Use 1 of the same type as the stored value when shifting left. This
prevents undefined behavior caused by shifting an int more than 31 bits.
Previously iterator incrementation could either hang or prematurely
report it had reached the end of the bitset.
With this, situations where multiple arguments need to be moved
from multiple registers become easy to handle, and we also get
compile-time checking that the number of arguments is correct.
Check bytes directly to avoid ambiguity in the disassembly between short
and near jumps, which could hypothetically cause the test to pass when
it shouldn't.
Replace the bool parameter force5bytes in J, JMP, and J_CC with an enum
class Jump::Short/Near. Many callers set that parameter to the literal
'true', which was unclear if you didn't already know what it did.
Now that we've flipped the C++20 switch, let's start making use of
the nice new <bit> header.
I'm planning on handling this move away from BitUtils.h incrementally
in a series of PRs. There may be a few functions remaining in
BitUtils.h by the end that C++20 doesn't have any equivalents for.
SPDX standardizes how source code conveys its copyright and licensing
information. See https://spdx.github.io/spdx-spec/1-rationale/ . SPDX
tags are adopted in many large projects, including things like the Linux
kernel.
Test the behavior of OpArg::WriteRest by using MOV with the various
addressing modes (MatR, MRegSum, etc.) in the source operand.
Both the instruction and the instruction length are validated.
- Fixed a bug where pushing items over queue's size left it in a corrupted state
- For non-trivial types, have clear() and pop() run destructors
- Added emplace(args...)
- Added empty()
FixedSizeQueue has semantics of a circular buffer,
so pushing items continuously is expected to keep overwriting oldest elements gracefully.
Tests have been updated to verify correctness of a previously bugged behaviour
and to verify correctness of destructing non-trivial types
Since C++17, non-member std::size() is present in the standard library
which also operates on regular C arrays. Given that, we can just replace
usages of ArraySize with that where applicable.
In many cases, we can just change the actual C array ArraySize() was
called on into a std::array and just use its .size() member function
instead.
In some other cases, we can collapse the loops they were used in, into a
ranged-for loop, eliminating the need for en explicit bounds query.