At the end of each frame automatically update the Current Value for
visible table rows in the selected and visible CheatSearchWidget (if
any). Also update all Current Values in all CheatSearchWidgets when the
State changes to Paused.
Only updating visible table rows serves to minimize the performance cost
of this feature. If the user scrolls to an un-updated cell it will
promptly be updated by either the next VIEndFieldEvent or the State
transitioning to Paused.
SPDX standardizes how source code conveys its copyright and licensing
information. See https://spdx.github.io/spdx-spec/1-rationale/ . SPDX
tags are adopted in many large projects, including things like the Linux
kernel.
If we want to enable codes in the default game INIs,
we should have some way for users to disable them.
This commit accomplishes that by adding a *_Disabled
section corresponding to each *_Enabled section.
Changed several enums from Memmap.h to be static vars and implemented Get functions to query them. This seems to have boosted speed a bit in some titles? The new variables and some previously statically initialized items are now initialized via Memory::Init() and the new AddressSpace::Init(). s_ram_size_real and the new s_exram_size_real in particular are initialized from new OnionConfig values "MAIN_MEM1_SIZE" and "MAIN_MEM2_SIZE", only if "MAIN_RAM_OVERRIDE_ENABLE" is true.
GUI features have been added to Config > Advanced to adjust the new OnionConfig values.
A check has been added to State::doState to ensure savestates with memory configurations different from the current settings aren't loaded. The STATE_VERSION is now 115.
FIFO Files have been updated from version 4 to version 5, now including the MEM1 and MEM2 sizes from the time of DFF creation. FIFO Logs not using the new features (OnionConfig MAIN_RAM_OVERRIDE_ENABLE is false) are still backwards compatible. FIFO Logs that do use the new features have a MIN_LOADER_VERSION of 5. Thanks to the order of function calls, FIFO logs are able to automatically configure the new OnionConfig settings to match what is needed. This is a bit hacky, though, so I also threw in a failsafe for if the conditions that allow this to work ever go away.
I took the liberty of adding a log message to explain why the core fails to initialize if the MIN_LOADER_VERSION is too great.
Some IOS code has had the function "RAMOverrideForIOSMemoryValues" appended to it to recalculate IOS Memory Values from retail IOSes/apploaders to fit the extended memory sizes. Worry not, if MAIN_RAM_OVERRIDE_ENABLE is false, this function does absolutely nothing.
A hotfix in DolphinQt/MenuBar.cpp has been implemented for RAM Override.
Avoids propagating headers into scopes where they're not necessary.
Also uncovered reliance on an indirect inclusion within
CheatsManager.cpp, which is now fixed.
QStringLiterals generate a buffer so that during runtime there's very
little cost to constructing a QString. However, this also means that
duplicated strings cannot be optimized out into a single entry that gets
referenced everywhere, taking up space in the binary.
Rather than use QStringLiteral(""), we can just use QString{} (the
default constructor) to signify the empty string. This gets rid of an
unnecessary string buffer from being created, saving a tiny bit of
space.
While we're at it, we can just use the character overloads of particular
functions when they're available instead of using a QString overload.
The characters in this case are Latin-1 to begin with, so we can just
specify the characters as QLatin1Char instances to use those overloads.
These will automatically convert to QChar if needed, so this is safe.
The previous implementation of cheat search would reconvert the input
string for every single memory value. Now we do it once and construct
a comparison lambda which we pass to the search code.
In addition, I also added input validation. So, for example, if you've
selected Decimal input and you try to compare against "FF",
it won't search and will instead let the user know they've entered an
invalid value. Similar logic for if you enter "1.2" in a search for
bytes. Before, it would just use 0 if it failed to convert the value.