dolphin/Source/Core/Common/x64Emitter.h

Ignoring revisions in .git-blame-ignore-revs. Click here to bypass and see the normal blame view.

1216 lines
42 KiB
C
Raw Normal View History

// Copyright 2008 Dolphin Emulator Project
2015-05-17 23:08:10 +00:00
// Licensed under GPLv2+
// Refer to the license.txt file included.
// WARNING - THIS LIBRARY IS NOT THREAD SAFE!!!
#pragma once
#include <cstddef>
#include <cstring>
#include <functional>
#include <tuple>
#include <type_traits>
#include "Common/Assert.h"
2014-10-17 02:21:55 +00:00
#include "Common/BitSet.h"
#include "Common/CodeBlock.h"
#include "Common/CommonTypes.h"
#include "Common/x64ABI.h"
namespace Gen
{
enum CCFlags
{
CC_O = 0,
CC_NO = 1,
2014-02-09 21:03:16 +00:00
CC_B = 2,
CC_C = 2,
CC_NAE = 2,
CC_NB = 3,
CC_NC = 3,
CC_AE = 3,
CC_Z = 4,
CC_E = 4,
2014-02-09 21:03:16 +00:00
CC_NZ = 5,
CC_NE = 5,
CC_BE = 6,
CC_NA = 6,
CC_NBE = 7,
CC_A = 7,
CC_S = 8,
CC_NS = 9,
CC_P = 0xA,
CC_PE = 0xA,
CC_NP = 0xB,
CC_PO = 0xB,
CC_L = 0xC,
CC_NGE = 0xC,
CC_NL = 0xD,
CC_GE = 0xD,
CC_LE = 0xE,
CC_NG = 0xE,
CC_NLE = 0xF,
CC_G = 0xF
};
enum
{
NUMGPRs = 16,
NUMXMMs = 16,
};
enum
{
SCALE_NONE = 0,
SCALE_1 = 1,
SCALE_2 = 2,
SCALE_4 = 4,
SCALE_8 = 8,
SCALE_ATREG = 16,
// SCALE_NOBASE_1 is not supported and can be replaced with SCALE_ATREG
SCALE_NOBASE_2 = 34,
SCALE_NOBASE_4 = 36,
SCALE_NOBASE_8 = 40,
SCALE_RIP = 0xFF,
SCALE_IMM8 = 0xF0,
SCALE_IMM16 = 0xF1,
SCALE_IMM32 = 0xF2,
SCALE_IMM64 = 0xF3,
};
enum SSECompare
{
CMP_EQ = 0,
CMP_LT = 1,
CMP_LE = 2,
CMP_UNORD = 3,
CMP_NEQ = 4,
CMP_NLT = 5,
CMP_NLE = 6,
CMP_ORD = 7,
};
class XEmitter;
enum class FloatOp;
enum class NormalOp;
// Information about a generated MOV op
struct MovInfo final
{
u8* address;
bool nonAtomicSwapStore;
// valid iff nonAtomicSwapStore is true
X64Reg nonAtomicSwapStoreSrc;
};
// RIP addressing does not benefit from micro op fusion on Core arch
struct OpArg
{
// For accessing offset and operandReg.
// This also allows us to keep the op writing functions private.
friend class XEmitter;
// dummy op arg, used for storage
constexpr OpArg() = default;
constexpr OpArg(u64 offset_, int scale_, X64Reg rm_reg = RAX, X64Reg scaled_reg = RAX)
: scale{static_cast<u8>(scale_)}, offsetOrBaseReg{static_cast<u16>(rm_reg)},
indexReg{static_cast<u16>(scaled_reg)}, offset{offset_}
{
}
constexpr bool operator==(const OpArg& b) const
{
return std::tie(scale, offsetOrBaseReg, indexReg, offset, operandReg) ==
std::tie(b.scale, b.offsetOrBaseReg, b.indexReg, b.offset, b.operandReg);
}
constexpr bool operator!=(const OpArg& b) const { return !operator==(b); }
u64 Imm64() const
{
DEBUG_ASSERT(scale == SCALE_IMM64);
return (u64)offset;
}
u32 Imm32() const
{
DEBUG_ASSERT(scale == SCALE_IMM32);
return (u32)offset;
}
u16 Imm16() const
{
DEBUG_ASSERT(scale == SCALE_IMM16);
return (u16)offset;
}
u8 Imm8() const
{
DEBUG_ASSERT(scale == SCALE_IMM8);
return (u8)offset;
}
s64 SImm64() const
{
DEBUG_ASSERT(scale == SCALE_IMM64);
return (s64)offset;
}
s32 SImm32() const
{
DEBUG_ASSERT(scale == SCALE_IMM32);
return (s32)offset;
}
s16 SImm16() const
{
DEBUG_ASSERT(scale == SCALE_IMM16);
return (s16)offset;
}
s8 SImm8() const
{
DEBUG_ASSERT(scale == SCALE_IMM8);
return (s8)offset;
}
OpArg AsImm64() const
{
DEBUG_ASSERT(IsImm());
return OpArg((u64)offset, SCALE_IMM64);
}
OpArg AsImm32() const
{
DEBUG_ASSERT(IsImm());
return OpArg((u32)offset, SCALE_IMM32);
}
OpArg AsImm16() const
{
DEBUG_ASSERT(IsImm());
return OpArg((u16)offset, SCALE_IMM16);
}
OpArg AsImm8() const
{
DEBUG_ASSERT(IsImm());
return OpArg((u8)offset, SCALE_IMM8);
}
constexpr bool IsImm() const
{
return scale == SCALE_IMM8 || scale == SCALE_IMM16 || scale == SCALE_IMM32 ||
scale == SCALE_IMM64;
}
constexpr bool IsSimpleReg() const { return scale == SCALE_NONE; }
constexpr bool IsSimpleReg(X64Reg reg) const { return IsSimpleReg() && GetSimpleReg() == reg; }
constexpr bool IsZero() const { return IsImm() && offset == 0; }
constexpr int GetImmBits() const
{
switch (scale)
{
case SCALE_IMM8:
return 8;
case SCALE_IMM16:
return 16;
case SCALE_IMM32:
return 32;
case SCALE_IMM64:
return 64;
default:
return -1;
}
}
constexpr X64Reg GetSimpleReg() const
{
if (scale == SCALE_NONE)
return static_cast<X64Reg>(offsetOrBaseReg);
return INVALID_REG;
}
void AddMemOffset(int val)
{
DEBUG_ASSERT_MSG(DYNA_REC, scale == SCALE_RIP || (scale <= SCALE_ATREG && scale > SCALE_NONE),
"Tried to increment an OpArg which doesn't have an offset");
offset += val;
}
private:
void WriteREX(XEmitter* emit, int opBits, int bits, int customOp = -1) const;
void WriteVEX(XEmitter* emit, X64Reg regOp1, X64Reg regOp2, int L, int pp, int mmmmm,
int W = 0) const;
void WriteRest(XEmitter* emit, int extraBytes = 0, X64Reg operandReg = INVALID_REG,
bool warn_64bit_offset = true) const;
void WriteSingleByteOp(XEmitter* emit, u8 op, X64Reg operandReg, int bits);
void WriteNormalOp(XEmitter* emit, bool toRM, NormalOp op, const OpArg& operand, int bits) const;
u8 scale = 0;
u16 offsetOrBaseReg = 0;
u16 indexReg = 0;
u64 offset = 0; // Also used to store immediates.
u16 operandReg = 0;
};
template <typename T>
inline OpArg M(const T* ptr)
{
return OpArg((u64)(const void*)ptr, (int)SCALE_RIP);
}
constexpr OpArg R(X64Reg value)
{
return OpArg(0, SCALE_NONE, value);
}
constexpr OpArg MatR(X64Reg value)
{
return OpArg(0, SCALE_ATREG, value);
}
2014-08-30 20:14:56 +00:00
constexpr OpArg MDisp(X64Reg value, int offset)
2014-08-30 20:14:56 +00:00
{
return OpArg(static_cast<u32>(offset), SCALE_ATREG, value);
}
2014-08-30 20:14:56 +00:00
constexpr OpArg MComplex(X64Reg base, X64Reg scaled, int scale, int offset)
2014-08-30 20:14:56 +00:00
{
return OpArg(offset, scale, base, scaled);
}
2014-08-30 20:14:56 +00:00
constexpr OpArg MScaled(X64Reg scaled, int scale, int offset)
2014-08-30 20:14:56 +00:00
{
if (scale == SCALE_1)
return OpArg(offset, SCALE_ATREG, scaled);
return OpArg(offset, scale | 0x20, RAX, scaled);
}
2014-08-30 20:14:56 +00:00
constexpr OpArg MRegSum(X64Reg base, X64Reg offset)
2014-08-30 20:14:56 +00:00
{
return MComplex(base, offset, 1, 0);
}
2014-08-30 20:14:56 +00:00
constexpr OpArg Imm8(u8 imm)
{
return OpArg(imm, SCALE_IMM8);
}
constexpr OpArg Imm16(u16 imm)
{
return OpArg(imm, SCALE_IMM16);
} // rarely used
constexpr OpArg Imm32(u32 imm)
{
return OpArg(imm, SCALE_IMM32);
}
constexpr OpArg Imm64(u64 imm)
{
return OpArg(imm, SCALE_IMM64);
}
inline OpArg ImmPtr(const void* imm)
{
return Imm64(reinterpret_cast<u64>(imm));
}
2014-08-30 20:14:56 +00:00
inline u32 PtrOffset(const void* ptr, const void* base = nullptr)
2014-08-30 20:14:56 +00:00
{
s64 distance = (s64)ptr - (s64)base;
if (distance >= 0x80000000LL || distance < -0x80000000LL)
{
ASSERT_MSG(DYNA_REC, 0, "pointer offset out of range");
return 0;
}
return (u32)distance;
}
struct FixupBranch
{
enum class Type
{
Branch8Bit,
Branch32Bit
};
u8* ptr;
Type type;
};
class XEmitter
{
friend struct OpArg; // for Write8 etc
private:
// Pointer to memory where code will be emitted to.
u8* code = nullptr;
// Pointer past the end of the memory region we're allowed to emit to.
// Writes that would reach this memory are refused and will set the m_write_failed flag instead.
u8* m_code_end = nullptr;
bool flags_locked = false;
// Set to true when a write request happens that would write past m_code_end.
// Must be cleared with SetCodePtr() afterwards.
bool m_write_failed = false;
void CheckFlags();
void Rex(int w, int r, int x, int b);
void WriteModRM(int mod, int reg, int rm);
void WriteSIB(int scale, int index, int base);
void WriteSimple1Byte(int bits, u8 byte, X64Reg reg);
void WriteSimple2Byte(int bits, u8 byte1, u8 byte2, X64Reg reg);
void WriteMulDivType(int bits, OpArg src, int ext);
void WriteBitSearchType(int bits, X64Reg dest, OpArg src, u8 byte2, bool rep = false);
void WriteShift(int bits, OpArg dest, const OpArg& shift, int ext);
void WriteBitTest(int bits, const OpArg& dest, const OpArg& index, int ext);
void WriteMXCSR(OpArg arg, int ext);
void WriteSSEOp(u8 opPrefix, u16 op, X64Reg regOp, OpArg arg, int extrabytes = 0);
void WriteSSSE3Op(u8 opPrefix, u16 op, X64Reg regOp, const OpArg& arg, int extrabytes = 0);
void WriteSSE41Op(u8 opPrefix, u16 op, X64Reg regOp, const OpArg& arg, int extrabytes = 0);
void WriteVEXOp(u8 opPrefix, u16 op, X64Reg regOp1, X64Reg regOp2, const OpArg& arg, int W = 0,
int extrabytes = 0);
void WriteVEXOp4(u8 opPrefix, u16 op, X64Reg regOp1, X64Reg regOp2, const OpArg& arg,
X64Reg regOp3, int W = 0);
void WriteAVXOp(u8 opPrefix, u16 op, X64Reg regOp1, X64Reg regOp2, const OpArg& arg, int W = 0,
int extrabytes = 0);
void WriteAVXOp4(u8 opPrefix, u16 op, X64Reg regOp1, X64Reg regOp2, const OpArg& arg,
X64Reg regOp3, int W = 0);
void WriteFMA3Op(u8 op, X64Reg regOp1, X64Reg regOp2, const OpArg& arg, int W = 0);
2015-05-17 07:20:29 +00:00
void WriteFMA4Op(u8 op, X64Reg dest, X64Reg regOp1, X64Reg regOp2, const OpArg& arg, int W = 0);
void WriteBMIOp(int size, u8 opPrefix, u16 op, X64Reg regOp1, X64Reg regOp2, const OpArg& arg,
int extrabytes = 0);
void WriteBMI1Op(int size, u8 opPrefix, u16 op, X64Reg regOp1, X64Reg regOp2, const OpArg& arg,
int extrabytes = 0);
void WriteBMI2Op(int size, u8 opPrefix, u16 op, X64Reg regOp1, X64Reg regOp2, const OpArg& arg,
int extrabytes = 0);
void WriteMOVBE(int bits, u8 op, X64Reg regOp, const OpArg& arg);
void WriteFloatLoadStore(int bits, FloatOp op, FloatOp op_80b, const OpArg& arg);
void WriteNormalOp(int bits, NormalOp op, const OpArg& a1, const OpArg& a2);
2014-10-17 02:21:55 +00:00
void ABI_CalculateFrameSize(BitSet32 mask, size_t rsp_alignment, size_t needed_frame_size,
size_t* shadowp, size_t* subtractionp, size_t* xmm_offsetp);
protected:
void Write8(u8 value);
void Write16(u16 value);
void Write32(u32 value);
void Write64(u64 value);
public:
XEmitter() = default;
explicit XEmitter(u8* code_ptr, u8* code_end) : code(code_ptr), m_code_end(code_end) {}
virtual ~XEmitter() = default;
void SetCodePtr(u8* ptr, u8* end, bool write_failed = false);
void ReserveCodeSpace(int bytes);
u8* AlignCodeTo(size_t alignment);
u8* AlignCode4();
u8* AlignCode16();
u8* AlignCodePage();
const u8* GetCodePtr() const;
u8* GetWritableCodePtr();
const u8* GetCodeEnd() const;
u8* GetWritableCodeEnd();
void LockFlags() { flags_locked = true; }
void UnlockFlags() { flags_locked = false; }
// Should be checked after a block of code has been generated to see if the code has been
// successfully written to memory. Do not call the generated code when this returns true!
bool HasWriteFailed() const { return m_write_failed; }
// Looking for one of these? It's BANNED!! Some instructions are slow on modern CPU
// INC, DEC, LOOP, LOOPNE, LOOPE, ENTER, LEAVE, XCHG, XLAT, REP MOVSB/MOVSD, REP SCASD + other
// string instr.,
// INC and DEC are slow on Intel Core, but not on AMD. They create a
// false flag dependency because they only update a subset of the flags.
// XCHG is SLOW and should be avoided.
// Debug breakpoint
void INT3();
// Do nothing
void NOP(size_t count = 1);
// Save energy in wait-loops on P4 only. Probably not too useful.
void PAUSE();
// Flag control
void STC();
void CLC();
void CMC();
// These two can not be executed in 64-bit mode on early Intel 64-bit CPU:s, only on Core2 and
// AMD!
void LAHF(); // 3 cycle vector path
void SAHF(); // direct path fast
// Stack control
void PUSH(X64Reg reg);
void POP(X64Reg reg);
void PUSH(int bits, const OpArg& reg);
void POP(int bits, const OpArg& reg);
void PUSHF();
void POPF();
// Flow control
void RET();
void RET_FAST();
void UD2();
FixupBranch J(bool force5bytes = false);
void JMP(const u8* addr, bool force5Bytes = false);
void JMPptr(const OpArg& arg);
void JMPself(); // infinite loop!
#ifdef CALL
#undef CALL
#endif
void CALL(const void* fnptr);
2017-01-22 18:13:29 +00:00
FixupBranch CALL();
void CALLptr(OpArg arg);
FixupBranch J_CC(CCFlags conditionCode, bool force5bytes = false);
void J_CC(CCFlags conditionCode, const u8* addr);
void SetJumpTarget(const FixupBranch& branch);
void SETcc(CCFlags flag, OpArg dest);
// Note: CMOV brings small if any benefit on current CPUs.
void CMOVcc(int bits, X64Reg dest, OpArg src, CCFlags flag);
// Fences
void LFENCE();
void MFENCE();
void SFENCE();
// Bit scan
void BSF(int bits, X64Reg dest, const OpArg& src); // Bottom bit to top bit
void BSR(int bits, X64Reg dest, const OpArg& src); // Top bit to bottom bit
// Cache control
enum PrefetchLevel
{
PF_NTA, // Non-temporal (data used once and only once)
PF_T0, // All cache levels
PF_T1, // Levels 2+ (aliased to T0 on AMD)
PF_T2, // Levels 3+ (aliased to T0 on AMD)
};
void PREFETCH(PrefetchLevel level, OpArg arg);
void MOVNTI(int bits, const OpArg& dest, X64Reg src);
void MOVNTDQ(const OpArg& arg, X64Reg regOp);
void MOVNTPS(const OpArg& arg, X64Reg regOp);
void MOVNTPD(const OpArg& arg, X64Reg regOp);
// Multiplication / division
void MUL(int bits, const OpArg& src); // UNSIGNED
void IMUL(int bits, const OpArg& src); // SIGNED
void IMUL(int bits, X64Reg regOp, const OpArg& src);
void IMUL(int bits, X64Reg regOp, const OpArg& src, const OpArg& imm);
void DIV(int bits, const OpArg& src);
void IDIV(int bits, const OpArg& src);
// Shift
void ROL(int bits, const OpArg& dest, const OpArg& shift);
void ROR(int bits, const OpArg& dest, const OpArg& shift);
void RCL(int bits, const OpArg& dest, const OpArg& shift);
void RCR(int bits, const OpArg& dest, const OpArg& shift);
void SHL(int bits, const OpArg& dest, const OpArg& shift);
void SHR(int bits, const OpArg& dest, const OpArg& shift);
void SAR(int bits, const OpArg& dest, const OpArg& shift);
// Bit Test
void BT(int bits, const OpArg& dest, const OpArg& index);
void BTS(int bits, const OpArg& dest, const OpArg& index);
void BTR(int bits, const OpArg& dest, const OpArg& index);
void BTC(int bits, const OpArg& dest, const OpArg& index);
// Double-Precision Shift
void SHRD(int bits, const OpArg& dest, const OpArg& src, const OpArg& shift);
void SHLD(int bits, const OpArg& dest, const OpArg& src, const OpArg& shift);
// Extend EAX into EDX in various ways
void CWD(int bits = 16);
inline void CDQ() { CWD(32); }
inline void CQO() { CWD(64); }
void CBW(int bits = 8);
inline void CWDE() { CBW(16); }
inline void CDQE() { CBW(32); }
// Load effective address
void LEA(int bits, X64Reg dest, OpArg src);
// Integer arithmetic
void NEG(int bits, const OpArg& src);
void ADD(int bits, const OpArg& a1, const OpArg& a2);
void ADC(int bits, const OpArg& a1, const OpArg& a2);
void SUB(int bits, const OpArg& a1, const OpArg& a2);
void SBB(int bits, const OpArg& a1, const OpArg& a2);
void AND(int bits, const OpArg& a1, const OpArg& a2);
void CMP(int bits, const OpArg& a1, const OpArg& a2);
// Bit operations
void NOT(int bits, const OpArg& src);
void OR(int bits, const OpArg& a1, const OpArg& a2);
void XOR(int bits, const OpArg& a1, const OpArg& a2);
void MOV(int bits, const OpArg& a1, const OpArg& a2);
void TEST(int bits, const OpArg& a1, const OpArg& a2);
void CMP_or_TEST(int bits, const OpArg& a1, const OpArg& a2);
void MOV_sum(int bits, X64Reg dest, const OpArg& a1, const OpArg& a2);
// Are these useful at all? Consider removing.
void XCHG(int bits, const OpArg& a1, const OpArg& a2);
void XCHG_AHAL();
// Byte swapping (32 and 64-bit only).
void BSWAP(int bits, X64Reg reg);
// Sign/zero extension
void MOVSX(int dbits, int sbits, X64Reg dest,
OpArg src); // automatically uses MOVSXD if necessary
void MOVZX(int dbits, int sbits, X64Reg dest, OpArg src);
2014-03-16 02:43:12 +00:00
// Available only on Atom or >= Haswell so far. Test with cpu_info.bMOVBE.
2015-01-13 21:31:21 +00:00
void MOVBE(int bits, X64Reg dest, const OpArg& src);
void MOVBE(int bits, const OpArg& dest, X64Reg src);
void LoadAndSwap(int size, X64Reg dst, const OpArg& src, bool sign_extend = false,
MovInfo* info = nullptr);
void SwapAndStore(int size, const OpArg& dst, X64Reg src, MovInfo* info = nullptr);
// Available only on AMD >= Phenom or Intel >= Haswell
void LZCNT(int bits, X64Reg dest, const OpArg& src);
// Note: this one is actually part of BMI1
void TZCNT(int bits, X64Reg dest, const OpArg& src);
// WARNING - These two take 11-13 cycles and are VectorPath! (AMD64)
void STMXCSR(const OpArg& memloc);
void LDMXCSR(const OpArg& memloc);
// Prefixes
void LOCK();
void REP();
void REPNE();
void FSOverride();
void GSOverride();
// x87
enum x87StatusWordBits
{
x87_InvalidOperation = 0x1,
x87_DenormalizedOperand = 0x2,
x87_DivisionByZero = 0x4,
x87_Overflow = 0x8,
x87_Underflow = 0x10,
x87_Precision = 0x20,
x87_StackFault = 0x40,
x87_ErrorSummary = 0x80,
x87_C0 = 0x100,
x87_C1 = 0x200,
x87_C2 = 0x400,
x87_TopOfStack = 0x2000 | 0x1000 | 0x800,
x87_C3 = 0x4000,
x87_FPUBusy = 0x8000,
};
void FLD(int bits, const OpArg& src);
void FST(int bits, const OpArg& dest);
void FSTP(int bits, const OpArg& dest);
void FNSTSW_AX();
void FWAIT();
// SSE/SSE2: Floating point arithmetic
void ADDSS(X64Reg regOp, const OpArg& arg);
void ADDSD(X64Reg regOp, const OpArg& arg);
void SUBSS(X64Reg regOp, const OpArg& arg);
void SUBSD(X64Reg regOp, const OpArg& arg);
void MULSS(X64Reg regOp, const OpArg& arg);
void MULSD(X64Reg regOp, const OpArg& arg);
void DIVSS(X64Reg regOp, const OpArg& arg);
void DIVSD(X64Reg regOp, const OpArg& arg);
void MINSS(X64Reg regOp, const OpArg& arg);
void MINSD(X64Reg regOp, const OpArg& arg);
void MAXSS(X64Reg regOp, const OpArg& arg);
void MAXSD(X64Reg regOp, const OpArg& arg);
void SQRTSS(X64Reg regOp, const OpArg& arg);
void SQRTSD(X64Reg regOp, const OpArg& arg);
void RCPSS(X64Reg regOp, const OpArg& arg);
void RSQRTSS(X64Reg regOp, const OpArg& arg);
// SSE/SSE2: Floating point bitwise (yes)
void CMPSS(X64Reg regOp, const OpArg& arg, u8 compare);
void CMPSD(X64Reg regOp, const OpArg& arg, u8 compare);
// SSE/SSE2: Floating point packed arithmetic (x4 for float, x2 for double)
void ADDPS(X64Reg regOp, const OpArg& arg);
void ADDPD(X64Reg regOp, const OpArg& arg);
void SUBPS(X64Reg regOp, const OpArg& arg);
void SUBPD(X64Reg regOp, const OpArg& arg);
void CMPPS(X64Reg regOp, const OpArg& arg, u8 compare);
void CMPPD(X64Reg regOp, const OpArg& arg, u8 compare);
void MULPS(X64Reg regOp, const OpArg& arg);
void MULPD(X64Reg regOp, const OpArg& arg);
void DIVPS(X64Reg regOp, const OpArg& arg);
void DIVPD(X64Reg regOp, const OpArg& arg);
void MINPS(X64Reg regOp, const OpArg& arg);
void MINPD(X64Reg regOp, const OpArg& arg);
void MAXPS(X64Reg regOp, const OpArg& arg);
void MAXPD(X64Reg regOp, const OpArg& arg);
void SQRTPS(X64Reg regOp, const OpArg& arg);
void SQRTPD(X64Reg regOp, const OpArg& arg);
void RCPPS(X64Reg regOp, const OpArg& arg);
void RSQRTPS(X64Reg regOp, const OpArg& arg);
// SSE/SSE2: Floating point packed bitwise (x4 for float, x2 for double)
void ANDPS(X64Reg regOp, const OpArg& arg);
void ANDPD(X64Reg regOp, const OpArg& arg);
void ANDNPS(X64Reg regOp, const OpArg& arg);
void ANDNPD(X64Reg regOp, const OpArg& arg);
void ORPS(X64Reg regOp, const OpArg& arg);
void ORPD(X64Reg regOp, const OpArg& arg);
void XORPS(X64Reg regOp, const OpArg& arg);
void XORPD(X64Reg regOp, const OpArg& arg);
// SSE/SSE2: Shuffle components. These are tricky - see Intel documentation.
void SHUFPS(X64Reg regOp, const OpArg& arg, u8 shuffle);
void SHUFPD(X64Reg regOp, const OpArg& arg, u8 shuffle);
2015-08-04 21:22:13 +00:00
// SSE3
void MOVSLDUP(X64Reg regOp, const OpArg& arg);
void MOVSHDUP(X64Reg regOp, const OpArg& arg);
void MOVDDUP(X64Reg regOp, const OpArg& arg);
2015-08-04 21:22:13 +00:00
// SSE/SSE2: Useful alternative to shuffle in some cases.
void UNPCKLPS(X64Reg dest, const OpArg& src);
void UNPCKHPS(X64Reg dest, const OpArg& src);
void UNPCKLPD(X64Reg dest, const OpArg& src);
void UNPCKHPD(X64Reg dest, const OpArg& src);
// SSE/SSE2: Compares.
void COMISS(X64Reg regOp, const OpArg& arg);
void COMISD(X64Reg regOp, const OpArg& arg);
void UCOMISS(X64Reg regOp, const OpArg& arg);
void UCOMISD(X64Reg regOp, const OpArg& arg);
// SSE/SSE2: Moves. Use the right data type for your data, in most cases.
void MOVAPS(X64Reg regOp, const OpArg& arg);
void MOVAPD(X64Reg regOp, const OpArg& arg);
void MOVAPS(const OpArg& arg, X64Reg regOp);
void MOVAPD(const OpArg& arg, X64Reg regOp);
void MOVUPS(X64Reg regOp, const OpArg& arg);
void MOVUPD(X64Reg regOp, const OpArg& arg);
void MOVUPS(const OpArg& arg, X64Reg regOp);
void MOVUPD(const OpArg& arg, X64Reg regOp);
void MOVDQA(X64Reg regOp, const OpArg& arg);
void MOVDQA(const OpArg& arg, X64Reg regOp);
void MOVDQU(X64Reg regOp, const OpArg& arg);
void MOVDQU(const OpArg& arg, X64Reg regOp);
void MOVSS(X64Reg regOp, const OpArg& arg);
void MOVSD(X64Reg regOp, const OpArg& arg);
void MOVSS(const OpArg& arg, X64Reg regOp);
void MOVSD(const OpArg& arg, X64Reg regOp);
void MOVLPS(X64Reg regOp, const OpArg& arg);
void MOVLPD(X64Reg regOp, const OpArg& arg);
void MOVLPS(const OpArg& arg, X64Reg regOp);
void MOVLPD(const OpArg& arg, X64Reg regOp);
void MOVHPS(X64Reg regOp, const OpArg& arg);
void MOVHPD(X64Reg regOp, const OpArg& arg);
void MOVHPS(const OpArg& arg, X64Reg regOp);
void MOVHPD(const OpArg& arg, X64Reg regOp);
2014-09-18 10:57:13 +00:00
void MOVHLPS(X64Reg regOp1, X64Reg regOp2);
void MOVLHPS(X64Reg regOp1, X64Reg regOp2);
// Be careful when using these overloads for reg <--> xmm moves.
// The one you cast to OpArg with R(reg) is the x86 reg, the other
// one is the xmm reg.
// ie: "MOVD_xmm(eax, R(xmm1))" generates incorrect code (movd xmm0, rcx)
// use "MOVD_xmm(R(eax), xmm1)" instead.
void MOVD_xmm(X64Reg dest, const OpArg& arg);
void MOVQ_xmm(X64Reg dest, OpArg arg);
void MOVD_xmm(const OpArg& arg, X64Reg src);
void MOVQ_xmm(OpArg arg, X64Reg src);
// SSE/SSE2: Generates a mask from the high bits of the components of the packed register in
// question.
void MOVMSKPS(X64Reg dest, const OpArg& arg);
void MOVMSKPD(X64Reg dest, const OpArg& arg);
// SSE2: Selective byte store, mask in src register. EDI/RDI specifies store address. This is a
// weird one.
void MASKMOVDQU(X64Reg dest, X64Reg src);
void LDDQU(X64Reg dest, const OpArg& src);
// SSE/SSE2: Data type conversions.
void CVTPS2PD(X64Reg dest, const OpArg& src);
void CVTPD2PS(X64Reg dest, const OpArg& src);
void CVTSS2SD(X64Reg dest, const OpArg& src);
void CVTSI2SS(X64Reg dest, const OpArg& src);
void CVTSD2SS(X64Reg dest, const OpArg& src);
void CVTSI2SD(X64Reg dest, const OpArg& src);
void CVTDQ2PD(X64Reg regOp, const OpArg& arg);
void CVTPD2DQ(X64Reg regOp, const OpArg& arg);
void CVTDQ2PS(X64Reg regOp, const OpArg& arg);
void CVTPS2DQ(X64Reg regOp, const OpArg& arg);
void CVTTPS2DQ(X64Reg regOp, const OpArg& arg);
void CVTTPD2DQ(X64Reg regOp, const OpArg& arg);
// Destinations are X64 regs (rax, rbx, ...) for these instructions.
void CVTSS2SI(X64Reg xregdest, const OpArg& src);
void CVTSD2SI(X64Reg xregdest, const OpArg& src);
void CVTTSS2SI(X64Reg xregdest, const OpArg& arg);
void CVTTSD2SI(X64Reg xregdest, const OpArg& arg);
// SSE2: Packed integer instructions
void PACKSSDW(X64Reg dest, const OpArg& arg);
void PACKSSWB(X64Reg dest, const OpArg& arg);
void PACKUSDW(X64Reg dest, const OpArg& arg);
void PACKUSWB(X64Reg dest, const OpArg& arg);
void PUNPCKLBW(X64Reg dest, const OpArg& arg);
void PUNPCKLWD(X64Reg dest, const OpArg& arg);
void PUNPCKLDQ(X64Reg dest, const OpArg& arg);
void PUNPCKLQDQ(X64Reg dest, const OpArg& arg);
void PTEST(X64Reg dest, const OpArg& arg);
void PAND(X64Reg dest, const OpArg& arg);
void PANDN(X64Reg dest, const OpArg& arg);
void PXOR(X64Reg dest, const OpArg& arg);
void POR(X64Reg dest, const OpArg& arg);
void PADDB(X64Reg dest, const OpArg& arg);
void PADDW(X64Reg dest, const OpArg& arg);
void PADDD(X64Reg dest, const OpArg& arg);
void PADDQ(X64Reg dest, const OpArg& arg);
void PADDSB(X64Reg dest, const OpArg& arg);
void PADDSW(X64Reg dest, const OpArg& arg);
void PADDUSB(X64Reg dest, const OpArg& arg);
void PADDUSW(X64Reg dest, const OpArg& arg);
void PSUBB(X64Reg dest, const OpArg& arg);
void PSUBW(X64Reg dest, const OpArg& arg);
void PSUBD(X64Reg dest, const OpArg& arg);
void PSUBQ(X64Reg dest, const OpArg& arg);
void PSUBSB(X64Reg dest, const OpArg& arg);
void PSUBSW(X64Reg dest, const OpArg& arg);
void PSUBUSB(X64Reg dest, const OpArg& arg);
void PSUBUSW(X64Reg dest, const OpArg& arg);
void PAVGB(X64Reg dest, const OpArg& arg);
void PAVGW(X64Reg dest, const OpArg& arg);
void PCMPEQB(X64Reg dest, const OpArg& arg);
void PCMPEQW(X64Reg dest, const OpArg& arg);
void PCMPEQD(X64Reg dest, const OpArg& arg);
void PCMPGTB(X64Reg dest, const OpArg& arg);
void PCMPGTW(X64Reg dest, const OpArg& arg);
void PCMPGTD(X64Reg dest, const OpArg& arg);
void PEXTRW(X64Reg dest, const OpArg& arg, u8 subreg);
void PINSRW(X64Reg dest, const OpArg& arg, u8 subreg);
void PINSRD(X64Reg dest, const OpArg& arg, u8 subreg);
void PMADDWD(X64Reg dest, const OpArg& arg);
void PSADBW(X64Reg dest, const OpArg& arg);
void PMAXSW(X64Reg dest, const OpArg& arg);
void PMAXUB(X64Reg dest, const OpArg& arg);
void PMINSW(X64Reg dest, const OpArg& arg);
void PMINUB(X64Reg dest, const OpArg& arg);
void PMOVMSKB(X64Reg dest, const OpArg& arg);
void PSHUFD(X64Reg dest, const OpArg& arg, u8 shuffle);
void PSHUFB(X64Reg dest, const OpArg& arg);
void PSHUFLW(X64Reg dest, const OpArg& arg, u8 shuffle);
void PSHUFHW(X64Reg dest, const OpArg& arg, u8 shuffle);
void PSRLW(X64Reg reg, int shift);
void PSRLD(X64Reg reg, int shift);
void PSRLQ(X64Reg reg, int shift);
void PSRLQ(X64Reg reg, const OpArg& arg);
void PSRLDQ(X64Reg reg, int shift);
void PSLLW(X64Reg reg, int shift);
void PSLLD(X64Reg reg, int shift);
void PSLLQ(X64Reg reg, int shift);
void PSLLDQ(X64Reg reg, int shift);
void PSRAW(X64Reg reg, int shift);
void PSRAD(X64Reg reg, int shift);
// SSE4: data type conversions
void PMOVSXBW(X64Reg dest, const OpArg& arg);
void PMOVSXBD(X64Reg dest, const OpArg& arg);
void PMOVSXBQ(X64Reg dest, const OpArg& arg);
void PMOVSXWD(X64Reg dest, const OpArg& arg);
void PMOVSXWQ(X64Reg dest, const OpArg& arg);
void PMOVSXDQ(X64Reg dest, const OpArg& arg);
void PMOVZXBW(X64Reg dest, const OpArg& arg);
void PMOVZXBD(X64Reg dest, const OpArg& arg);
void PMOVZXBQ(X64Reg dest, const OpArg& arg);
void PMOVZXWD(X64Reg dest, const OpArg& arg);
void PMOVZXWQ(X64Reg dest, const OpArg& arg);
void PMOVZXDQ(X64Reg dest, const OpArg& arg);
2015-05-21 10:33:36 +00:00
// SSE4: blend instructions
void PBLENDVB(X64Reg dest, const OpArg& arg);
void BLENDVPS(X64Reg dest, const OpArg& arg);
void BLENDVPD(X64Reg dest, const OpArg& arg);
void BLENDPS(X64Reg dest, const OpArg& arg, u8 blend);
void BLENDPD(X64Reg dest, const OpArg& arg, u8 blend);
// AVX
void VADDSS(X64Reg regOp1, X64Reg regOp2, const OpArg& arg);
void VSUBSS(X64Reg regOp1, X64Reg regOp2, const OpArg& arg);
void VMULSS(X64Reg regOp1, X64Reg regOp2, const OpArg& arg);
void VDIVSS(X64Reg regOp1, X64Reg regOp2, const OpArg& arg);
void VADDPS(X64Reg regOp1, X64Reg regOp2, const OpArg& arg);
void VSUBPS(X64Reg regOp1, X64Reg regOp2, const OpArg& arg);
void VMULPS(X64Reg regOp1, X64Reg regOp2, const OpArg& arg);
void VDIVPS(X64Reg regOp1, X64Reg regOp2, const OpArg& arg);
void VADDSD(X64Reg regOp1, X64Reg regOp2, const OpArg& arg);
void VSUBSD(X64Reg regOp1, X64Reg regOp2, const OpArg& arg);
void VMULSD(X64Reg regOp1, X64Reg regOp2, const OpArg& arg);
void VDIVSD(X64Reg regOp1, X64Reg regOp2, const OpArg& arg);
void VADDPD(X64Reg regOp1, X64Reg regOp2, const OpArg& arg);
void VSUBPD(X64Reg regOp1, X64Reg regOp2, const OpArg& arg);
void VMULPD(X64Reg regOp1, X64Reg regOp2, const OpArg& arg);
void VDIVPD(X64Reg regOp1, X64Reg regOp2, const OpArg& arg);
void VSQRTSD(X64Reg regOp1, X64Reg regOp2, const OpArg& arg);
void VCMPPD(X64Reg regOp1, X64Reg regOp2, const OpArg& arg, u8 compare);
void VSHUFPS(X64Reg regOp1, X64Reg regOp2, const OpArg& arg, u8 shuffle);
void VSHUFPD(X64Reg regOp1, X64Reg regOp2, const OpArg& arg, u8 shuffle);
void VUNPCKLPS(X64Reg regOp1, X64Reg regOp2, const OpArg& arg);
void VUNPCKLPD(X64Reg regOp1, X64Reg regOp2, const OpArg& arg);
void VUNPCKHPD(X64Reg regOp1, X64Reg regOp2, const OpArg& arg);
void VBLENDVPD(X64Reg regOp1, X64Reg regOp2, const OpArg& arg, X64Reg mask);
void VBLENDPS(X64Reg regOp1, X64Reg regOp2, const OpArg& arg, u8 blend);
void VBLENDPD(X64Reg regOp1, X64Reg regOp2, const OpArg& arg, u8 blend);
void VANDPS(X64Reg regOp1, X64Reg regOp2, const OpArg& arg);
void VANDPD(X64Reg regOp1, X64Reg regOp2, const OpArg& arg);
void VANDNPS(X64Reg regOp1, X64Reg regOp2, const OpArg& arg);
void VANDNPD(X64Reg regOp1, X64Reg regOp2, const OpArg& arg);
void VORPS(X64Reg regOp1, X64Reg regOp2, const OpArg& arg);
void VORPD(X64Reg regOp1, X64Reg regOp2, const OpArg& arg);
void VXORPS(X64Reg regOp1, X64Reg regOp2, const OpArg& arg);
void VXORPD(X64Reg regOp1, X64Reg regOp2, const OpArg& arg);
void VPAND(X64Reg regOp1, X64Reg regOp2, const OpArg& arg);
void VPANDN(X64Reg regOp1, X64Reg regOp2, const OpArg& arg);
void VPOR(X64Reg regOp1, X64Reg regOp2, const OpArg& arg);
void VPXOR(X64Reg regOp1, X64Reg regOp2, const OpArg& arg);
// FMA3
void VFMADD132PS(X64Reg regOp1, X64Reg regOp2, const OpArg& arg);
void VFMADD213PS(X64Reg regOp1, X64Reg regOp2, const OpArg& arg);
void VFMADD231PS(X64Reg regOp1, X64Reg regOp2, const OpArg& arg);
void VFMADD132PD(X64Reg regOp1, X64Reg regOp2, const OpArg& arg);
void VFMADD213PD(X64Reg regOp1, X64Reg regOp2, const OpArg& arg);
void VFMADD231PD(X64Reg regOp1, X64Reg regOp2, const OpArg& arg);
void VFMADD132SS(X64Reg regOp1, X64Reg regOp2, const OpArg& arg);
void VFMADD213SS(X64Reg regOp1, X64Reg regOp2, const OpArg& arg);
void VFMADD231SS(X64Reg regOp1, X64Reg regOp2, const OpArg& arg);
void VFMADD132SD(X64Reg regOp1, X64Reg regOp2, const OpArg& arg);
void VFMADD213SD(X64Reg regOp1, X64Reg regOp2, const OpArg& arg);
void VFMADD231SD(X64Reg regOp1, X64Reg regOp2, const OpArg& arg);
void VFMSUB132PS(X64Reg regOp1, X64Reg regOp2, const OpArg& arg);
void VFMSUB213PS(X64Reg regOp1, X64Reg regOp2, const OpArg& arg);
void VFMSUB231PS(X64Reg regOp1, X64Reg regOp2, const OpArg& arg);
void VFMSUB132PD(X64Reg regOp1, X64Reg regOp2, const OpArg& arg);
void VFMSUB213PD(X64Reg regOp1, X64Reg regOp2, const OpArg& arg);
void VFMSUB231PD(X64Reg regOp1, X64Reg regOp2, const OpArg& arg);
void VFMSUB132SS(X64Reg regOp1, X64Reg regOp2, const OpArg& arg);
void VFMSUB213SS(X64Reg regOp1, X64Reg regOp2, const OpArg& arg);
void VFMSUB231SS(X64Reg regOp1, X64Reg regOp2, const OpArg& arg);
void VFMSUB132SD(X64Reg regOp1, X64Reg regOp2, const OpArg& arg);
void VFMSUB213SD(X64Reg regOp1, X64Reg regOp2, const OpArg& arg);
void VFMSUB231SD(X64Reg regOp1, X64Reg regOp2, const OpArg& arg);
void VFNMADD132PS(X64Reg regOp1, X64Reg regOp2, const OpArg& arg);
void VFNMADD213PS(X64Reg regOp1, X64Reg regOp2, const OpArg& arg);
void VFNMADD231PS(X64Reg regOp1, X64Reg regOp2, const OpArg& arg);
void VFNMADD132PD(X64Reg regOp1, X64Reg regOp2, const OpArg& arg);
void VFNMADD213PD(X64Reg regOp1, X64Reg regOp2, const OpArg& arg);
void VFNMADD231PD(X64Reg regOp1, X64Reg regOp2, const OpArg& arg);
void VFNMADD132SS(X64Reg regOp1, X64Reg regOp2, const OpArg& arg);
void VFNMADD213SS(X64Reg regOp1, X64Reg regOp2, const OpArg& arg);
void VFNMADD231SS(X64Reg regOp1, X64Reg regOp2, const OpArg& arg);
void VFNMADD132SD(X64Reg regOp1, X64Reg regOp2, const OpArg& arg);
void VFNMADD213SD(X64Reg regOp1, X64Reg regOp2, const OpArg& arg);
void VFNMADD231SD(X64Reg regOp1, X64Reg regOp2, const OpArg& arg);
void VFNMSUB132PS(X64Reg regOp1, X64Reg regOp2, const OpArg& arg);
void VFNMSUB213PS(X64Reg regOp1, X64Reg regOp2, const OpArg& arg);
void VFNMSUB231PS(X64Reg regOp1, X64Reg regOp2, const OpArg& arg);
void VFNMSUB132PD(X64Reg regOp1, X64Reg regOp2, const OpArg& arg);
void VFNMSUB213PD(X64Reg regOp1, X64Reg regOp2, const OpArg& arg);
void VFNMSUB231PD(X64Reg regOp1, X64Reg regOp2, const OpArg& arg);
void VFNMSUB132SS(X64Reg regOp1, X64Reg regOp2, const OpArg& arg);
void VFNMSUB213SS(X64Reg regOp1, X64Reg regOp2, const OpArg& arg);
void VFNMSUB231SS(X64Reg regOp1, X64Reg regOp2, const OpArg& arg);
void VFNMSUB132SD(X64Reg regOp1, X64Reg regOp2, const OpArg& arg);
void VFNMSUB213SD(X64Reg regOp1, X64Reg regOp2, const OpArg& arg);
void VFNMSUB231SD(X64Reg regOp1, X64Reg regOp2, const OpArg& arg);
void VFMADDSUB132PS(X64Reg regOp1, X64Reg regOp2, const OpArg& arg);
void VFMADDSUB213PS(X64Reg regOp1, X64Reg regOp2, const OpArg& arg);
void VFMADDSUB231PS(X64Reg regOp1, X64Reg regOp2, const OpArg& arg);
void VFMADDSUB132PD(X64Reg regOp1, X64Reg regOp2, const OpArg& arg);
void VFMADDSUB213PD(X64Reg regOp1, X64Reg regOp2, const OpArg& arg);
void VFMADDSUB231PD(X64Reg regOp1, X64Reg regOp2, const OpArg& arg);
void VFMSUBADD132PS(X64Reg regOp1, X64Reg regOp2, const OpArg& arg);
void VFMSUBADD213PS(X64Reg regOp1, X64Reg regOp2, const OpArg& arg);
void VFMSUBADD231PS(X64Reg regOp1, X64Reg regOp2, const OpArg& arg);
void VFMSUBADD132PD(X64Reg regOp1, X64Reg regOp2, const OpArg& arg);
void VFMSUBADD213PD(X64Reg regOp1, X64Reg regOp2, const OpArg& arg);
void VFMSUBADD231PD(X64Reg regOp1, X64Reg regOp2, const OpArg& arg);
2015-05-17 07:20:29 +00:00
#define FMA4(name) \
void name(X64Reg dest, X64Reg regOp1, X64Reg regOp2, const OpArg& arg); \
void name(X64Reg dest, X64Reg regOp1, const OpArg& arg, X64Reg regOp2);
2015-05-17 07:20:29 +00:00
FMA4(VFMADDSUBPS)
FMA4(VFMADDSUBPD)
FMA4(VFMSUBADDPS)
FMA4(VFMSUBADDPD)
FMA4(VFMADDPS)
FMA4(VFMADDPD)
FMA4(VFMADDSS)
FMA4(VFMADDSD)
FMA4(VFMSUBPS)
FMA4(VFMSUBPD)
FMA4(VFMSUBSS)
FMA4(VFMSUBSD)
FMA4(VFNMADDPS)
FMA4(VFNMADDPD)
FMA4(VFNMADDSS)
FMA4(VFNMADDSD)
FMA4(VFNMSUBPS)
FMA4(VFNMSUBPD)
FMA4(VFNMSUBSS)
FMA4(VFNMSUBSD)
#undef FMA4
// VEX GPR instructions
void SARX(int bits, X64Reg regOp1, const OpArg& arg, X64Reg regOp2);
void SHLX(int bits, X64Reg regOp1, const OpArg& arg, X64Reg regOp2);
void SHRX(int bits, X64Reg regOp1, const OpArg& arg, X64Reg regOp2);
void RORX(int bits, X64Reg regOp, const OpArg& arg, u8 rotate);
void PEXT(int bits, X64Reg regOp1, X64Reg regOp2, const OpArg& arg);
void PDEP(int bits, X64Reg regOp1, X64Reg regOp2, const OpArg& arg);
void MULX(int bits, X64Reg regOp1, X64Reg regOp2, const OpArg& arg);
void BZHI(int bits, X64Reg regOp1, const OpArg& arg, X64Reg regOp2);
void BLSR(int bits, X64Reg regOp, const OpArg& arg);
void BLSMSK(int bits, X64Reg regOp, const OpArg& arg);
void BLSI(int bits, X64Reg regOp, const OpArg& arg);
void BEXTR(int bits, X64Reg regOp1, const OpArg& arg, X64Reg regOp2);
void ANDN(int bits, X64Reg regOp1, X64Reg regOp2, const OpArg& arg);
void RDTSC();
// Utility functions
// The difference between this and CALL is that this aligns the stack
// where appropriate.
template <typename FunctionPointer>
void ABI_CallFunction(FunctionPointer func)
{
static_assert(std::is_pointer<FunctionPointer>() &&
std::is_function<std::remove_pointer_t<FunctionPointer>>(),
"Supplied type must be a function pointer.");
const void* ptr = reinterpret_cast<const void*>(func);
const u64 address = reinterpret_cast<u64>(ptr);
const u64 distance = address - (reinterpret_cast<u64>(code) + 5);
if (distance >= 0x0000000080000000ULL && distance < 0xFFFFFFFF80000000ULL)
{
// Far call
MOV(64, R(RAX), Imm64(address));
CALLptr(R(RAX));
}
else
{
CALL(ptr);
}
}
template <typename FunctionPointer>
void ABI_CallFunctionC16(FunctionPointer func, u16 param1)
{
MOV(32, R(ABI_PARAM1), Imm32(param1));
ABI_CallFunction(func);
}
template <typename FunctionPointer>
void ABI_CallFunctionCC16(FunctionPointer func, u32 param1, u16 param2)
{
MOV(32, R(ABI_PARAM1), Imm32(param1));
MOV(32, R(ABI_PARAM2), Imm32(param2));
ABI_CallFunction(func);
}
template <typename FunctionPointer>
void ABI_CallFunctionC(FunctionPointer func, u32 param1)
{
MOV(32, R(ABI_PARAM1), Imm32(param1));
ABI_CallFunction(func);
}
template <typename FunctionPointer>
void ABI_CallFunctionCC(FunctionPointer func, u32 param1, u32 param2)
{
MOV(32, R(ABI_PARAM1), Imm32(param1));
MOV(32, R(ABI_PARAM2), Imm32(param2));
ABI_CallFunction(func);
}
template <typename FunctionPointer>
void ABI_CallFunctionCP(FunctionPointer func, u32 param1, const void* param2)
{
MOV(32, R(ABI_PARAM1), Imm32(param1));
MOV(64, R(ABI_PARAM2), Imm64(reinterpret_cast<u64>(param2)));
ABI_CallFunction(func);
}
template <typename FunctionPointer>
void ABI_CallFunctionCCC(FunctionPointer func, u32 param1, u32 param2, u32 param3)
{
MOV(32, R(ABI_PARAM1), Imm32(param1));
MOV(32, R(ABI_PARAM2), Imm32(param2));
MOV(32, R(ABI_PARAM3), Imm32(param3));
ABI_CallFunction(func);
}
template <typename FunctionPointer>
void ABI_CallFunctionCCP(FunctionPointer func, u32 param1, u32 param2, const void* param3)
{
MOV(32, R(ABI_PARAM1), Imm32(param1));
MOV(32, R(ABI_PARAM2), Imm32(param2));
MOV(64, R(ABI_PARAM3), Imm64(reinterpret_cast<u64>(param3)));
ABI_CallFunction(func);
}
template <typename FunctionPointer>
void ABI_CallFunctionCCCP(FunctionPointer func, u32 param1, u32 param2, u32 param3,
const void* param4)
{
MOV(32, R(ABI_PARAM1), Imm32(param1));
MOV(32, R(ABI_PARAM2), Imm32(param2));
MOV(32, R(ABI_PARAM3), Imm32(param3));
MOV(64, R(ABI_PARAM4), Imm64(reinterpret_cast<u64>(param4)));
ABI_CallFunction(func);
}
DSP: Eliminate most global state An unfortunately large single commit that deglobalizes the DSP code. (which I'm very sorry about). This would have otherwise been extremely difficult to separate due to extensive use of the globals in very coupling ways that would result in more scaffolding to work around than is worth it. Aside from the video code, I believe only the DSP code is the hairiest to deal with in terms of globals, so I guess it's best to get this dealt with right off the bat. A summary of what this commit does: - Turns the DSPInterpreter into its own class This is the most involved portion of this change. The bulk of the changes are turning non-member functions into member functions that would be situated into the Interpreter class. - Eliminates all usages to globals within DSPCore. This generally involves turning a lot of non-member functions into member functions that are either situated within SDSP or DSPCore. - Discards DSPDebugInterface (it wasn't hooked up to anything, and for the sake of eliminating global state, I'd rather get rid of it than think up ways for this class to be integrated with everything else. - Readjusts the DSP JIT to handle calling out to member functions. In most cases, this just means wrapping respective member function calles into thunk functions. Surprisingly, this doesn't even make use of the introduced System class. It was possible all along to do this without it. We can house everything within the DSPLLE class, which is quite nice =)
2020-12-21 14:22:06 +00:00
template <typename FunctionPointer>
void ABI_CallFunctionP(FunctionPointer func, const void* param1)
{
MOV(64, R(ABI_PARAM1), Imm64(reinterpret_cast<u64>(param1)));
ABI_CallFunction(func);
}
template <typename FunctionPointer>
void ABI_CallFunctionPC(FunctionPointer func, const void* param1, u32 param2)
{
MOV(64, R(ABI_PARAM1), Imm64(reinterpret_cast<u64>(param1)));
MOV(32, R(ABI_PARAM2), Imm32(param2));
ABI_CallFunction(func);
}
template <typename FunctionPointer>
void ABI_CallFunctionPPC(FunctionPointer func, const void* param1, const void* param2, u32 param3)
{
MOV(64, R(ABI_PARAM1), Imm64(reinterpret_cast<u64>(param1)));
MOV(64, R(ABI_PARAM2), Imm64(reinterpret_cast<u64>(param2)));
MOV(32, R(ABI_PARAM3), Imm32(param3));
ABI_CallFunction(func);
}
// Pass a register as a parameter.
template <typename FunctionPointer>
void ABI_CallFunctionR(FunctionPointer func, X64Reg reg1)
{
if (reg1 != ABI_PARAM1)
MOV(32, R(ABI_PARAM1), R(reg1));
ABI_CallFunction(func);
}
DSP: Eliminate most global state An unfortunately large single commit that deglobalizes the DSP code. (which I'm very sorry about). This would have otherwise been extremely difficult to separate due to extensive use of the globals in very coupling ways that would result in more scaffolding to work around than is worth it. Aside from the video code, I believe only the DSP code is the hairiest to deal with in terms of globals, so I guess it's best to get this dealt with right off the bat. A summary of what this commit does: - Turns the DSPInterpreter into its own class This is the most involved portion of this change. The bulk of the changes are turning non-member functions into member functions that would be situated into the Interpreter class. - Eliminates all usages to globals within DSPCore. This generally involves turning a lot of non-member functions into member functions that are either situated within SDSP or DSPCore. - Discards DSPDebugInterface (it wasn't hooked up to anything, and for the sake of eliminating global state, I'd rather get rid of it than think up ways for this class to be integrated with everything else. - Readjusts the DSP JIT to handle calling out to member functions. In most cases, this just means wrapping respective member function calles into thunk functions. Surprisingly, this doesn't even make use of the introduced System class. It was possible all along to do this without it. We can house everything within the DSPLLE class, which is quite nice =)
2020-12-21 14:22:06 +00:00
// Pass a pointer and register as a parameter.
template <typename FunctionPointer>
void ABI_CallFunctionPR(FunctionPointer func, const void* ptr, X64Reg reg1)
{
MOV(64, R(ABI_PARAM2), R(reg1));
MOV(64, R(ABI_PARAM1), Imm64(reinterpret_cast<u64>(ptr)));
ABI_CallFunction(func);
}
// Pass two registers as parameters.
template <typename FunctionPointer>
void ABI_CallFunctionRR(FunctionPointer func, X64Reg reg1, X64Reg reg2)
{
MOVTwo(64, ABI_PARAM1, reg1, 0, ABI_PARAM2, reg2);
ABI_CallFunction(func);
}
DSP: Eliminate most global state An unfortunately large single commit that deglobalizes the DSP code. (which I'm very sorry about). This would have otherwise been extremely difficult to separate due to extensive use of the globals in very coupling ways that would result in more scaffolding to work around than is worth it. Aside from the video code, I believe only the DSP code is the hairiest to deal with in terms of globals, so I guess it's best to get this dealt with right off the bat. A summary of what this commit does: - Turns the DSPInterpreter into its own class This is the most involved portion of this change. The bulk of the changes are turning non-member functions into member functions that would be situated into the Interpreter class. - Eliminates all usages to globals within DSPCore. This generally involves turning a lot of non-member functions into member functions that are either situated within SDSP or DSPCore. - Discards DSPDebugInterface (it wasn't hooked up to anything, and for the sake of eliminating global state, I'd rather get rid of it than think up ways for this class to be integrated with everything else. - Readjusts the DSP JIT to handle calling out to member functions. In most cases, this just means wrapping respective member function calles into thunk functions. Surprisingly, this doesn't even make use of the introduced System class. It was possible all along to do this without it. We can house everything within the DSPLLE class, which is quite nice =)
2020-12-21 14:22:06 +00:00
// Pass a pointer and two registers as parameters.
template <typename FunctionPointer>
void ABI_CallFunctionPRR(FunctionPointer func, const void* ptr, X64Reg reg1, X64Reg reg2)
{
MOVTwo(64, ABI_PARAM2, reg1, 0, ABI_PARAM3, reg2);
MOV(64, R(ABI_PARAM1), Imm64(reinterpret_cast<u64>(ptr)));
ABI_CallFunction(func);
}
template <typename FunctionPointer>
void ABI_CallFunctionAC(int bits, FunctionPointer func, const Gen::OpArg& arg1, u32 param2)
{
if (!arg1.IsSimpleReg(ABI_PARAM1))
MOV(bits, R(ABI_PARAM1), arg1);
MOV(32, R(ABI_PARAM2), Imm32(param2));
ABI_CallFunction(func);
}
template <typename FunctionPointer>
void ABI_CallFunctionA(int bits, FunctionPointer func, const Gen::OpArg& arg1)
{
if (!arg1.IsSimpleReg(ABI_PARAM1))
MOV(bits, R(ABI_PARAM1), arg1);
ABI_CallFunction(func);
}
// Helper method for ABI functions related to calling functions. May be used by itself as well.
void MOVTwo(int bits, X64Reg dst1, X64Reg src1, s32 offset, X64Reg dst2, X64Reg src2);
// Saves/restores the registers and adjusts the stack to be aligned as
// required by the ABI, where the previous alignment was as specified.
// Push returns the size of the shadow space, i.e. the offset of the frame.
2014-10-17 02:21:55 +00:00
size_t ABI_PushRegistersAndAdjustStack(BitSet32 mask, size_t rsp_alignment,
size_t needed_frame_size = 0);
void ABI_PopRegistersAndAdjustStack(BitSet32 mask, size_t rsp_alignment,
size_t needed_frame_size = 0);
// Utility to generate a call to a std::function object.
//
// Unfortunately, calling operator() directly is undefined behavior in C++
// (this method might be a thunk in the case of multi-inheritance) so we
// have to go through a trampoline function.
template <typename T, typename... Args>
static T CallLambdaTrampoline(const std::function<T(Args...)>* f, Args... args)
{
return (*f)(args...);
}
template <typename T, typename... Args>
void ABI_CallLambdaC(const std::function<T(Args...)>* f, u32 p1)
{
auto trampoline = &XEmitter::CallLambdaTrampoline<T, Args...>;
ABI_CallFunctionPC(trampoline, reinterpret_cast<const void*>(f), p1);
}
}; // class XEmitter
class X64CodeBlock : public Common::CodeBlock<XEmitter>
{
private:
void PoisonMemory() override
{
// x86/64: 0xCC = breakpoint
memset(region, 0xCC, region_size);
}
};
} // namespace Gen