-point
float m_pi = std::acos(-1.0f);
for (int i = 0; i < 0x100; i++)
{
float ratio = (i * m_pi) / 255.0f;
ratio = 1.0f - std::cos(ratio);
InterpCos[i] = (s16)(ratio * 0x2000);
}
for (int i = 0; i < 0x100; i++)
{
s32 i1 = i << 6;
s32 i2 = (i * i) >> 2;
s32 i3 = (i * i * i) >> 10;
InterpCubic[i][0] = -i3 + 2*i2 - i1;
InterpCubic[i][1] = i3 - 2*i2 + 0x4000;
InterpCubic[i][2] = -i3 + i2 + i1;
InterpCubic[i][3] = i3 - i2;
}
return true;
}
void DeInit()
{
2017-04-06 17:44:34 +00:00
for (int i = 0; i < 16; i++)
{
2017-04-06 17:44:34 +00:00
delete Channels[i];
Channels[i] = nullptr;
}
delete Capture[0];
delete Capture[1];
Capture[0] = nullptr;
Capture[1] = nullptr;
2020-11-11 16:54:27 +00:00
Platform::Mutex_Free(AudioLock);
AudioLock = nullptr;
NDS::UnregisterEventFunc(NDS::Event_SPU, 0);
}
void Reset()
2017-04-06 17:44:34 +00:00
{
InitOutput();
2017-04-06 17:44:34 +00:00
Cnt = 0;
MasterVolume = 0;
Bias = 0;
for (int i = 0; i < 16; i++)
Channels[i]->Reset();
Capture[0]->Reset();
Capture[1]->Reset();
NDS::ScheduleEvent(NDS::Event_SPU, false, 1024, 0, 0);
2017-04-06 17:44:34 +00:00
}
2017-09-21 01:59:12 +00:00
void Stop()
{
2020-11-11 16:54:27 +00:00
Platform::Mutex_Lock(AudioLock);
memset(OutputFrontBuffer, 0, 2*OutputBufferSize*2);
2020-05-20 20:58:04 +00:00
2020-11-11 16:54:27 +00:00
OutputBackbufferWritePosition = 0;
OutputFrontBufferReadPosition = 0;
OutputFrontBufferWritePosition = 0;
Platform::Mutex_Unlock(AudioLock);
2017-09-21 01:59:12 +00:00
}
2018-10-18 00:45:38 +00:00
void DoSavestate(Savestate* file)
{
file->Section("SPU.");
file->Var16(&Cnt);
file->Var8(&MasterVolume);
file->Var16(&Bias);
for (int i = 0; i < 16; i++)
Channels[i]->DoSavestate(file);
Capture[0]->DoSavestate(file);
Capture[1]->DoSavestate(file);
}
2017-04-06 17:44:34 +00:00
merge local_wifi (#1516) * attempt at betterer wifi * add preliminary sync mechanism * fix gaps in wifi implementation * move local-MP comm to its own module instead of cramping Platform.cpp * remove some stupid cruft * as you wish, Sorer (starting work on shared-memory system) * shared-memory IPC that actually works (albeit Windows-only for now) * shut up logging from NULL writes on ARM7 (ffs Nintendo learn to code) * get this somewhat good * leave client sync mode when host deauths. makes download play actually work. * start implementing MP-comm error handling * * add MP-reply error counters * feeble attempt at fixing slowdown/desync/etc problems * somewhat better exchange/sync method * * when entering power-saving mode, be sure to finish transferring the current frame first * fix misc bug due to old cruft leftover makes for a more stable connection * remove a bunch of cruft * set wifi time interval to 34 cycles instead of 33. games seem sensitive to the general timing of wifi vs the rest of the system, and this seems to make things run better, atleast until I rewrite this to use a proper scheduler. * more graceful handling of disconnects * deal with FIFO overflow more gracefully * BAHAHAHAHAHAHAHAHHHH THE SNEAKY BASTARDS so, when the DS receives a beacon with the right BSSID that beacon's timestamp is copied to USCOUNTER * attempt at making the connection process smoother for weird games * * begin adding POWCNT2, only applies to wifi for now * begin work on wifi scheduler * implement the shitty timers * add the RF wakeup thing * begin work on receiving frames. for now it can just receive melonAP beacons, but hey, it's a start. * add enough TX functionality that online wifi is a possibility again. * there are problems with this scheduler thing. committing it anyway * kind of a rollback... we're gonna work out a compromise on this, I guess * don't transmit shit if RXCNT.bit15 isn't set * move RX-finish to its own function. more accurate filtering. implement RXFILTER. * remove some cruft * fix some of the shittiness when trying to connect more than two players * fix some more shittiness * fix more wifi shittiness (mainly don't try to receive shit while sending a frame) * run wifi every 8µs. improves performance. * fix IRQ14/IRQ15 * make this work under Linux * Make it work on macOS, for now using a custom sem_timedwait implementation. If anyone knows anything about mach ports and have an idea for how to make this work using mach IPC, please do let me know. * 25ms seems like a good timeout * begin work on proper multiplayer UI shito. for now, determine a global instance ID, and derivate the system MAC from it. remove 'randomize MAC' option. * finish removing RandomizeMAC * lay groundwork for instance-unique config * work some on the UI... make it not labelled Fart * more UI work: make it explicit that some things are instance-unique * separate firmware files for multiplayer instances * make instances save to different save files, too * more UI work, make things somewhat less shitty * lay base for the multiplayer settings dialog * actually hook up most of that dialog * actually implement the fun audio settings * ensure all the wifi shit is properly savestated and reset. properly update timings for the wifi region when wifi is disabled. * add more fun labels * * ignore WEP frames if WEP is off * implement RX_LEN_CROP * fake enough of WEP processing to make Inazuma Eleven work * * do not copy more ROM banner data than actually needed * avoid trying to read out of bounds if the banner offset is bad * Fix oversight with the preferences action causing the build to fail on macOS Co-authored-by: Nadia Holmquist Pedersen <nadia@nhp.sh>
2022-09-22 18:32:27 +00:00
void SetPowerCnt(u32 val)
{
// TODO
}
void SetInterpolation(int type)
{
InterpType = type;
}
void SetBias(u16 bias)
{
Bias = bias;
}
2021-08-16 22:56:50 +00:00
void SetApplyBias(bool enable)
{
ApplyBias = enable;
}
2021-08-16 22:56:50 +00:00
void SetDegrade10Bit(bool enable)
{
Degrade10Bit = enable;
}
2017-04-06 17:44:34 +00:00
Channel::Channel(u32 num)
{
Num = num;
2017-04-06 17:44:34 +00:00
}
Channel::~Channel()
{
}
void Channel::Reset()
{
if (NDS::ConsoleType == 1)
BusRead32 = DSi::ARM7Read32;
else
BusRead32 = NDS::ARM7Read32;
KeyOn = false;
2017-04-06 17:44:34 +00:00
SetCnt(0);
SrcAddr = 0;
TimerReload = 0;
LoopPos = 0;
Length = 0;
2017-04-09 01:35:32 +00:00
Timer = 0;
Pos = 0;
FIFOReadPos = 0;
FIFOWritePos = 0;
FIFOReadOffset = 0;
FIFOLevel = 0;
}
2018-10-18 00:45:38 +00:00
void Channel::DoSavestate(Savestate* file)
{
file->Var32(&Cnt);
file->Var32(&SrcAddr);
file->Var16(&TimerReload);
file->Var32(&LoopPos);
file->Var32(&Length);
file->Var8(&Volume);
file->Var8(&VolumeShift);
file->Var8(&Pan);
file->Var8((u8*)&KeyOn);
2018-10-18 00:45:38 +00:00
file->Var32(&Timer);
file->Var32((u32*)&Pos);
file->VarArray(PrevSample, sizeof(PrevSample));
2018-10-18 00:45:38 +00:00
file->Var16((u16*)&CurSample);
file->Var16(&NoiseVal);
file->Var32((u32*)&ADPCMVal);
file->Var32((u32*)&ADPCMIndex);
file->Var32((u32*)&ADPCMValLoop);
file->Var32((u32*)&ADPCMIndexLoop);
file->Var8(&ADPCMCurByte);
file->Var32(&FIFOReadPos);
file->Var32(&FIFOWritePos);
file->Var32(&FIFOReadOffset);
file->Var32(&FIFOLevel);
file->VarArray(FIFO, sizeof(FIFO));
2018-10-18 00:45:38 +00:00
}
void Channel::FIFO_BufferData()
{
u32 totallen = LoopPos + Length;
if (FIFOReadOffset >= totallen)
{
u32 repeatmode = (Cnt >> 27) & 0x3;
if (repeatmode & 1) FIFOReadOffset = LoopPos;
else if (repeatmode & 2) return; // one-shot sound, we're done
}
u32 burstlen = 16;
if ((FIFOReadOffset + 16) > totallen)
burstlen = totallen - FIFOReadOffset;
// sound DMA can't read from the ARM7 BIOS
if ((SrcAddr + FIFOReadOffset) >= 0x00004000)
{
for (u32 i = 0; i < burstlen; i += 4)
{
FIFO[FIFOWritePos] = BusRead32(SrcAddr + FIFOReadOffset);
FIFOReadOffset += 4;
FIFOWritePos++;
FIFOWritePos &= 0x7;
}
}
else
{
for (u32 i = 0; i < burstlen; i += 4)
{
FIFO[FIFOWritePos] = 0;
FIFOReadOffset += 4;
FIFOWritePos++;
FIFOWritePos &= 0x7;
}
}
FIFOLevel += burstlen;
}
template<typename T>
T Channel::FIFO_ReadData()
{
T ret = *(T*)&((u8*)FIFO)[FIFOReadPos];
FIFOReadPos += sizeof(T);
FIFOReadPos &= 0x1F;
FIFOLevel -= sizeof(T);
if (FIFOLevel <= 16)
FIFO_BufferData();
return ret;
2017-04-06 17:44:34 +00:00
}
void Channel::Start()
{
Timer = TimerReload;
2017-04-09 01:35:32 +00:00
if (((Cnt >> 29) & 0x3) == 3)
Pos = -1;
else
Pos = -3;
NoiseVal = 0x7FFF;
PrevSample[0] = 0;
PrevSample[1] = 0;
PrevSample[2] = 0;
CurSample = 0;
FIFOReadPos = 0;
FIFOWritePos = 0;
FIFOReadOffset = 0;
FIFOLevel = 0;
// when starting a channel, buffer data
if (((Cnt >> 29) & 0x3) != 3)
{
FIFO_BufferData();
FIFO_BufferData();
}
}
void Channel::NextSample_PCM8()
{
Pos++;
if (Pos < 0) return;
if (Pos >= (LoopPos + Length))
{
u32 repeat = (Cnt >> 27) & 0x3;
if (repeat & 1)
{
Pos = LoopPos;
}
else if (repeat & 2)
{
CurSample = 0;
Cnt &= ~(1<<31);
return;
}
}
s8 val = FIFO_ReadData<s8>();
CurSample = val << 8;
}
void Channel::NextSample_PCM16()
{
Pos++;
if (Pos < 0) return;
if ((Pos<<1) >= (LoopPos + Length))
{
u32 repeat = (Cnt >> 27) & 0x3;
if (repeat & 1)
{
Pos = LoopPos>>1;
}
else if (repeat & 2)
{
CurSample = 0;
Cnt &= ~(1<<31);
return;
}
}
s16 val = FIFO_ReadData<s16>();
CurSample = val;
}
void Channel::NextSample_ADPCM()
{
Pos++;
if (Pos < 8)
{
if (Pos == 0)
{
// setup ADPCM
u32 header = FIFO_ReadData<u32>();
ADPCMVal = (s32)(s16)(header & 0xFFFF);
ADPCMIndex = (header >> 16) & 0x7F;
if (ADPCMIndex > 88) ADPCMIndex = 88;
ADPCMValLoop = ADPCMVal;
ADPCMIndexLoop = ADPCMIndex;
}
return;
}
if ((Pos>>1) >= (LoopPos + Length))
{
u32 repeat = (Cnt >> 27) & 0x3;
if (repeat & 1)
{
Pos = LoopPos<<1;
ADPCMVal = ADPCMValLoop;
ADPCMIndex = ADPCMIndexLoop;
ADPCMCurByte = FIFO_ReadData<u8>();
}
else if (repeat & 2)
{
CurSample = 0;
Cnt &= ~(1<<31);
return;
}
}
else
{
if (!(Pos & 0x1))
ADPCMCurByte = FIFO_ReadData<u8>();
else
ADPCMCurByte >>= 4;
u16 val = ADPCMTable[ADPCMIndex];
u16 diff = val >> 3;
if (ADPCMCurByte & 0x1) diff += (val >> 2);
if (ADPCMCurByte & 0x2) diff += (val >> 1);
if (ADPCMCurByte & 0x4) diff += val;
if (ADPCMCurByte & 0x8)
{
ADPCMVal -= diff;
if (ADPCMVal < -0x7FFF) ADPCMVal = -0x7FFF;
}
else
{
ADPCMVal += diff;
if (ADPCMVal > 0x7FFF) ADPCMVal = 0x7FFF;
}
ADPCMIndex += ADPCMIndexTable[ADPCMCurByte & 0x7];
if (ADPCMIndex < 0) ADPCMIndex = 0;
else if (ADPCMIndex > 88) ADPCMIndex = 88;
if (Pos == (LoopPos<<1))
{
ADPCMValLoop = ADPCMVal;
ADPCMIndexLoop = ADPCMIndex;
}
}
CurSample = ADPCMVal;
}
void Channel::NextSample_PSG()
{
Pos++;
CurSample = PSGTable[(Cnt >> 24) & 0x7][Pos & 0x7];
}
void Channel::NextSample_Noise()
{
if (NoiseVal & 0x1)
{
NoiseVal = (NoiseVal >> 1) ^ 0x6000;
CurSample = -0x7FFF;
}
else
{
NoiseVal >>= 1;
CurSample = 0x7FFF;
}
}
template<u32 type>
s32 Channel::Run()
{
if (!(Cnt & (1<<31))) return 0;
if ((type < 3) && ((Length+LoopPos) < 16)) return 0;
2020-08-19 02:18:17 +00:00
if (KeyOn)
{
Start();
KeyOn = false;
}
Timer += 512; // 1 sample = 512 cycles at 16MHz
while (Timer >> 16)
{
Timer = TimerReload + (Timer - 0x10000);
// for optional interpolation: save previous samples
// the interpolated audio will be delayed by a couple samples,
// but it's easier to deal with this way
if ((type < 3) && (InterpType != 0))
{
PrevSample[2] = PrevSample[1];
PrevSample[1] = PrevSample[0];
PrevSample[0] = CurSample;
}
switch (type)
{
case 0: NextSample_PCM8(); break;
case 1: NextSample_PCM16(); break;
case 2: NextSample_ADPCM(); break;
case 3: NextSample_PSG(); break;
case 4: NextSample_Noise(); break;
}
}
s32 val = (s32)CurSample;
// interpolation (emulation improvement, not a hardware feature)
if ((type < 3) && (InterpType != 0))
{
s32 samplepos = ((Timer - TimerReload) * 0x100) / (0x10000 - TimerReload);
if (samplepos > 0xFF) samplepos = 0xFF;
switch (InterpType)
{
case 1: // linear
val = ((val * samplepos) +
(PrevSample[0] * (0xFF-samplepos))) >> 8;
break;
case 2: // cosine
val = ((val * InterpCos[samplepos]) +
(PrevSample[0] * InterpCos[0xFF-samplepos])) >> 14;
break;
case 3: // cubic
val = ((PrevSample[2] * InterpCubic[samplepos][0]) +
(PrevSample[1] * InterpCubic[samplepos][1]) +
(PrevSample[0] * InterpCubic[samplepos][2]) +
(val * InterpCubic[samplepos][3])) >> 14;
break;
}
}
val <<= VolumeShift;
val *= Volume;
return val;
}
void Channel::PanOutput(s32 in, s32& left, s32& right)
{
left += ((s64)in * (128-Pan)) >> 10;
right += ((s64)in * Pan) >> 10;
}
CaptureUnit::CaptureUnit(u32 num)
{
Num = num;
}
CaptureUnit::~CaptureUnit()
{
}
void CaptureUnit::Reset()
{
if (NDS::ConsoleType == 1)
BusWrite32 = DSi::ARM7Write32;
else
BusWrite32 = NDS::ARM7Write32;
SetCnt(0);
DstAddr = 0;
TimerReload = 0;
Length = 0;
2017-04-09 01:35:32 +00:00
Timer = 0;
Pos = 0;
FIFOReadPos = 0;
FIFOWritePos = 0;
FIFOWriteOffset = 0;
FIFOLevel = 0;
}
2018-10-18 00:45:38 +00:00
void CaptureUnit::DoSavestate(Savestate* file)
{
file->Var8(&Cnt);
file->Var32(&DstAddr);
file->Var16(&TimerReload);
file->Var32(&Length);
file->Var32(&Timer);
file->Var32((u32*)&Pos);
file->Var32(&FIFOReadPos);
file->Var32(&FIFOWritePos);
file->Var32(&FIFOWriteOffset);
file->Var32(&FIFOLevel);
file->VarArray(FIFO, 4*4);
}
void CaptureUnit::FIFO_FlushData()
{
for (u32 i = 0; i < 4; i++)
{
BusWrite32(DstAddr + FIFOWriteOffset, FIFO[FIFOReadPos]);
FIFOReadPos++;
FIFOReadPos &= 0x3;
FIFOLevel -= 4;
FIFOWriteOffset += 4;
if (FIFOWriteOffset >= Length)
{
FIFOWriteOffset = 0;
break;
}
}
}
template<typename T>
void CaptureUnit::FIFO_WriteData(T val)
{
*(T*)&((u8*)FIFO)[FIFOWritePos] = val;
FIFOWritePos += sizeof(T);
FIFOWritePos &= 0xF;
FIFOLevel += sizeof(T);
if (FIFOLevel >= 16)
FIFO_FlushData();
}
void CaptureUnit::Run(s32 sample)
{
Timer += 512;
if (Cnt & 0x08)
{
while (Timer >> 16)
{
Timer = TimerReload + (Timer - 0x10000);
FIFO_WriteData<s8>((s8)(sample >> 8));
Pos++;
if (Pos >= Length)
{
if (FIFOLevel >= 4)
FIFO_FlushData();
if (Cnt & 0x04)
{
Cnt &= 0x7F;
return;
}
else
Pos = 0;
}
}
}
else
{
while (Timer >> 16)
{
Timer = TimerReload + (Timer - 0x10000);
FIFO_WriteData<s16>((s16)sample);
Pos += 2;
if (Pos >= Length)
{
if (FIFOLevel >= 4)
FIFO_FlushData();
if (Cnt & 0x04)
{
Cnt &= 0x7F;
return;
}
else
Pos = 0;
}
}
}
}
2017-04-06 17:44:34 +00:00
void Mix(u32 dummy)
{
s32 left = 0, right = 0;
s32 leftoutput = 0, rightoutput = 0;
if ((Cnt & (1<<15)) && (!dummy))
{
s32 ch0 = Channels[0]->DoRun();
s32 ch1 = Channels[1]->DoRun();
s32 ch2 = Channels[2]->DoRun();
s32 ch3 = Channels[3]->DoRun();
// TODO: addition from capture registers
Channels[0]->PanOutput(ch0, left, right);
Channels[2]->PanOutput(ch2, left, right);
if (!(Cnt & (1<<12))) Channels[1]->PanOutput(ch1, left, right);
if (!(Cnt & (1<<13))) Channels[3]->PanOutput(ch3, left, right);
for (int i = 4; i < 16; i++)
{
Channel* chan = Channels[i];
s32 channel = chan->DoRun();
chan->PanOutput(channel, left, right);
}
// sound capture
// TODO: other sound capture sources, along with their bugs
if (Capture[0]->Cnt & (1<<7))
{
s32 val = left;
val >>= 8;
if (val < -0x8000) val = -0x8000;
else if (val > 0x7FFF) val = 0x7FFF;
Capture[0]->Run(val);
}
if (Capture[1]->Cnt & (1<<7))
{
s32 val = right;
val >>= 8;
if (val < -0x8000) val = -0x8000;
else if (val > 0x7FFF) val = 0x7FFF;
Capture[1]->Run(val);
}
// final output
switch (Cnt & 0x0300)
{
case 0x0000: // left mixer
leftoutput = left;
break;
case 0x0100: // channel 1
{
s32 pan = 128 - Channels[1]->Pan;
leftoutput = ((s64)ch1 * pan) >> 10;
}
break;
case 0x0200: // channel 3
{
s32 pan = 128 - Channels[3]->Pan;
leftoutput = ((s64)ch3 * pan) >> 10;
}
break;
case 0x0300: // channel 1+3
{
s32 pan1 = 128 - Channels[1]->Pan;
s32 pan3 = 128 - Channels[3]->Pan;
leftoutput = (((s64)ch1 * pan1) >> 10) + (((s64)ch3 * pan3) >> 10);
}
break;
}
switch (Cnt & 0x0C00)
{
case 0x0000: // right mixer
rightoutput = right;
break;
case 0x0400: // channel 1
{
s32 pan = Channels[1]->Pan;
rightoutput = ((s64)ch1 * pan) >> 10;
}
break;
case 0x0800: // channel 3
{
s32 pan = Channels[3]->Pan;
rightoutput = ((s64)ch3 * pan) >> 10;
}
break;
case 0x0C00: // channel 1+3
{
s32 pan1 = Channels[1]->Pan;
s32 pan3 = Channels[3]->Pan;
rightoutput = (((s64)ch1 * pan1) >> 10) + (((s64)ch3 * pan3) >> 10);
}
break;
}
}
2017-04-06 17:44:34 +00:00
leftoutput = ((s64)leftoutput * MasterVolume) >> 7;
rightoutput = ((s64)rightoutput * MasterVolume) >> 7;
leftoutput >>= 8;
rightoutput >>= 8;
// Add SOUNDBIAS value
// The value used by all commercial games is 0x200, so we subtract that so it won't offset the final sound output.
2021-08-16 22:56:50 +00:00
if (ApplyBias)
{
leftoutput += (Bias << 6) - 0x8000;
rightoutput += (Bias << 6) - 0x8000;
}
if (leftoutput < -0x8000) leftoutput = -0x8000;
else if (leftoutput > 0x7FFF) leftoutput = 0x7FFF;
if (rightoutput < -0x8000) rightoutput = -0x8000;
else if (rightoutput > 0x7FFF) rightoutput = 0x7FFF;
// The original DS and DS lite degrade the output from 16 to 10 bit before output
if (Degrade10Bit)
{
leftoutput &= 0xFFFFFFC0;
rightoutput &= 0xFFFFFFC0;
}
2020-11-11 16:54:27 +00:00
// OutputBufferFrame can never get full because it's
// transfered to OutputBuffer at the end of the frame
// FIXME: apparently this does happen!!!
if (OutputBackbufferWritePosition * 2 < OutputBufferSize - 1)
{
OutputBackbuffer[OutputBackbufferWritePosition ] = leftoutput >> 1;
OutputBackbuffer[OutputBackbufferWritePosition + 1] = rightoutput >> 1;
OutputBackbufferWritePosition += 2;
}
NDS::ScheduleEvent(NDS::Event_SPU, true, 1024, 0, 0);
2017-04-06 17:44:34 +00:00
}
2020-11-11 16:54:27 +00:00
void TransferOutput()
{
Platform::Mutex_Lock(AudioLock);
for (u32 i = 0; i < OutputBackbufferWritePosition; i += 2)
{
OutputFrontBuffer[OutputFrontBufferWritePosition ] = OutputBackbuffer[i ];
OutputFrontBuffer[OutputFrontBufferWritePosition + 1] = OutputBackbuffer[i + 1];
OutputFrontBufferWritePosition += 2;
OutputFrontBufferWritePosition &= OutputBufferSize*2-1;
if (OutputFrontBufferWritePosition == OutputFrontBufferReadPosition)
{
// advance the read position too, to avoid losing the entire FIFO
OutputFrontBufferReadPosition += 2;
OutputFrontBufferReadPosition &= OutputBufferSize*2-1;
}
}
OutputBackbufferWritePosition = 0;
Platform::Mutex_Unlock(AudioLock);
}
2017-04-06 17:44:34 +00:00
2019-09-04 14:29:40 +00:00
void TrimOutput()
{
2020-11-11 16:54:27 +00:00
Platform::Mutex_Lock(AudioLock);
2019-09-04 14:29:40 +00:00
const int halflimit = (OutputBufferSize / 2);
2020-11-11 16:54:27 +00:00
int readpos = OutputFrontBufferWritePosition - (halflimit*2);
2019-09-04 14:29:40 +00:00
if (readpos < 0) readpos += (OutputBufferSize*2);
2020-11-11 16:54:27 +00:00
OutputFrontBufferReadPosition = readpos;
Platform::Mutex_Unlock(AudioLock);
2019-09-04 14:29:40 +00:00
}
void DrainOutput()
{
2020-11-11 16:54:27 +00:00
Platform::Mutex_Lock(AudioLock);
OutputFrontBufferWritePosition = 0;
OutputFrontBufferReadPosition = 0;
Platform::Mutex_Unlock(AudioLock);
}
void InitOutput()
{
2020-11-11 16:54:27 +00:00
Platform::Mutex_Lock(AudioLock);
memset(OutputBackbuffer, 0, 2*OutputBufferSize*2);
memset(OutputFrontBuffer, 0, 2*OutputBufferSize*2);
OutputFrontBufferReadPosition = 0;
OutputFrontBufferWritePosition = 0;
Platform::Mutex_Unlock(AudioLock);
}
2019-08-18 09:31:03 +00:00
int GetOutputSize()
{
2020-11-11 16:54:27 +00:00
Platform::Mutex_Lock(AudioLock);
int ret;
2020-11-11 16:54:27 +00:00
if (OutputFrontBufferWritePosition >= OutputFrontBufferReadPosition)
ret = OutputFrontBufferWritePosition - OutputFrontBufferReadPosition;
else
2020-11-11 16:54:27 +00:00
ret = (OutputBufferSize*2) - OutputFrontBufferReadPosition + OutputFrontBufferWritePosition;
ret >>= 1;
2020-11-11 16:54:27 +00:00
Platform::Mutex_Unlock(AudioLock);
return ret;
}
void Sync(bool wait)
{
2020-11-11 16:54:27 +00:00
// this function is currently not used anywhere
// depending on the usage context the thread safety measures could be made
// a lot faster
// sync to audio output in case the core is running too fast
// * wait=true: wait until enough audio data has been played
// * wait=false: merely skip some audio data to avoid a FIFO overflow
const int halflimit = (OutputBufferSize / 2);
if (wait)
{
// TODO: less CPU-intensive wait?
while (GetOutputSize() > halflimit);
}
else if (GetOutputSize() > halflimit)
{
2020-11-11 16:54:27 +00:00
Platform::Mutex_Lock(AudioLock);
int readpos = OutputFrontBufferWritePosition - (halflimit*2);
if (readpos < 0) readpos += (OutputBufferSize*2);
2020-11-11 16:54:27 +00:00
OutputFrontBufferReadPosition = readpos;
Platform::Mutex_Unlock(AudioLock);
}
2019-08-18 09:31:03 +00:00
}
int ReadOutput(s16* data, int samples)
{
2020-11-11 16:54:27 +00:00
Platform::Mutex_Lock(AudioLock);
if (OutputFrontBufferReadPosition == OutputFrontBufferWritePosition)
{
Platform::Mutex_Unlock(AudioLock);
return 0;
2020-11-11 16:54:27 +00:00
}
2017-04-06 17:44:34 +00:00
for (int i = 0; i < samples; i++)
{
2020-11-11 16:54:27 +00:00
*data++ = OutputFrontBuffer[OutputFrontBufferReadPosition];
*data++ = OutputFrontBuffer[OutputFrontBufferReadPosition + 1];
OutputFrontBufferReadPosition += 2;
OutputFrontBufferReadPosition &= ((2*OutputBufferSize)-1);
2017-04-06 17:44:34 +00:00
2020-11-11 16:54:27 +00:00
if (OutputFrontBufferWritePosition == OutputFrontBufferReadPosition)
{
2020-11-11 16:54:27 +00:00
Platform::Mutex_Unlock(AudioLock);
return i+1;
2020-11-11 16:54:27 +00:00
}
}
2020-11-11 16:54:27 +00:00
Platform::Mutex_Unlock(AudioLock);
return samples;
2017-04-06 17:44:34 +00:00
}
u8 Read8(u32 addr)
{
if (addr < 0x04000500)
{
Channel* chan = Channels[(addr >> 4) & 0xF];
switch (addr & 0xF)
{
case 0x0: return chan->Cnt & 0xFF;
case 0x1: return (chan->Cnt >> 8) & 0xFF;
case 0x2: return (chan->Cnt >> 16) & 0xFF;
case 0x3: return chan->Cnt >> 24;
}
}
else
{
switch (addr)
{
case 0x04000500: return Cnt & 0x7F;
case 0x04000501: return Cnt >> 8;
case 0x04000508: return Capture[0]->Cnt;
case 0x04000509: return Capture[1]->Cnt;
2017-04-06 17:44:34 +00:00
}
}
Log(LogLevel::Warn, "unknown SPU read8 %08X\n", addr);
2017-04-06 17:44:34 +00:00
return 0;
}
u16 Read16(u32 addr)
{
if (addr < 0x04000500)
{
Channel* chan = Channels[(addr >> 4) & 0xF];
switch (addr & 0xF)
{
case 0x0: return chan->Cnt & 0xFFFF;
case 0x2: return chan->Cnt >> 16;
}
}
else
{
switch (addr)
{
case 0x04000500: return Cnt;
case 0x04000504: return Bias;
case 0x04000508: return Capture[0]->Cnt | (Capture[1]->Cnt << 8);
2017-04-06 17:44:34 +00:00
}
}
Log(LogLevel::Warn, "unknown SPU read16 %08X\n", addr);
2017-04-06 17:44:34 +00:00
return 0;
}
u32 Read32(u32 addr)
{
if (addr < 0x04000500)
{
Channel* chan = Channels[(addr >> 4) & 0xF];
switch (addr & 0xF)
{
case 0x0: return chan->Cnt;
}
}
else
{
switch (addr)
{
case 0x04000500: return Cnt;
case 0x04000504: return Bias;
case 0x04000508: return Capture[0]->Cnt | (Capture[1]->Cnt << 8);
case 0x04000510: return Capture[0]->DstAddr;
case 0x04000518: return Capture[1]->DstAddr;
2017-04-06 17:44:34 +00:00
}
}
Log(LogLevel::Warn, "unknown SPU read32 %08X\n", addr);
2017-04-06 17:44:34 +00:00
return 0;
}
void Write8(u32 addr, u8 val)
{
if (addr < 0x04000500)
{
Channel* chan = Channels[(addr >> 4) & 0xF];
switch (addr & 0xF)
{
case 0x0: chan->SetCnt((chan->Cnt & 0xFFFFFF00) | val); return;
case 0x1: chan->SetCnt((chan->Cnt & 0xFFFF00FF) | (val << 8)); return;
case 0x2: chan->SetCnt((chan->Cnt & 0xFF00FFFF) | (val << 16)); return;
case 0x3: chan->SetCnt((chan->Cnt & 0x00FFFFFF) | (val << 24)); return;
}
}
else
{
switch (addr)
{
case 0x04000500:
Cnt = (Cnt & 0xBF00) | (val & 0x7F);
MasterVolume = Cnt & 0x7F;
if (MasterVolume == 127) MasterVolume++;
return;
case 0x04000501:
Cnt = (Cnt & 0x007F) | ((val & 0xBF) << 8);
return;
case 0x04000508:
Capture[0]->SetCnt(val);
if (val & 0x03) Log(LogLevel::Warn, "!! UNSUPPORTED SPU CAPTURE MODE %02X\n", val);
return;
case 0x04000509:
Capture[1]->SetCnt(val);
if (val & 0x03) Log(LogLevel::Warn, "!! UNSUPPORTED SPU CAPTURE MODE %02X\n", val);
return;
2017-04-06 17:44:34 +00:00
}
}
Log(LogLevel::Warn, "unknown SPU write8 %08X %02X\n", addr, val);
2017-04-06 17:44:34 +00:00
}
void Write16(u32 addr, u16 val)
{
if (addr < 0x04000500)
{
Channel* chan = Channels[(addr >> 4) & 0xF];
switch (addr & 0xF)
{
case 0x0: chan->SetCnt((chan->Cnt & 0xFFFF0000) | val); return;
case 0x2: chan->SetCnt((chan->Cnt & 0x0000FFFF) | (val << 16)); return;
case 0x8:
chan->SetTimerReload(val);
if ((addr & 0xF0) == 0x10) Capture[0]->SetTimerReload(val);
else if ((addr & 0xF0) == 0x30) Capture[1]->SetTimerReload(val);
return;
2017-04-06 17:44:34 +00:00
case 0xA: chan->SetLoopPos(val); return;
2019-08-18 09:31:03 +00:00
case 0xC: chan->SetLength(((chan->Length >> 2) & 0xFFFF0000) | val); return;
case 0xE: chan->SetLength(((chan->Length >> 2) & 0x0000FFFF) | (val << 16)); return;
2017-04-06 17:44:34 +00:00
}
}
else
{
switch (addr)
{
case 0x04000500:
Cnt = val & 0xBF7F;
MasterVolume = Cnt & 0x7F;
if (MasterVolume == 127) MasterVolume++;
return;
case 0x04000504:
Bias = val & 0x3FF;
return;
case 0x04000508:
Capture[0]->SetCnt(val & 0xFF);
Capture[1]->SetCnt(val >> 8);
if (val & 0x0303) Log(LogLevel::Warn, "!! UNSUPPORTED SPU CAPTURE MODE %04X\n", val);
return;
case 0x04000514: Capture[0]->SetLength(val); return;
case 0x0400051C: Capture[1]->SetLength(val); return;
2017-04-06 17:44:34 +00:00
}
}
Log(LogLevel::Warn, "unknown SPU write16 %08X %04X\n", addr, val);
2017-04-06 17:44:34 +00:00
}
void Write32(u32 addr, u32 val)
{
if (addr < 0x04000500)
{
Channel* chan = Channels[(addr >> 4) & 0xF];
switch (addr & 0xF)
{
case 0x0: chan->SetCnt(val); return;
case 0x4: chan->SetSrcAddr(val); return;
case 0x8:
chan->SetLoopPos(val >> 16);
val &= 0xFFFF;
chan->SetTimerReload(val);
if ((addr & 0xF0) == 0x10) Capture[0]->SetTimerReload(val);
else if ((addr & 0xF0) == 0x30) Capture[1]->SetTimerReload(val);
2017-04-06 17:44:34 +00:00
return;
case 0xC: chan->SetLength(val); return;
}
}
else
{
switch (addr)
{
case 0x04000500:
Cnt = val & 0xBF7F;
MasterVolume = Cnt & 0x7F;
if (MasterVolume == 127) MasterVolume++;
return;
case 0x04000504:
Bias = val & 0x3FF;
return;
case 0x04000508:
Capture[0]->SetCnt(val & 0xFF);
Capture[1]->SetCnt(val >> 8);
if (val & 0x0303) Log(LogLevel::Warn, "!! UNSUPPORTED SPU CAPTURE MODE %04X\n", val);
return;
case 0x04000510: Capture[0]->SetDstAddr(val); return;
case 0x04000514: Capture[0]->SetLength(val & 0xFFFF); return;
case 0x04000518: Capture[1]->SetDstAddr(val); return;
case 0x0400051C: Capture[1]->SetLength(val & 0xFFFF); return;
2017-04-06 17:44:34 +00:00
}
}
}
}