dolphin/Source/Core/VideoBackends/OGL/TextureConverter.cpp

354 lines
13 KiB
C++
Raw Normal View History

// Copyright 2008 Dolphin Emulator Project
2015-05-17 23:08:10 +00:00
// Licensed under GPLv2+
// Refer to the license.txt file included.
// Fast image conversion using OpenGL shaders.
#include <string>
2015-09-28 15:57:16 +00:00
#include "Common/Common.h"
#include "Common/FileUtil.h"
#include "Common/StringUtil.h"
#include "Core/HW/Memmap.h"
#include "VideoBackends/OGL/FramebufferManager.h"
#include "VideoBackends/OGL/ProgramShaderCache.h"
#include "VideoBackends/OGL/Render.h"
#include "VideoBackends/OGL/SamplerCache.h"
#include "VideoBackends/OGL/TextureCache.h"
#include "VideoBackends/OGL/TextureConverter.h"
#include "VideoCommon/DriverDetails.h"
#include "VideoCommon/ImageWrite.h"
#include "VideoCommon/TextureConversionShader.h"
#include "VideoCommon/VideoConfig.h"
namespace OGL
{
namespace TextureConverter
{
using OGL::TextureCache;
static GLuint s_texConvFrameBuffer[2] = {0, 0};
static GLuint s_srcTexture = 0; // for decoding from RAM
static GLuint s_dstTexture = 0; // for encoding to RAM
const int renderBufferWidth = EFB_WIDTH * 4;
const int renderBufferHeight = 1024;
static SHADER s_rgbToYuyvProgram;
static int s_rgbToYuyvUniform_loc;
static SHADER s_yuyvToRgbProgram;
// Not all slots are taken - but who cares.
const u32 NUM_ENCODING_PROGRAMS = 64;
static SHADER s_encodingPrograms[NUM_ENCODING_PROGRAMS];
static int s_encodingUniforms[NUM_ENCODING_PROGRAMS];
static GLuint s_PBO = 0; // for readback with different strides
static void CreatePrograms()
{
/* TODO: Accuracy Improvements
*
* This shader doesn't really match what the GameCube does internally in the
* copy pipeline.
* 1. It uses OpenGL's built in filtering when yscaling, someone could work
* out how the copypipeline does it's filtering and implement it correctly
* in this shader.
* 2. Deflickering isn't implemented, a futher filtering over 3 lines.
* Isn't really needed on non-interlaced monitors (and would lower quality;
* But hey, accuracy!)
* 3. Flipper's YUYV conversion implements a 3 pixel horizontal blur on the
* UV channels, centering the U channel on the Left pixel and the V channel
* on the Right pixel.
* The current implementation Centers both UV channels at the same place
* inbetween the two Pixels, and only blurs over these two pixels.
*/
// Output is BGRA because that is slightly faster than RGBA.
const char* VProgramRgbToYuyv =
"out vec2 uv0;\n"
"uniform vec4 copy_position;\n" // left, top, right, bottom
"SAMPLER_BINDING(9) uniform sampler2DArray samp9;\n"
"void main()\n"
"{\n"
" vec2 rawpos = vec2(gl_VertexID&1, gl_VertexID&2);\n"
" gl_Position = vec4(rawpos*2.0-1.0, 0.0, 1.0);\n"
" uv0 = mix(copy_position.xy, copy_position.zw, rawpos) / vec2(textureSize(samp9, 0).xy);\n"
"}\n";
const char* FProgramRgbToYuyv =
"SAMPLER_BINDING(9) uniform sampler2DArray samp9;\n"
"in vec2 uv0;\n"
"out vec4 ocol0;\n"
"void main()\n"
"{\n"
" vec3 c0 = texture(samp9, vec3(uv0 - dFdx(uv0) * 0.25, 0.0)).rgb;\n"
" vec3 c1 = texture(samp9, vec3(uv0 + dFdx(uv0) * 0.25, 0.0)).rgb;\n"
" vec3 c01 = (c0 + c1) * 0.5;\n"
" vec3 y_const = vec3(0.257,0.504,0.098);\n"
" vec3 u_const = vec3(-0.148,-0.291,0.439);\n"
" vec3 v_const = vec3(0.439,-0.368,-0.071);\n"
" vec4 const3 = vec4(0.0625,0.5,0.0625,0.5);\n"
" ocol0 = vec4(dot(c1,y_const),dot(c01,u_const),dot(c0,y_const),dot(c01, v_const)) + "
"const3;\n"
"}\n";
ProgramShaderCache::CompileShader(s_rgbToYuyvProgram, VProgramRgbToYuyv, FProgramRgbToYuyv);
s_rgbToYuyvUniform_loc = glGetUniformLocation(s_rgbToYuyvProgram.glprogid, "copy_position");
/* TODO: Accuracy Improvements
*
* The YVYU to RGB conversion here matches the RGB to YUYV done above, but
* if a game modifies or adds images to the XFB then it should be using the
* same algorithm as the flipper, and could result in slight color inaccuracies
* when run back through this shader.
*/
const char* VProgramYuyvToRgb = "void main()\n"
"{\n"
" vec2 rawpos = vec2(gl_VertexID&1, gl_VertexID&2);\n"
" gl_Position = vec4(rawpos*2.0-1.0, 0.0, 1.0);\n"
"}\n";
const char* FProgramYuyvToRgb = "SAMPLER_BINDING(9) uniform sampler2D samp9;\n"
"in vec2 uv0;\n"
"out vec4 ocol0;\n"
"void main()\n"
"{\n"
" ivec2 uv = ivec2(gl_FragCoord.xy);\n"
// We switch top/bottom here. TODO: move this to screen blit.
" ivec2 ts = textureSize(samp9, 0);\n"
" vec4 c0 = texelFetch(samp9, ivec2(uv.x>>1, ts.y-uv.y-1), 0);\n"
" float y = mix(c0.r, c0.b, (uv.x & 1) == 1);\n"
" float yComp = 1.164 * (y - 0.0625);\n"
" float uComp = c0.g - 0.5;\n"
" float vComp = c0.a - 0.5;\n"
" ocol0 = vec4(yComp + (1.596 * vComp),\n"
" yComp - (0.813 * vComp) - (0.391 * uComp),\n"
" yComp + (2.018 * uComp),\n"
" 1.0);\n"
"}\n";
ProgramShaderCache::CompileShader(s_yuyvToRgbProgram, VProgramYuyvToRgb, FProgramYuyvToRgb);
}
static SHADER& GetOrCreateEncodingShader(u32 format)
{
if (format >= NUM_ENCODING_PROGRAMS)
{
PanicAlert("Unknown texture copy format: 0x%x\n", format);
return s_encodingPrograms[0];
}
if (s_encodingPrograms[format].glprogid == 0)
{
const char* shader = TextureConversionShader::GenerateEncodingShader(format, API_OPENGL);
#if defined(_DEBUG) || defined(DEBUGFAST)
if (g_ActiveConfig.iLog & CONF_SAVESHADERS && shader)
{
static int counter = 0;
std::string filename =
StringFromFormat("%senc_%04i.txt", File::GetUserPath(D_DUMP_IDX).c_str(), counter++);
SaveData(filename, shader);
}
#endif
const char* VProgram = "void main()\n"
"{\n"
" vec2 rawpos = vec2(gl_VertexID&1, gl_VertexID&2);\n"
" gl_Position = vec4(rawpos*2.0-1.0, 0.0, 1.0);\n"
"}\n";
ProgramShaderCache::CompileShader(s_encodingPrograms[format], VProgram, shader);
s_encodingUniforms[format] =
glGetUniformLocation(s_encodingPrograms[format].glprogid, "position");
}
return s_encodingPrograms[format];
}
void Init()
{
glGenFramebuffers(2, s_texConvFrameBuffer);
glActiveTexture(GL_TEXTURE9);
glGenTextures(1, &s_srcTexture);
glBindTexture(GL_TEXTURE_2D, s_srcTexture);
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MAX_LEVEL, 0);
glGenTextures(1, &s_dstTexture);
glBindTexture(GL_TEXTURE_2D, s_dstTexture);
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MAX_LEVEL, 0);
glTexImage2D(GL_TEXTURE_2D, 0, GL_RGBA, renderBufferWidth, renderBufferHeight, 0, GL_RGBA,
GL_UNSIGNED_BYTE, nullptr);
FramebufferManager::SetFramebuffer(s_texConvFrameBuffer[0]);
glFramebufferTexture2D(GL_FRAMEBUFFER, GL_COLOR_ATTACHMENT0, GL_TEXTURE_2D, s_dstTexture, 0);
FramebufferManager::SetFramebuffer(0);
glGenBuffers(1, &s_PBO);
CreatePrograms();
}
void Shutdown()
{
glDeleteTextures(1, &s_srcTexture);
glDeleteTextures(1, &s_dstTexture);
glDeleteBuffers(1, &s_PBO);
glDeleteFramebuffers(2, s_texConvFrameBuffer);
s_rgbToYuyvProgram.Destroy();
s_yuyvToRgbProgram.Destroy();
for (auto& program : s_encodingPrograms)
program.Destroy();
s_srcTexture = 0;
s_dstTexture = 0;
s_PBO = 0;
s_texConvFrameBuffer[0] = 0;
s_texConvFrameBuffer[1] = 0;
}
// dst_line_size, writeStride in bytes
static void EncodeToRamUsingShader(GLuint srcTexture, u8* destAddr, u32 dst_line_size,
u32 dstHeight, u32 writeStride, bool linearFilter)
{
// switch to texture converter frame buffer
// attach render buffer as color destination
FramebufferManager::SetFramebuffer(s_texConvFrameBuffer[0]);
OpenGL_BindAttributelessVAO();
// set source texture
glActiveTexture(GL_TEXTURE9);
glBindTexture(GL_TEXTURE_2D_ARRAY, srcTexture);
if (linearFilter)
g_sampler_cache->BindLinearSampler(9);
else
g_sampler_cache->BindNearestSampler(9);
glViewport(0, 0, (GLsizei)(dst_line_size / 4), (GLsizei)dstHeight);
glDrawArrays(GL_TRIANGLE_STRIP, 0, 4);
int dstSize = dst_line_size * dstHeight;
if ((writeStride != dst_line_size) && (dstHeight > 1))
{
// writing to a texture of a different size
// also copy more then one block line, so the different strides matters
// copy into one pbo first, map this buffer, and then memcpy into GC memory
// in this way, we only have one vram->ram transfer, but maybe a bigger
// CPU overhead because of the pbo
glBindBuffer(GL_PIXEL_PACK_BUFFER, s_PBO);
glBufferData(GL_PIXEL_PACK_BUFFER, dstSize, nullptr, GL_STREAM_READ);
glReadPixels(0, 0, (GLsizei)(dst_line_size / 4), (GLsizei)dstHeight, GL_BGRA, GL_UNSIGNED_BYTE,
nullptr);
u8* pbo = (u8*)glMapBufferRange(GL_PIXEL_PACK_BUFFER, 0, dstSize, GL_MAP_READ_BIT);
for (size_t i = 0; i < dstHeight; ++i)
{
memcpy(destAddr, pbo, dst_line_size);
pbo += dst_line_size;
destAddr += writeStride;
}
glUnmapBuffer(GL_PIXEL_PACK_BUFFER);
glBindBuffer(GL_PIXEL_PACK_BUFFER, 0);
}
else
{
glReadPixels(0, 0, (GLsizei)(dst_line_size / 4), (GLsizei)dstHeight, GL_BGRA, GL_UNSIGNED_BYTE,
destAddr);
}
}
void EncodeToRamFromTexture(u8* dest_ptr, u32 format, u32 native_width, u32 bytes_per_row,
u32 num_blocks_y, u32 memory_stride, PEControl::PixelFormat srcFormat,
bool bIsIntensityFmt, int bScaleByHalf, const EFBRectangle& source)
{
g_renderer->ResetAPIState();
SHADER& texconv_shader = GetOrCreateEncodingShader(format);
texconv_shader.Bind();
glUniform4i(s_encodingUniforms[format], source.left, source.top, native_width,
bScaleByHalf ? 2 : 1);
const GLuint read_texture = (srcFormat == PEControl::Z24) ?
FramebufferManager::ResolveAndGetDepthTarget(source) :
FramebufferManager::ResolveAndGetRenderTarget(source);
EncodeToRamUsingShader(read_texture, dest_ptr, bytes_per_row, num_blocks_y, memory_stride,
bScaleByHalf > 0 && srcFormat != PEControl::Z24);
FramebufferManager::SetFramebuffer(0);
g_renderer->RestoreAPIState();
}
void EncodeToRamYUYV(GLuint srcTexture, const TargetRectangle& sourceRc, u8* destAddr, u32 dstWidth,
u32 dstStride, u32 dstHeight)
{
g_renderer->ResetAPIState();
s_rgbToYuyvProgram.Bind();
glUniform4f(s_rgbToYuyvUniform_loc, static_cast<float>(sourceRc.left),
static_cast<float>(sourceRc.top), static_cast<float>(sourceRc.right),
static_cast<float>(sourceRc.bottom));
// We enable linear filtering, because the GameCube does filtering in the vertical direction when
// yscale is enabled.
// Otherwise we get jaggies when a game uses yscaling (most PAL games)
EncodeToRamUsingShader(srcTexture, destAddr, dstWidth * 2, dstHeight, dstStride, true);
FramebufferManager::SetFramebuffer(0);
TextureCache::DisableStage(0);
g_renderer->RestoreAPIState();
}
// Should be scale free.
void DecodeToTexture(u32 xfbAddr, int srcWidth, int srcHeight, GLuint destTexture)
{
u8* srcAddr = Memory::GetPointer(xfbAddr);
if (!srcAddr)
{
WARN_LOG(VIDEO, "Tried to decode from invalid memory address");
return;
}
g_renderer->ResetAPIState(); // reset any game specific settings
OpenGL_BindAttributelessVAO();
// switch to texture converter frame buffer
// attach destTexture as color destination
FramebufferManager::SetFramebuffer(s_texConvFrameBuffer[1]);
FramebufferManager::FramebufferTexture(GL_FRAMEBUFFER, GL_COLOR_ATTACHMENT0, GL_TEXTURE_2D_ARRAY,
destTexture, 0);
// activate source texture
// set srcAddr as data for source texture
glActiveTexture(GL_TEXTURE9);
glBindTexture(GL_TEXTURE_2D, s_srcTexture);
glTexImage2D(GL_TEXTURE_2D, 0, GL_RGBA, srcWidth / 2, srcHeight, 0, GL_RGBA, GL_UNSIGNED_BYTE,
srcAddr);
g_sampler_cache->BindNearestSampler(9);
glViewport(0, 0, srcWidth, srcHeight);
s_yuyvToRgbProgram.Bind();
glDrawArrays(GL_TRIANGLE_STRIP, 0, 4);
FramebufferManager::SetFramebuffer(0);
g_renderer->RestoreAPIState();
}
} // namespace
} // namespace OGL