Fully opt-in, reports to analytics.dolphin-emu.org over SSL. Collects system
information and settings at Dolphin start time and game start time.
UI not implemented yet, so users are required to opt in through config editing.
Fixes a major preformance regression in Skies of Arcadia during
battle transisions.
I had plans for a more advanced version of this code after 5.0,
but here is a minimal implemenation for now.
allthough this is a mesa bug, this is a simple enough workaround for context
creation fails with EGL_CONTEXT_OPENGL_FORWARD_COMPATIBLE_BIT_KHR set.
Otherwise dolphin will fail to create 3.3+ core context with current mesa
version
Cleanup code style.
Move ActionReplay code->INI saving into ActionReplay namespace.
Threadsafety Cleanup: ActionReplay is accessed from the Host, Emu
and CPU Threads so the internal storage needs to be protected by a
lock to prevent vectors/strings being deleted/moved while in use by
the CPU Thread.
UI Consistency: Make ARCodes behave like Gecko Codes - only apply
changes when Apply is pressed. Save changes to INI from CheatsWindow.
ISOProperties/CheatsWindow now synchronize with each other.
ISOProperties loads codes using ActionReplay::LoadCodes which actually applies
the codes to the global state. If a game is running then that games receives
all the codes (and ACTIVE status) from the second game being shown in
ISOProperties which is not desirable.
Donkey Kong Country Returns is writing new data to some files in /tmp
when loading each level. But the savestate code was opening the files
a second time and reading some old and stale data out.
As of #3798, dolphin now correctly restores that stale data to /tmp,
which broke DKCR (and probally countless other games).
This PR closes all file handles before saving and loading savestates,
which flushes the data out and pervents this issue. (old savestates
are corrupted and will still cause crashes if loaded)
On master, when polling the 1st in-game controller, Dolphin would poll all the 1st local controllers. With the 1st commit, each client waits its turn, which would dramatically increase the lag.
Now with this commit, it even polls all local controllers at once, so it should have even less latency than master in a few setups. Like one player with 3 controllers and the 2nd one with just one controller.
This fixes issues with setups like:
Player 1 uses port 1 and player 2 uses port 3, or
player 1 uses port 2 and player 2 uses port 3, so nobody uses port 1
Also swaps the byte order from RGBA->BGRA to match GL/D3D12, and what
the read handler is expecting.
Depth reads will now return the minimum depth of all samples, instead of
the average of all samples.
Using glMapBufferRange to read back the contents of the SSBO is extremely
slow on NVIDIA drivers. This is more noticeable at higher internal
resolutions. Using glGetBufferSubData instead does not seem to exhibit
this slowdown.
make sure Reset() can’t be run concurrently with AddGCAdapter() or
ResetRumble() (which is called on other threads) which can cause
crashes (issue #9462)
So they share the same emitter, and so they are in the same 128MB range.
This allows us to use B() to jump to the dispatcher.
However, so we have to regenerate them on every cache clear.
EndPlayInput runs on the CPU thread so it can't directly call
UpdateWantDeterminism. PlayController also tries to ChangeDisc
from the CPU Thread which is also invalid. It now just pauses
execution and posts a request to the Host to fix it instead.
The Core itself also did dodgy things like PauseAndLock-ing
from the CPU Thread and SetState from EmuThread which have been
removed.
Fix Frame Advance and FifoPlayer pause/unpause/stop.
CPU::EnableStepping is not atomic but is called from multiple threads
which races and leaves the system in a random state; also instruction
stepping was unstable, m_StepEvent had an almost random value because
of the dual purpose it served which could cause races where CPU::Run
would SingleStep when it was supposed to be sleeping.
FifoPlayer never FinishStateMove()d which was causing it to deadlock.
Rather than partially reimplementing CPU::Run, just use CPUCoreBase
and then call CPU::Run(). More DRY and less likely to have weird bugs
specific to the player (i.e the previous freezing on pause/stop).
Refactor PowerPC::state into CPU since it manages the state of the
CPU Thread which is controlled by CPU, not PowerPC. This simplifies
the architecture somewhat and eliminates races that can be caused by
calling PowerPC state functions directly instead of using CPU's
(because they bypassed the EnableStepping lock).
Sorts out references that cause some modules to be kept around after
backend shutdown.
Should also solve the issue with errors being thrown due to the config
being loaded after device creation, leading to the incorrect device being
used in a multi-adapter system.