mirror of https://github.com/bsnes-emu/bsnes.git
130 Commits
Author | SHA1 | Message | Date |
---|---|---|---|
Tim Allen | 6524a7181d |
Update to v104r15 release.
byuu says: Changelog: - processor/huc6280,mos6502,wdc65816: replaced abbreviated opcode names with descriptive names - nall: replaced `PLATFORM_MACOSX` define with `PLATFORM_MACOS` - icarus: added `Icarus::missing() -> string_vector` to list missing appended firmware files by name - ruby, hiro: fix macosx→macos references The processor instruction renaming was really about consistency with the other processor cores. I may still need to do this for one or two more processors. The icarus change should allow a future release of the icarus application to import games with external SNES coprocessor firmware once again. It will also allow this to be possible when used in library mode. |
|
Tim Allen | 28060d3a69 |
Update to v104r10 release.
byuu says: Changelog: - processor/upd96050: per manual errata note, SGN always uses SA1; never SB1 [fixes v104r09 regression] - processor/upd96050: new OV1/S1 calculation that doesn't require OV0 history buffer [AWJ] - processor/upd96050: do not update DP in OP if DST=4 [Jonas Quinn] - processor/upd96050: do not update RP in OP if DST=5 [Jonas Quinn] - resource: recreated higan+icarus icons, higan logo as 32-bit PNGs So higan v104r08 and earlier were 930KiB for the source tarball. After creating new higan and icarus icons, the size jumped to 1090KiB, which was insane for only adding one additional icon. After digging into why, I discovered that ImageMagick defaults to 64-bit!! (16-bits per channel) PNG images when converting from SVG. You know, for all those 16-bit per channel monitors that don't exist. Sigh. Amazingly, nobody ever noticed this. The logo went from 78.8KiB to 24.5KiB, which in turn also means the generated resource.cpp shrank dramatically. The old higan icon was 32-bit PNG, because it was created before I installed FreeBSD and switched to ImageMagick. But the new higan icon, plus the new icarus icon, were both 64-bit as well. And they're now 32-bit. So the new tarball size, thanks to the logo optimization, dropped to 830KiB. Cydrak had some really interesting results in converting higan's resources to 8-bit palletized PNGs with the tRNS extension for alpha transparency. It reduces the file sizes even more without much visual fidelity loss. Eg the higan logo uses 778 colors currently, and 256 represents nearly all of it very well to the human eye. It's based off of only two colors, the rest are all anti-aliasing. Unfortunately, nall/image doesn't support this yet, and I didn't want to flatten the higan logo to not have transparency, in case I ever want to change the about screen background color. |
|
Tim Allen | 5352c5ab27 |
Update to v104r09 release.
byuu says: Changelog: - processor/upd96050: SGN should select between (A,B).S1 flag using ASL opcode bit - processor/upd96050: use a temporary to cache new S1, then compute OV1 using old S1, then assign new S1 - processor/upd96050: add SR.(siack,soack) and connect to relevant jump instructions (serial not implemented) - processor/upd96050: initialize SR properly in power() [r08 regression] - icarus: improve Makefile rules [Screwtape] - higan: new program icon - icarus: new program icon |
|
Tim Allen | 25bda4f159 |
Update to v104r08 release.
byuu says: Changelog: - processor/upd96050: code cleanups - processor/upd96050: improved emulation of S1/OV1 flags [thanks to Cydrak, Lord Nightmare] - tomoko/settings/audio: reduced the size of the frequency/latency combo boxes to show longer device driver names Errata: I need to clear regs.sr in uPD96050::power() Note: the S1/OV1 emulation is likely not 100% correct yet, but it's a step in the right direction. No SNES games actually use S1/OV1, so this shouldn't result in any issues, I'd just like to have this part of the chip emulated correctly. |
|
Tim Allen | 9c25f128f9 |
Update to v104r07 release.
byuu says: Changelog: - md/vdp: added VIP bit to status register; fixes Cliffhanger - processor/m68k/disassembler: added modes 7 and 8 to LEA address disassembly - processor/m68k/disassembler: enhanced ILLEGAL to display LINEA/LINEF $xxx variants - processor/m68k: ILLEGAL/LINEA/LINEF do not modify the stack register; fixes Caeser no Yabou II - icarus/sfc: request sgb1.boot.rom and sgb2.boot.rom separately; as they are different - icarus/sfc: removed support for external firmware when loading ROM images The hack to run Mega Drive Ballz 3D isn't in place, as I don't know if it's correct, and the graphics were corrupted anyway. The SGB boot ROM change is going to require updating the icarus database as well. I will add that in when I start dumping more cartridges here soon. Finally ... I explained this already, but I'll do so here as well: I removed icarus' support for loading SNES coprocessor firmware games with external firmware files (eg dsp1.program.rom + dsp1.data.rom in the same path as supermariokart.sfc, for example.) I realize most are going to see this as an antagonizing/stubborn move given the recent No-Intro discussion, and I won't deny that said thread is why this came to the forefront of my mind. But on my word, I honestly believe this was an ineffective solution for many reasons not related to our disagreements: 1. No-Intro distributes SNES coprocessor firmware as a merged file, eg "DSP1 (World).zip/DSP1 (World).bin" -- icarus can't possibly know about every ROM distribution set's naming conventions for firmware. (Right now, it appears GoodSNES and NSRT are mostly dead; but there may be more DATs in the future -- including my own.) 2. Even if the user obtains the firmware and tries to rename it, it won't work: icarus parses manifests generated by the heuristics module and sees two ROM files: dsp1.program.rom and dsp1.data.rom. icarus cannot identify a file named dsp1.rom as containing both of these sub-files. Users are going to have to know how to split files, which there is no way to do on stock Windows. Merging files, however, can be done via `copy /b supermariokart.sfc+dsp1.rom supermariokartdsp.sfc`; - and dsp1.rom can be named whatever now. I am not saying this will be easy for the average user, but it's easier than splitting files. 3. Separate firmware breaks icarus' database lookup. If you have pilotwings.sfc but without firmware, icarus will not find a match for it in the database lookup phase. It will then fall back on heuristics. The heuristics will pick DSP1B for compatibility with Ballz 3D which requires it. And so it will try to pull in the wrong firmware, and the game's intro will not work correctly. Furthermore, the database information will be unavailable, resulting in inaccurate mirroring. So for these reasons, I have removed said support. You must now load SNES coprocessor games into higan in one of two ways: 1) game paks with split files; or 2) SFC images with merged firmware. If and when No-Intro deploys a method I can actually use, I give you all my word I will give it a fair shot and if it's reasonable, I'll support it in icarus. |
|
Tim Allen | afa8ea61c5 |
Update to v104r06 release.
byuu says: Changelog: - gba,ws: removed Thread::step() override¹ - processor/m68k: move.b (a7)+ and move.b (a7)- adjust a7 by two, not by one² - tomoko: created new initialize(Video,Audio,Input)Driver() functions³ - ruby/audio: split Audio::information into Audio::available(Devices,Frequencies,Latencies,Channels)³ - ws: added Model::(WonderSwan,WonderSwanColor,SwanCrystal)() functions for consistency with other cores ¹: this should hopefully fix GBA Pokemon Pinball. Thanks to SuperMikeMan for pointing out the underlying cause. ²: this fixes A Ressaha de Ikou, Mega Bomberman, and probably more games. ³: this is the big change: so there was a problem with WASAPI where you might change your device under the audio settings panel. And your new device may not support the frequency that your old device used. This would end up not updating the frequency, and the pitch would be distorted. The old Audio::information() couldn't tell you what frequencies, latencies, or channels were available for all devices simultaneously, so I had to split them up. The new initializeAudioDriver() function validates you have a correct driver, or it defaults to none. Then it validates a correct device name, or it defaults to the first entry in the list. Then it validates a correct frequency, or defaults to the first in the list. Then finally it validates a correct latency, or defaults to the first in the list. In this way ... we have a clear path now with no API changes required to select default devices, frequencies, latencies, channel counts: they need to be the first items in their respective lists. So, what we need to do now is go through and for every audio driver that enumerates devices, we need to make sure the default device gets added to the top of the list. I'm ... not really sure how to do this with most drivers, so this is definitely going to take some time. Also, when you change a device, initializeAudioDriver() is called again, so if it's a bad device, it will disable the audio driver instead of continuing to send samples at it and hoping that the driver blocked those API calls when it failed to initialize properly. Now then ... since it was a decently-sized API change, it's possible I've broken compilation of the Linux drivers, so please report any compilation errors so that I can fix them. |
|
Tim Allen | ba384a7c48 |
Update to v104 release.
byuu says: Changelog: - emulator/interface: removed unused Region struct - gba/cpu: optimized CPU::step() as much as I could for a slight speedup¹ - gba/cpu: synchronize the APU better during FIFO updates - higan/md, icarus: add automatic region detection; make it the default option [hex\_usr] - picks NTSC-J if there's more than one match ... eventually, this will be a setting - higan/md, icarus: support all three combinations of SRAM (8-bit low, 8-bit high, 16-bit) - processor/arm7tdmi: fix bug when changing to THUMB mode via MSR [MerryMage] - tomoko: redesigned crash detector to only occur once for all three ruby drivers - this will reduce disk thrashing since the configuration file only needs to be written out one extra time - technically, it's twice ... but we should've always been writing one out on first run in case it crashes then - tomoko: defaulted back to the safest ruby drivers, given the optimal drivers have some stability concerns ¹: minor errata: spotted a typo saying `synchronize(cpu)` when the CPU is stopped, instead of `synchronize(ppu)`. This will be fixed in the v104 official 7zip archives. I'm kind of rushing here but, it's really good timing for me to push out a new official release. The blocking issues are resolved or close to it, and we need lots of testing of the new major changes. I'm going to consider this a semi-stable testing release and leave links to v103 just in case. |
|
Tim Allen | 55f19c3e0d |
Update to v103r32 release.
byuu says: Changelog: - Master System: merged Bus into CPU - Mega Drive: merged BusCPU into CPU; BusAPU into AU - Mega Drive: added TMSS emulation; disabled by default [hex\_usr] - VDP lockout not yet emulated - processor/arm7tdmi: renamed interrupt() to exception() - processor/arm7tdmi: CPSR.F (FIQ disable) flag is set on reset - processor/arm7tdmi: pipeline decode stage caches CPSR.T (THUMB mode) [MerryMage] - fixes `msr_tests.gba` test F - processor/arm7tdmi/disassembler: add PC address to left of currently executing instruction - processor/arm7tdmi: stop forcing CPSR.M (mode flags) bit 4 high (I don't know what really happens here) - processor/arm7tdmi: undefined instructions now generate Undefined 0x4 exception - processor/arm7tdmi: thumbInstructionAddRegister masks PC by &~3 instead of &~2 - hopefully this is correct; &~2 felt very wrong - processor/arm7tdmi: thumbInstructionStackMultiple can use sequential timing for PC/LR PUSH/POP [Cydrak] - systems/Mega Drive.sys: added tmss.rom; enable with cpu version=1 - tomoko: detect when a ruby video/audio/input driver crashes higan; disable it on next program startup v104 blockers: - Mega Drive: support 8-bit SRAM (even if we don't support 16-bit; don't force 8-bit to 16-bit) - Mega Drive: add region detection support to icarus - ruby: add default audio device information so certain drivers won't default to silence out of the box |
|
Tim Allen | 406b6a61a5 |
Update to v103r31 release.
byuu says: Changelog: - gba/cpu: slight speedup to CPU::step() - processor/arm7tdmi: fixed about ten bugs, ST018 and GBA games are now playable once again - processor/arm: removed core from codebase - processor/v30mz: code cleanup (renamed functions; updated instruction() for consistency with other cores) It turns out on my much faster system, the new ARM7TDMI core is very slightly slower than the old one (by about 2% or so FPS.) But the CPU::step() improvement basically made it a wash. So yeah, I'm in really serious trouble with how slow my GBA core is now. Sigh. As for higan/processor ... this concludes the first phase of major cleanups and rewrites. There will always be work to do, and I have two more phases in mind. One is that a lot of the instruction disassemblers are very old. One even uses sprintf still. I'd like to modernize them all. Also, the ARM7TDMI core (and the ARM core before it) can't really disassemble because the PC address used for instruction execution is not known prior to calling instruction(), due to pipeline reload fetches that may occur inside of said function. I had a nasty hack for debugging the new core, but I'd like to come up with a clean way to allow tracing the new ARM7TDMI core. Another is that I'd still like to rename a lot of instruction function names in various cores to be more descriptive. I really liked how the LR35902 core came out there, and would like to get that level of detail in with the other cores as well. |
|
Tim Allen | 1067566834 |
Update to v103r30 release.
byuu says: Changelog: - processor/arm7tdmi: completed implemented - gba/cpu, sfc/coprocessor/armdsp: use arm7tdmi instead of arm - sfc/cpu: experimental fix for newly discovered HDMA emulation issue Notes: The ARM7TDMI core crashes pretty quickly when trying to run GBA games, and I'm certain the same will be the case with the ST018. It was never all that likely I could rewrite 70KiB of code in 20 hours and have it work perfectly on the first try. So, now it's time for lots and lots of debugging. Any help would *really* be appreciated, if anyone were up for comparing the two implementations for regressions =^-^= I often have a really hard time spotting simple typos that I make. Also, the SNES HDMA fix is temporary. I would like it if testers could run through a bunch of games that are known for being tricky with HDMA (or if these aren't known to said tester, any games are fine then.) If we can confirm regressions, then we'll know the fix is either incorrect or incomplete. But if we don't find any, then it's a good sign that we're on the right path. |
|
Tim Allen | 559eeccc89 |
Update to v103r29 release.
byuu says: Changelog: - processor/arm7tdmi: implementation all nine remaining ARM instructions - processor/arm7tdmi: implemented five more THUMB instructions (sixteen remain) |
|
Tim Allen | a72ff8b7fa |
Update to v103r28 release.
byuu says: Changelog: - processor/arm7tdmi: implemented 10 of 19 ARM instructions - processor/arm7tdmi: implemented 1 of 22 THUMB instructions Today's WIP was 6 hours of work, and yesterday's was 5 hours. Half of today was just trying to come up with the design to use a lambda-based dispatcher to map both instructions and disassembly, similar to the 68K core. The problem is that the ARM core has 28 unique bits, which is just far too many bits to have a full lookup table like the 16-bit 68K core. The thing I wanted more than anything else was to perform the opcode bitfield decoding once, and have it decoded for both instructions and the disassembler. It took three hours to come up with a design that worked for the ARM half ... relying on #defines being able to pull in other #defines that were declared and changed later after the first one. But, I'm happy with it. The decoding is in the table building, as it is with the 68K core. The decoding does happen at run-time on each instruction invocation, but it has to be done. As to the THUMB core, I can create a 64K-entry lambda table to cover all possible encodings, and ... even though it's a cache killer, I've decided to go for it, given the outstanding performance it obtained in the M68K core, as well as considering that THUMB mode is far more common in GBA games. As to both cores ... I'm a little torn between two extremes: On the one hand, I can condense the number of ARM/THUMB instructions further to eliminate more redundant code. On the other, I can split them apart to reduce the number of conditional tests needed to execute each instruction. It's really the disassembler that makes me not want to split them up further ... as I have to split the disassembler functions up equally to the instruction functions. But it may be worth it if it's a speed improvement. |
|
Tim Allen | 0b6f1df987 |
Update to v103r27 release.
byuu says: Changelog: - hiro/windows: set dpiAware=false, fixes icarus window sizes relative to higan window sizes - higan, icarus, hiro, ruby: add support for high resolution displays on macOS [ncbncb] - processor/lr35902-legacy: removed - processor/arm7tdmi: new processor core started; intended to one day be a replacement for processor/arm It will probably take several WIPs to get the new ARM core up and running. It's the last processor rewrite. After this, all processor cores will be up to date with all my current programming conventions. |
|
Tim Allen | 020caa546d |
Update to v103r26 release.
byuu says: Changelog: - processor/lr35902: completed rewrite I'd appreciate regression testing of the Game Boy and Game Boy Color emulation between v103r24 and v103r26 (skip r25) if anyone wouldn't mind. I fixed up processor/lr35902-legacy to compile and run, so that trace logs can be created between the two cores to find errors. I'm going to kill processor/lr35902-legacy with the next WIP release, as well as make changes to the trace format (add flags externally from AF; much easier to read them that way), which will make it more difficult to do these comparisons in the future, hence r26 may prove important later on if we miss regressions this time. As for the speed of the new CPU core, not too much to report ... at least it's not slower :) Mega Man II: 212.5 to 214.5fps Shiro no Sho: 191.5 to 191.5fps Oracle of Ages: 182.5 to 190.5fps |
|
Tim Allen | c2975e6898 |
Update to v103r25 release.
byuu says: Changelog: - gb/cpu: force STAT mode to 0 when LCD is disabled (fixes Pokemon Pinball, etc) - gb/ppu: when LCD is disabled, require at least one-frame wait to re-enable, display white during this time - todo: should step by a scanline at a time: worst-case is an extra 99% of a frame to enable again - gba/ppu: cache tilemap lookups and attribute parsing - it's more accurate because the GBA wouldn't read this for every pixel - but unfortunately, this didn't provide any speedup at all ... sigh - ruby/audio/alsa: fixed const issue with free() - ruby/video/cgl: removed `glDisable(GL_ALPHA_TEST)` [deprecated] - ruby/video/cgl: removed `glEnable(GL_TEXTURE_2D)` [unnecessary as we use shaders] - processor/lr35902: started rewrite¹ ¹: so, the Game Boy and Game Boy Color cores will be completely broken for at least the next two or three WIPs. The old LR35902 was complete garbage, written in early 2011. So I'm rewriting it to provide a massive cleanup and consistency with other processor cores, especially the Z80 core. I've got about 85% of the main instructions implemented, and then I have to do the CB instructions. The CB instructions are easier because they're mostly just a small number of opcodes in many small variations, but it'll still be tedious. |
|
Tim Allen | 571760c747 |
Update to v103r24 release.
byuu says: Changelog: - gb/mbc6: mapper is now functional, but Net de Get has some text corruption¹ - gb/mbc7: mapper is now functional² - gb/cpu: HDMA syncs other components after each byte transfer now - gb/ppu: LY,LX forced to zero when LCDC.d7 is lowered (eg disabled), not when it's raised (eg enabled) - gb/ppu: the LCD does not run at all when LCDC.d7 is clear³ - fixes graphical corruption between scene transitions in Legend of Zelda - Oracle of Ages - thanks to Cydrak, Shonumi, gekkio for their input on the cause of this issue - md/controller: renamed "Gamepad" to "Control Pad" per official terminology - md/controller: added "Fighting Pad" (6-button controller) emulation [hex\_usr] - processor/m68k: fixed TAS to set data.d7 when EA.mode==DataRegisterDirect; fixes Asterix - hiro/windows: removed carriage returns from mouse.cpp and desktop.cpp - ruby/audio/alsa: added device driver selection [SuperMikeMan] - ruby/audio/ao: set format.matrix=nullptr to prevent a crash on some systems [SuperMikeMan] - ruby/video/cgl: rename term() to terminate() to fix a crash on macOS [Sintendo] ¹: The observation that this mapper split $4000-7fff into two banks came from MAME's implementation. But their implementation was quite broken and incomplete, so I didn't actually use any of it. The observation that this mapper split $a000-bfff into two banks came from Tauwasser, and I did directly use that information, plus the knowledge that $0400/$0800 are the RAM bank select registers. The text corruption is due to a race condition with timing. The game is transferring font letters via HDMA, but the game code ends up setting the bank# with the font a bit too late after the HDMA has already occurred. I'm not sure how to fix this ... as a whole, I assumed my Game Boy timing was pretty good, but apparently it's not that good. ²: The entire design of this mapper comes from endrift's notes. endrift gets full credit for higan being able to emulate this mapper. Note that the accelerometer implementation is still not tested, and probably won't work right until I tweak the sensitivity a lot. ³: So the fun part of this is ... it breaks the strict 60fps rate of the Game Boy. This was always inevitable: certain timing conditions can stretch frames, too. But this is pretty much an absolute deal breaker for something like Vsync timing. This pretty much requires adaptive sync to run well without audio stuttering during the transition. There's currently one very important detail missing: when the LCD is turned off, presumably the image on the screen fades to white. I do not know how long this process takes, or how to really go about emulating it. Right now as an incomplete patch, I'm simply leaving the last displayed image on the screen until the LCD is turned on again. But I will have to output white, as well as add code to break out of the emulation loop periodically when the LCD is left off eg indefinitely, or bad things would happen. I'll work something out and then implement. Another detail is I'm not sure how long it takes for the LCD to start rendering again once enabled. Right now, it's immediate. I've heard it's as long as 1/60th of a second, but that really seems incredibly excessive? I'd like to know at least a reasonably well-supported estimate before I implement that. |
|
Tim Allen | d4876a831f |
Update to v103r07 release.
byuu says: Changelog: - gba/cpu: massive code cleanup effort - gba/cpu: DMA can run in between active instructions¹ - gba/cpu: added two-cycle startup delay between DMA activation and DMA transfers² - processor/spc700: BBC, BBC, CBNE cycle 4 is an idle cycle - processor/spc700: ADDW, SUBW, MOVW (read) cycle 4 is an idle cycle ¹: unfortunately, this causes yet another performance penalty for the poor GBA core =( Also, I think I may have missed disabling DMAs while the CPU is stopped. I'll fix that in the next WIP. ²: I put the waiting counter decrement at the wrong place, so this doesn't actually work. Needs to be more like this: auto CPU::step(uint clocks) -> void { for(auto _ : range(clocks)) { for(auto& timer : this->timer) timer.run(); for(auto& dma : this->dma) if(dma.active && dma.waiting) dma.waiting--; context.clock++; } ... auto CPU::DMA::run() -> bool { if(cpu.stopped() || !active || waiting) return false; transfer(); if(irq) cpu.irq.flag |= CPU::Interrupt::DMA0 << id; if(drq && id == 3) cpu.irq.flag |= CPU::Interrupt::Cartridge; return true; } Of course, the real fix will be restructuring how DMA works, so that it's always running in parallel with the CPU instead of this weird design where it tries to run all channels in some kind of loop until no channels are active anymore whenever one channel is activated. Not really sure how to design that yet, however. |
|
Tim Allen | 16f736307e |
Update to v103r06 release.
byuu says: Changelog: - processor/spc700: restored fetch/load/store/pull/push shorthand functions - processor/spc700: split functions that tested the algorithm used (`op != &SPC700:...`) to separate instructions - mostly for code clarity over code size: it was awkward having cycle counts change based on a function parameter - processor/spc700: implemented Overload's new findings on which cycles are truly internal (no bus reads) - sfc/smp: TEST register emulation has been vastly improved¹ ¹: it turns out that TEST.d4,d5 is the external clock divider (used when accessing RAM through the DSP), and TEST.d6,d7 is the internal clock divider (used when accessing IPLROM, IO registers, or during idle cycles.) The DSP (24576khz) feeds its clock / 12 through to the SMP (2048khz). The clock divider setting further divides the clock by 2, 4, 8, or 16. Since 8 and 16 are not cleanly divislbe by 12, the SMP cycle count glitches out and seems to take 10 and 2 clocks instead of 8 or 16. This can on real hardware either cause the SMP to run very slowly, or more likely, crash the SMP completely until reset. What's even stranger is the timers aren't affected by this. They still clock by 2, 4, 8, or 16. Note that technically I could divide my own clock counters by 24 and reduce these to {1,2,5,10} and {1,2,4,8}, I instead chose to divide by 12 to better illustrate this hardware issue and better model that the SMP clock runs at 2048khz and not 1024khz. Further, note that things aren't 100% perfect yet. This seems to throw off some tests, such as blargg's `test_timer_speed`. I can't tell how far off I am because blargg's test tragically doesn't print out fail values. But you can see the improvements in that higan is now passing all of Revenant's tests that were obviously completely wrong before. |
|
Tim Allen | 40802b0b9f |
Update to v103r05 release.
byuu says: Changelog: - fc/controller: added ControllerPort class; removed Peripherals class - md/controller/gamepad: removed X,Y,Z buttons since this isn't a 6-button controller - ms/controller: added ControllerPort class (not used in Game Gear mode); removed Peripherals class - pce/controller: added ControllerPort class; removed Peripherals class - processor/spc700: idle(address) is part of SMP class again, contains flag to detect mov (x)+ edge case - sfc/controller/super-scope,justifier: use CPU frequency instead of hard-coding NTSC frequency - sfc/cpu: move 4x8-bit SMP ports to SMP class - sfc/smp: move APU RAM to DSP class - sfc/smp: improved emulation of TEST registers bits 4-7 [information from nocash] - d4,d5 is RAM wait states (1,2,5,10) - d6,d7 is ROM/IO wait states (1,2,5,10) - sfc/smp: code cleanup to new style (order from lowest to highest bits; use .bit(s) functions) - sfc/smp: $00f8,$00f9 are P4/P5 auxiliary ports; named the registers better |
|
Tim Allen | ff3750de4f |
Update to v103r04 release.
byuu says: Changelog: - fc/apu: $4003,$4007 writes initialize duty counter to 0 instead of 7 - fc/apu: corrected duty table entries for use with decrementing duty counter - processor/spc700: emulated the behavior of cycle 3 of (x)+ instructions to not read I/O registers - specifically, this prevents reads from $fd-ff from resetting the timers, as observed on real hardware - sfc/controller: added ControllerPort class to match Mega Drive design - sfc/expansion: added ExpansionPort class to match Mega Drive design - sfc/system: removed Peripherals class - sfc/system: changed `colorburst()` to `cpuFrequency()`; added `apuFrequency()` - sfc: replaced calls to `system.region == System::Region::*` with `Region::*()` - sfc/expansion: remove thread from scheduler when device is destroyed - sfc/smp: `{read,write}Port` now use a separate 4x8-bit buffer instead of underlying APU RAM [hex\_usr] |
|
Tim Allen | 78f341489e |
Update to v103r03 release.
byuu says: Changelog: - md/psg: fixed output frequency rate regression from v103r02 - processor/m68k: fixed calculations for ABCD, NBCD, SBCD [hex\_usr, SuperMikeMan] - processor/spc700: renamed abbreviated instructions to functional descriptions (eg `XCN` → `ExchangeNibble`) - processor/spc700: removed memory.cpp shorthand functions (fetch, load, store, pull, push) - processor/spc700: updated all instructions to follow cycle behavior as documented by Overload with a logic analyzer Once again, the changes to the SPC700 core are really quite massive. And this time it's not just cosmetic: the idle cycles have been updated to pull from various memory addresses. This is why I removed the shorthand functions -- so that I could handle the at-times very bizarre addresses the SPC700 has on its address bus during its idle cycles. There is one behavior Overload mentioned that I don't emulate ... one of the cycles of the (X) transfer functions seems to not actually access the $f0-ff internal SMP registers? I don't fully understand what Overload is getting at, so I haven't tried to support it just yet. Also, there are limits to logic analyzers. In many cases the same address is read from twice consecutively. It is unclear which of the two reads the SPC700 actually utilizes. I tried to choose the most logical values (usually the first one), but ... I don't know that we'll be able to figure this one out. It's going to be virtually impossible to test this through software, because the PC can't really execute out of registers that have side effects on reads. |
|
Tim Allen | 3517d5c4a4 |
Update to v103r02 release.
byuu says: Changelog: - fc/apu: improved phase duty cycle emulation (mode 3 is 25% phase inverted; counter decrements) - md/apu: power/reset do not cancel 68K bus requests - md/apu: 68K is not granted bus access on Z80 power/reset - md/controller: replaced System::Peripherals with ControllerPort concept - md/controller: CTRL port is now read-write, maintains value across controller changes (and soon, soft resets) - md/psg: PSG sampling rate unintentionally modified¹ - processor/spc700: improve cycle timing of (indirect),y instructions [Overload] - processor/spc700: idle() cycles actually read from the program counter; much like the 6502 [Overload] - some of the idle() cycles should read from other addresses; this still needs to be supported - processor/spc700: various cleanups to instruction function naming - processor/z80: prefix state (HL→IX,IY override) can now be serialized - icarus: fix install rule for certain platforms (it wasn't buggy on FreeBSD, but was on Linux?) ¹: the clock speed of the PSG is oscillator/15. But I was setting the sampling rate to oscillator/15/16, which was around 223KHz. I am not sure whether the PSG should be outputting at 3MHz or 223KHz. Amazingly ... I don't really hear a difference either way `o_O` I didn't actually mean to make this change; I just noticed it after comparing the diff between r01 and r02. If this turns out to be wrong, set stream = Emulator::audio.createStream(1, frequency() / 16.0); in md/psg.cpp to revert this change. |
|
Tim Allen | b7006822bf |
Update to v103 WIP release.
byuu says (in the WIP forum): Changelog: - higan: cheat codes accept = and ? separators now - the new preferred code format is: address=value or address=if-match?value - the old code format of address/value and address/if-match/value will continue to work - higan: cheats.bml is no longer included with the base distribution - mightymo stopped updating it in 2015, and it's not source code; it can still be pulled in from older releases - fc: improved PAL mode timing; use PAL APU timing tables; fix PAL noise period table [hex\_usr] - md: support aborting a Z80 bus wait in order to capture save states without freezing - note that this will violate accuracy; but in practice a slight desync is better than an emulator deadlock - sfc: revert DSP ENDX randomization for now (want to research it more before deploying in an official release) - sfc: fix Super Famicom.sys/manifest.bml APU RAM size [hex\_usr] - tomoko: cleaned up make install rules - hiro/cocoa: use ABGR for pixel data [Sintendo] Note: I forgot to change the command-line and drag-and-drop separator from : to | in this WIP. However, it is corrected in the v103 official binary and source published on download.byuu.org. Sorry about that, I know it makes the Git repository history more difficult. I'm not concerned whether the : → | change is part of v103 or v103r01 in the repository, and will leave this to your discretion, Screwtape. I also still need to set the VDP bit to indicate PAL mode in the Mega Drive core. This is what happens when I have 47 things I have to do, given how lousy my memory is. I miss things. |
|
Tim Allen | e7806dd6e8 |
Update to v102r27 release.
byuu says: Changelog: - processor/gsu: minor code cleanup - processor/hg51b: renamed reg(Read,Write) to register(Read,Write) - processor/lr35902: minor code cleanup - processor/spc700: completed code cleanup (sans disassembler) - no longer uses internal global state inside instructions - processor/spc700: will no longer hang the emulator if stuck in a WAI (SLEEP) or STP (STOP) instruction - processor/spc700: fixed bug in handling of OR1 and AND1 instructions - processor/z80: minor code cleanup - sfc/dsp: revert to initializing registers to 0x00; save for ENDX=random(), FLG=0xe0 [Jonas Quinn] Major testing of the SNES game library would be appreciated, now that its CPU cores have all been revised. We know the DSP registers read back as randomized data ... mostly, but there are apparently internal latches, which we can't emulate with the current DSP design. So until we know which registers have separate internal state that actually *is* initialized, I'm going to play it safe and not break more games. Thanks again to Jonas Quinn for the continued research into this issue. EDIT: that said ... `MD works if((ENDX&0x30) > 0)` is only a 3:4 chance that the game will work. That seems pretty unlikely that the odds of it working are that low, given hardware testing by others in the past :/ I thought if worked if `PITCH != 0` before, which would have been way more likely. The two remaining CPU cores that need major cleanup efforts are the LR35902 and ARM cores. Both are very large, complicated, annoying cores that will probably be better off as full rewrites from scratch. I don't think I want to delay v103 in trying to accomplish that, however. So I think it'll be best to focus on allowing the Mega Drive core to not lock when processors are frozen waiting on a response from other processors during a save state operation. Then we should be good for a new release. |
|
Tim Allen | 50411a17d1 |
Update to v102r26 release.
byuu says: Changelog: - md/ym2612: initialize DAC sample to center volume [Cydrak] - processor/arm: add accumulate mode extra cycle to mlal [Jonas Quinn] - processor/huc6280: split off algorithms, improve naming of functions - processor/mos6502: split off algorithms - processor/spc700: major revamp of entire core (~50% completed) - processor/wdc65816: fixed several bugs introduced by rewrite For the SPC700, this turns out to be very old code as well, with global object state variables, those annoying `{Boolean,Natural}BitField` types, `under_case` naming conventions, heavily abbreviated function names, etc. I'm working to get the code to be in the same design as the MOS6502, HuC6280, WDC65816 cores, since they're all extremely similar in terms of architectural design (the SPC700 is more of an off-label reimplementation of a 6502 core, but still.) The main thing left is that about 90% of the actual instructions still need to be adapted to not use the internal state (`aa`, `rd`, `dp`, `sp`, `bit` variables.) I wanted to finish this today, but ran out of time before work. I wouldn't suggest too much testing just yet. We should wait until the SPC700 core is finished for that. However, if some does want to and spots regressions, please let me know. |
|
Tim Allen | b73d918776 |
Update to v102r25 release.
byuu says: Changelog: - processor/arm: corrected MUL instruction timings [Jonas Quinn] - processor/wdc65816: finished phase two of the rewrite I'm really pleased with the visual results of the wdc65816 core rewrite. I was able to eliminate all of the weird `{Boolean,Natural}BitRange` templates, as well as the need to use unions/structs. Registers are now just simple `uint24` or `uint16` types (technically they're `Natural<T>` types, but then all of higan uses those), flags are now just bool types. I also eliminated all of the implicit object state inside of the core (aa, rd, dp, sp) and instead do all computations on the stack frame with local variables. Through using macros to reference the registers and individual parts of them, I was able to reduce the visual tensity of all of the instructions. And by using normal types without implicit states, I was able to eliminate about 15% of the instructions necessary, instead reusing existing ones. The final third phase of the rewrite will be to recode the disassembler. That code is probably the oldest code in all of higan right now, still using sprintf to generate the output. So it is very long overdue for a cleanup. And now for the bad news ... as with any large code cleanup, regression errors have seeped in. Currently, no games are running at all. I've left the old disassembler in for this reason: we can compare trace logs of v102r23 against trace logs of v102r25. The second there's any difference, we've spotted a buggy instruction and can correct it. With any luck, this will be the last time I ever rewrite the wdc65816 core. My style has changed wildly over the ~10 years since I wrote this core, but it's really solidifed in recent years. |
|
Tim Allen | 6e8406291c |
Update to v102r24 release.
byuu says Changelog: - FC: fixed three MOS6502 regressions [hex\_usr] - GBA: return fetched instruction instead of 0 for unmapped MMIO (passes all of endrift's I/O tests) - MD: fix VDP control port read Vblank bit to test screen height instead of hard-code 240 (fixes Phantasy Star IV) - MD: swap USP,SSP when executing an exception (allows Super Street Fighter II to run; but no sprites visible yet) - MD: grant 68K access to Z80 bus on reset (fixes vdpdoc demo ROM from freezing immediately) - SFC: reads from $00-3f,80-bf:4000-43ff no longer update MDR [p4plus2] - SFC: massive, eight-hour cleanup of WDC65816 CPU core ... still not complete The big change this time around is the SFC CPU core. I've renamed everything from R65816 to WDC65816, and then went through and tried to clean up the code as much as possible. This core is so much larger than the 6502 core that I chose cleaning up the code to rewriting it. First off, I really don't care for the BitRange style functionality. It was an interesting experiment, but its fatal flaw are that the types are just bizarre, which makes them hard to pass around generically to other functions as arguments. So I went back to the list of bools for flags, and union/struct blocks for the registers. Next, I renamed all of the functions to be more descriptive: eg `op_read_idpx_w` becomes `instructionIndexedIndirectRead16`. `op_adc_b` becomes `algorithmADC8`. And so forth. I eliminated about ten instructions because they were functionally identical sans the index, so I just added a uint index=0 parameter to said functions. I added a few new ones (adjust→INC,DEC; pflag→REP,SEP) where it seemed appropriate. I cleaned up the disaster of the instruction switch table into something a whole lot more elegant without all the weird argument decoding nonsense (still need M vs X variants to avoid having to have 4-5 separate switch tables, but all the F/I flags are gone now); and made some things saner, like the flag clear/set and branch conditions, now that I have normal types for flags and registers once again. I renamed all of the memory access functions to be more descriptive to what they're doing: eg writeSP→push, readPC→fetch, writeDP→writeDirect, etc. Eliminated some of the special read/write modes that were only used in one single instruction. I started to clean up some of the actual instructions themselves, but haven't really accomplished much here. The big thing I want to do is get rid of the global state (aa, rd, iaddr, etc) and instead use local variables like I am doing with my other 65xx CPU cores now. But this will take some time ... the algorithm functions depend on rd to be set to work on them, rather than taking arguments. So I'll need to rework that. And then lastly, the disassembler is still a mess. I want to finish the CPU cleanups, and then post a new WIP, and then rewrite the disassembler after that. The reason being ... I want a WIP that can generate identical trace logs to older versions, in case the CPU cleanup causes any regressions. That way I can more easily spot the errors. Oh ... and a bit of good news. v102 was running at ~140fps on the SNES core. With the new support to suspend/resume WAI/STP, plus the internal CPU registers not updating the MDR, the framerate dropped to ~132fps. But with the CPU cleanups, performance went back to ~140fps. So, hooray. Of course, without those two other improvements, we'd have ended up at possibly ~146-148fps, but oh well. |
|
Tim Allen | cea64b9991 |
Update to v102r23 release.
byuu says: Changelog: - rewrote the 6502 CPU core from scratch. Now called MOS6502, supported BCD mode - Famicom core disables BCD mode via MOS6502::BCD = 0; - renamed r65816 folder to wdc65816 (still need to rename the actual class, though ...) Note: need to remove build rules for the now renamed r6502, r65816 objects from processor/GNUmakefile. So this'll seem like a small WIP, but it was a solid five hours to rewrite the entire 6502 core. The reason I wanted to do this was because the old 6502 core was pretty sloppy. My coding style improved a lot, and I really liked how the HuC6280 CPU core came out, so I wanted the 6502 core to be like that one. The core can now support BCD mode, so hopefully that will prove useful to hex\_usr and allow one core to run both the NES and his Atari 2600 cores at some point. Note that right now, the core doesn't support any illegal instructions. The old core supported a small number of them, but were mostly the no operation ones. The goal is support all of the illegal instructions at some point. It's very possible the rewrite introduced some regressions, so thorough testing of the NES core would be appreciated if anyone were up for it. |
|
Tim Allen | a4629e1f64 |
Update to v102r21 release.
byuu says: Changelog: - GBA: fixed WININ2 reads, BG3PB writes [Jonas Quinn] - R65816: added support for yielding/resuming from WAI/STP¹ - SFC: removed status.dmaCounter functionality (also fixes possible TAS desync issue) - tomoko: added support for combinatorial inputs [hex\_usr\]² - nall: fixed missing return value from Arithmetic::operator-- [Hendricks266] Now would be the time to start looking for major regressions with the new GBA PPU renderer, I suppose ... ¹: this doesn't matter for the master thread (SNES CPU), but is important for slave threads (SNES SA1). If you try to save a state and the SA1 is inside of a WAI instruction, it will get stuck there forever. This was causing attempts to create a save state in Super Bomberman - Panic Bomber W to deadlock the emulator and crash it. This is now finally fixed. Note that I still need to implement similar functionality into the Mega Drive 68K and Z80 cores. They still have the possibility of deadlocking. The SNES implementation was more a dry-run test for this new functionality. This possible crashing bug in the Mega Drive core is the major blocking bug for a new official release. ²: many, many thanks to hex\_usr for coming up with a really nice design. I mostly implemented it the exact same way, but with a few tiny differences that don't really matter (display " and ", " or " instead of " & ", " | " in the input settings windows; append → bind; assignmentName changed to displayName.) The actual functionality is identical to the old higan v094 and earlier builds. Emulated digital inputs let you combine multiple possible keys to trigger the buttons. This is OR logic, so you can map to eg keyboard.up OR gamepad.up for instance. Emulated analog inputs always sum together. Emulated rumble outputs will cause all mapped devices to rumble, which is probably not at all useful but whatever. Hotkeys use AND logic, so you have to press every key mapped to trigger them. Useful for eg Ctrl+F to trigger fullscreen. Obviously, there are cases where OR logic would be nice for hotkeys, too. Eg if you want both F11 and your gamepad's guide button to trigger the fullscreen toggle. Unfortunately, this isn't supported, and likely won't ever be in tomoko. Something I might consider is a throw switch in the configuration file to swap between AND or OR logic for hotkeys, but I'm not going to allow construction of mappings like "(Keyboard.Ctrl and Keyboard.F) or Gamepad.Guide", as that's just too complicated to code, and too complicated to make a nice GUI to set up the mappings for. |
|
Tim Allen | 82c58527c3 |
Update to v102r17 release.
byuu says: Changelog: - GBA: process audio at 2MHz instead of 32KHz¹ - MD: do not allow the 68K to stop the Z80, unless it has been granted bus access first - MD: do not reset bus requested/granted signals when the 68K resets the Z80 - the above two fix The Lost Vikings - MD: clean up the bus address decoding to be more readable - MD: add support for a13000-a130ff (#TIME) region; pass to cartridge I/O² - MD: emulate SRAM mapping used by >16mbit games; bank mapping used by >32mbit games³ - MD: add 'reset pending' flag so that loading save states won't reload 68K PC, SP registers - this fixes save state support ... mostly⁴ - MD: if DMA is not enabled, do not allow CD5 to be set [Cydrak] - this fixes in-game graphics for Ristar. Title screen still corrupted on first run - MD: detect and break sprite lists that form an infinite loop [Cydrak] - this fixes the emulator from dead-locking on certain games - MD: add DC offset to sign DAC PCM samples [Cydrak] - this improves audio in Sonic 3 - MD: 68K TAS has a hardware bug that prevents writing the result back to RAM - this fixes Gargoyles - MD: 68K TRAP should not change CPU interrupt level - this fixes Shining Force II, Shining in the Darkness, etc - icarus: better SRAM heuristics for Mega Drive games Todo: - need to serialize the new cartridge ramEnable, ramWritable, bank variables ¹: so technically, the GBA has its FIFO queue (raw PCM), plus a GB chipset. The GB audio runs at 2MHz. However, I was being lazy and running the sequencer 64 times in a row, thus decimating the audio to 32KHz. But simply discarding 63 out of every 64 samples resorts in muddier sound with more static in it. However ... increasing the audio thread processing intensity 64-fold, and requiring heavy-duty three-chain lowpass and highpass filters is not cheap. For this bump in sound quality, we're eating a loss of about 30% of previous performance. Also note that the GB audio emulation in the GBA core still lacks many of the improvements made to the GB core. I was hoping to complete the GB enhancements, but it seems like I'm never going to pass blargg's psychotic edge case tests. So, first I want to clean up the GB audio to my current coding standards, and then I'll port that over to the GBA, which should further increase sound quality. At that point, it sound exceed mGBA's audio quality (due to the ridiculously high sampling rate and strong-attenuation audio filtering.) ²: word writes are probably not handled correctly ... but games are only supposed to do byte writes here. ³: the SRAM mapping is used by games like "Story of Thor" and "Phantasy Star IV." Unfortunately, the former wasn't released in the US and is region protected. So you'll need to change the NTSU to NTSCJ in md/system/system.cpp in order to boot it. But it does work nicely now. The write protection bit is cleared in the game, and then it fails to write to SRAM (soooooooo many games with SRAM write protection do this), so for now I've had to disable checking that bit. Phantasy Star IV has a US release, but sadly the game doesn't boot yet. Hitting some other bug. The bank mapping is pretty much just for the 40mbit Super Street Fighter game. It shows the Sega and Capcom logos now, but is hitting yet another bug and deadlocking. For now, I emulate the SRAM/bank mapping registers on all cartridges, and set sane defaults. So long as games don't write to $a130XX, they should all continue to work. But obviously, we need to get to a point where higan/icarus can selectively enable these registers on a per-game basis. ⁴: so, the Mega Drive has various ways to lock a chip until another chip releases it. The VDP can lock the 68K, the 68K can lock the Z80, etc. If this happens when you save a state, it'll dead-lock the emulator. So that's obviously a problem that needs to be fixed. The fix will be nasty ... basically, bypassing the dead-lock, creating a miniature, one-instruction-long race condition. Extremely unlikely to cause any issues in practice (it's only a little worse than the SNES CPU/SMP desync), but ... there's nothing I can do about it. So you'll have to take it or leave it. But yeah, for now, save states may lock up the emulator. I need to add code to break the loops when in the process of creating a save state still. |
|
Tim Allen | 04072b278b |
Update to v102r16 release.
byuu says: Changelog: - Emulator::Stream now allows adding low-pass and high-pass filters dynamically - also accepts a pass# count; each pass is a second-order biquad butterworth IIR filter - Emulator::Stream no longer automatically filters out >20KHz frequencies for all streams - FC: added 20Hz high-pass filter; 20KHz low-pass filter - GB: removed simple 'magic constant' high-pass filter of unknown cutoff frequency (missed this one in the last WIP) - GB,SGB,GBC: added 20Hz high-pass filter; 20KHz low-pass filter - MS,GG,MD/PSG: added 20Hz high-pass filter; 20KHz low-pass filter - MD: added save state support (but it's completely broken for now; sorry) - MD/YM2612: fixed Voice#3 per-operator pitch support (fixes sound effects in Streets of Rage, etc) - PCE: added 20Hz high-pass filter; 20KHz low-pass filter - WS,WSC: added 20Hz high-pass filter; 20KHz low-pass filter So, the point of the low-pass filters is to remove frequencies above human hearing. If we don't do this, then resampling will introduce aliasing that results in sounds that are audible to the human ear. Which basically an annoying buzzing sound. You'll definitely hear the improvement from these in games like Mega Man 2 on the NES. Of course, these already existed before, so this WIP won't sound better than previous WIPs. The high-pass filters are a little more complicated. Their main role is to remove DC bias and help to center the audio stream. I don't understand how they do this at all, but ... that's what everyone who knows what they're talking about says, thus ... so be it. I have set all of the high-pass filters to 20Hz, which is below the limit of human hearing. Now this is where it gets really interesting ... technically, some of these systems actually cut off a lot of range. For instance, the GBA should technically use an 800Hz high-pass filter when output is done through the system's speakers. But of course, if you plug in headphones, you can hear the lower frequencies. Now 800Hz ... you definitely can hear. At that level, nearly all of the bass is stripped out and the audio is very tinny. Just like the real system. But for now, I don't want to emulate the audio being crushed that badly. I'm sticking with 20Hz everywhere since it won't negatively affect audio quality. In fact, you should not be able to hear any difference between this WIP and the previous WIP. But theoretically, DC bias should mostly be removed as a result of these new filters. It may be that we need to raise the values on some cores in the future, but I don't want to do that until we know for certain that we have to. What I can say is that compared to even older WIPs than r15 ... the removal of the simple one-pole low-pass and high-pass filters with the newer three-pass, second-order filters should result in much better attenuation (less distortion of audible frequencies.) Probably not enough to be noticeable in a blind test, though. |
|
Tim Allen | 4c3f9b93e7 |
Update to v102r12 release.
byuu says: Changelog: - MD/PSG: fixed 68K bus Z80 status read address location - MS, GG, MD/PSG: channels post-decrement their counters, not pre-decrement [Cydrak]¹ - MD/VDP: cache screen width registers once per scanline; screen height registers once per frame - MD/VDP: support 256-width display mode (used in Shining Force, etc) - MD/YM2612: implemented timers² - MD/YM2612: implemented 8-bit PCM DAC² - 68000: TRAP instruction should index the vector location by 32 (eg by 128 bytes), fixes Shining Force - nall: updated hex(), octal(), binary() functions to take uintmax instead of template<typename T> parameter³ ¹: this one makes an incredible difference. Sie noticed that lots of games set a period of 0, which would end up being a really long period with pre-decrement. By fixing this, noise shows up in many more games, and sounds way better in games even where it did before. You can hear extra sound on Lunar - Sanposuru Gakuen's title screen, the noise in Sonic The Hedgehog (Mega Drive) sounds better, etc. ²: this also really helps sound. The timers allow PSG music to play back at the correct speed instead of playing back way too quickly. And the PCM DAC lets you hear a lot of drum effects, as well as the "Sega!!" sound at the start of Sonic the Hedgehog, and the infamous, "Rise from your grave!" line from Altered Beast. Still, most music on the Mega Drive comes from the FM channels, so there's still not a whole lot to listen to. I didn't implement Cydrak's $02c test register just yet. Sie wasn't 100% certain on how the extended DAC bit worked, so I'd like to play it a little conservative and get sound working, then I'll go back and add a toggle or something to enable undocumented registers, that way we can use that to detect any potential problems they might be causing. ³: unfortunately we lose support for using hex() on nall/arithmetic types. If I have a const Pair& version of the function, then the compiler gets confused on whether Natural<32> should use uintmax or const Pair&, because compilers are stupid, and you can't have explicit arguments in overloaded functions. So even though either function would work, it just decides to error out instead >_> This is actually really annoying, because I want hex() to be useful for printing out nall/crypto keys and hashes directly. But ... this change had to be made. Negative signed integers would crash programs, and that was taking out my 68000 disassembler. |
|
Tim Allen | 68f04c3bb8 |
Update to v102r10 release.
byuu says: Changelog: - removed Emulator::Interface::Capabilities¹ - MS: improved the PSG emulation a bit - MS: added cheat code support - MS: added save state support² - MD: emulated the PSG³ ¹: there's really no point to it anymore. I intend to add cheat codes to the GBA core, as well as both cheat codes and save states to the Mega Drive core. I no longer intend to emulate any new systems, so these values will always be true. Further, the GUI doesn't respond to these values to disable those features anymore ever since the hiro rewrite, so they're double useless. ²: right now, the Z80 core is using a pointer for HL-\>(IX,IY) overrides. But I can't reliably serialize pointers, so I need to convert the Z80 core to use an integer here. The save states still appear to work fine, but there's the potential for an instruction to execute incorrectly if you're incredibly unlucky, so this needs to be fixed as soon as possible. Further, I still need a way to serialize array<T, Size> objects, and I should also add nall::Boolean serialization support. ³: I don't have a system in place to share identical sound chips. But this chip is so incredibly simple that it's not really much trouble to duplicate it. Further, I can strip out the stereo sound support code from the Game Gear portion, so it's even tinier. Note that the Mega Drive only just barely uses the PSG. Not at all in Altered Beast, and only for a tiny part of the BGM music on Sonic 1, plus his jump sound effect. |
|
Tim Allen | d76c0c7e82 |
Update to v102r08 release.
byuu says: Changelog: - PCE: restructured VCE, VDCs to run one scanline at a time - PCE: bound VDCs to 1365x262 timing (in order to decouple the VDCs from the VCE) - PCE: the two changes above allow save states to function; also grants a minor speed boost - PCE: added cheat code support (uses 21-bit bus addressing; compare byte will be useful here) - 68K: fixed `mov *,ccr` to read two bytes instead of one [Cydrak] - Z80: emulated /BUSREQ, /BUSACK; allows 68K to suspend the Z80 [Cydrak] - MD: emulated the Z80 executing instructions [Cydrak] - MD: emulated Z80 interrupts (triggered during each Vblank period) [Cydrak] - MD: emulated Z80 memory map [Cydrak] - MD: added stubs for PSG, YM2612 accesses [Cydrak] - MD: improved bus emulation [Cydrak] The PCE core is pretty much ready to go. The only major feature missing is FM modulation. The Mega Drive improvements let us start to see the splash screens for Langrisser II, Shining Force, Shining in the Darkness. I was hoping I could get them in-game, but no such luck. My Z80 implementation is probably flawed in some way ... now that I think about it, I believe I missed the BusAPU::reset() check for having been granted access to the Z80 first. But I doubt that's the problem. Next step is to implement Cydrak's PSG core into the Master System emulator. Once that's in, I'm going to add save states and cheat code support to the Master System core. Next, I'll add the PSG core into the Mega Drive. Then I'll add the 'easy' PCM part of the YM2612. Then the rest of the beastly YM2612 core. Then finally, cap things off with save state and cheat code support. Should be nearing a new release at that point. |
|
Tim Allen | 7c9b78b7bb |
Update to v102r07 release.
byuu says: Changelog: - PCE: emulated PSG volume controls (vastly enhances audio quality) - PCE: emulated PSG noise as a square wave (somewhat enhances audio quality) - PCE: added save state support (currently broken and deadlocks the emulator though) Thankfully, MAME had some rather easy to read code on how the volume adjustment works, which they apparently ripped out of expired patents. Hooray! The two remaining sound issues are: 1. the random number generator for the noise channel is definitely not hardware accurate. But it won't affect the sound quality at all. You'd only be able to tell the difference by looking at hex bytes of a stream rip. 2. I have no clue how to emulate the LFO (frequency modulation). A comment in MAME's code (they also don't emulate it) advises that they aren't aware of any games that even use it. But I'm there has to be at least one? Given LFO not being used, and the RNG not really mattering all that much ... the sound's pretty close to perfect now. |
|
Tim Allen | fa6cbac251 |
Update to v102r06 release.
byuu says: Changelog: - added higan/emulator/platform.hpp (moved out Emulator::Platform from emulator/interface.hpp) - moved gmake build paramter to nall/GNUmakefile; both higan and icarus use it now - added build=profile mode - MD: added the region select I/O register - MD: started to add region selection support internally (still no external select or PAL support) - PCE: added cycle stealing when reading/writing to the VDC or VCE; and when using ST# instructions - PCE: cleaned up PSG to match the behavior of Mednafen (doesn't improve sound at all ;_;) - note: need to remove loadWaveSample, loadWavePeriod - HuC6280: ADC/SBC decimal mode consumes an extra cycle; does not set V flag - HuC6280: block transfer instructions were taking one cycle too many - icarus: added code to strip out PC Engine ROM headers - hiro: added options support to BrowserDialog The last one sure ended in failure. The plan was to put a region dropdown directly onto hiro::BrowserDialog, and I had all the code for it working. But I forgot one important detail: the system loads cartridges AFTER powering on, so even though I could technically change the system region post-boot, I'd rather not do so. So that means we have to know what region we want before we even select a game. Shit. |
|
Tim Allen | ee7662a8be |
Update to v102r04 release.
byuu says: Changelog: - Super Game Boy support is functional once again - new GameBoy::SuperGameBoyInterface class - system.(dmg,cgb,sgb) is now Model::(Super)GameBoy(Color) ala the PC Engine - merged WonderSwanInterface, WonderSwanColorInterface shared functions to WonderSwan::Interface - merged GameBoyInterface, GameBoyColorInterface shared functions to GameBoy::Interface - Interface::unload() now calls Interface::save() for Master System, Game Gear, Mega Drive, PC Engine, SuperGrafx - PCE: emulated PCE-CD backup RAM; stored per-game as save.ram (2KiB file) - this means you can now save your progress in games like Neutopia - the PCE-CD I/O registers like BRAM write protect are not emulated yet - PCE: IRQ sources now hold the IRQ line state, instead of the CPU holding it - this fixes most SuperGrafx games, which were fighting over the VDC IRQ line previously - PCE: CPU I/O $14xx should return the pending IRQ bits even if IRQs are disabled - PCE: VCE and the VDCs now synchronize to each other; fixes pixel widths in all games - PCE: greatly increased the accuracy of the VPC priority selection code (windows may be buggy still) - HuC6280: PLA, PLX, PLY should set Z, N flags; fixes many game bugs [Jonas Quinn] The big thing I wanted to do was enslave the VDC(s) to the VCE. But unfortunately, I forgot about the asynchronous DMA channels that each VDC supports, so this isn't going to be possible I'm afraid. In the most demanding case, Daimakaimura in-game, we're looking at 85fps on my Xeon E3 1276v3. So ... not great, and we don't even have sound connected yet. We are going to have to profile and optimize this code once sound emulation and save states are in. Basically, think of it like this: the VCE, VDC0, and VDC1 all have the same overhead, scheduling wise (which is the bulk of the performance loss) as the dot-renderer for the SNES core. So it's like there's three bsnes-accuracy PPU threads running just for video. ----- Oh, just a fair warning ... the hooks for the SGB are a work in progress. If anyone is working on higan or a fork and want to do something similar to it, don't use it as a template, at least not yet. Right now, higan looks like this: - Emulator::Video handles the platform→videoRefresh calls - Emulator::Audio handles the platform→audioSample calls - each core hard-codes the platform→inputPoll, inputRumble calls - each core hard-codes calls to path, open, load to process files - dipSettings and notify are specialty hacks, neither are even hooked up right now to anything With the SGB, it's an emulation core inside an emulation core, so ideally you want to hook all of those functions. Emulator::Video and Emulator::Audio aren't really abstractions over that, as the GB core calls them and we have to special case not calling them in SGB mode. The path, open, load can be implemented without hooks, thanks to the UI only using one instance of Emulator::Platform for all cores. All we have to do is override the folder path ID for the "Game Boy.sys" folder, so that it picks "Super Game Boy.sfc/" and loads its boot ROM instead. That's just a simple argument to GameBoy::System::load() and we're done. dipSettings, notify and inputRumble don't matter. But we do also have to hook inputPoll as well. The nice idea would be for SuperFamicom::ICD2 to inherit from Emulator::Platform and provide the desired functions that we need to overload. After that, we'd just need the GB core to keep an abstraction over the global Emulator::platform\* handle, to select between the UI version and the SFC::ICD2 version. However ... that doesn't work because of Emulator::Video and Emulator::Audio. They would also have to gain an abstraction over Emulator::platform\*, and even worse ... you'd have to constantly swap between the two so that the SFC core uses the UI, and the GB core uses the ICD2. And so, for right now, I'm checking Model::SuperGameBoy() -> bool everywhere, and choosing between the UI and ICD2 targets that way. And as such, the ICD2 doesn't really need Emulator::Platform inheritance, although it certainly could do that and just use the functions it needs. But the SGB is even weirder, because we need additional new signals beyond just Emulator::Platform, like joypWrite(), etc. I'd also like to work on the Emulator::Stream for the SGB core. I don't see why we can't have the GB core create its own stream, and let the ICD2 just use that instead. We just have to be careful about the ICD2's CPU soft reset function, to make sure the GB core's Stream object remains valid. What I think that needs is a way to release an Emulator::Stream individually, rather than calling Emulator::Audio::reset() to do it. They are shared\_pointer objects, so I think if I added a destructor function to remove it from Emulator::Audio::streams, then that should work. |
|
Tim Allen | 186f008574 |
Update to v102r03 release.
byuu says: Changelog: - PCE: split VCE from VDC - HuC6280: changed bus from (uint21 addr) to (uint8 bank, uint13 addr) - added SuperGrafx emulation (adds secondary VDC, plus new VPC) The VDC now has no concept of the actual display raster timing, and instead is driven by Vpulse (start of frame) and Hpulse (start of scanline) signals from the VCE. One still can't render the start of the next scanline onto the current scanline through overly aggressive timings, but it shouldn't be too much more difficult to allow that to occur now. This process incurs quite a major speed hit, so low-end systems with Atom CPUs can't run things at 60fps anymore. The timing needs a lot of work. The pixels end up very jagged if the VCE doesn't output batches of 2-4 pixels at a time. But this should not be a requirement at all, so I'm not sure what's going wrong there. Yo, Bro and the 512-width mode of TV Sports Basketball is now broken as a result of these changes, and I'm not sure why. To load SuperGrafx games, you're going to have to change the .pce extensions to .sg or .sgx. Or you can manually move the games from the PC Engine folder to the SuperGrafx folder and change the game folder extensions. I have no way to tell the games apart. Mednafen uses CRC32 comparisons, and I may consider that since there's only five games, but I'm not sure yet. The only SuperGrafx game that's playable right now is Aldynes. And the priorities are all screwed up. I don't understand how the windows or the priorities work at all from sgxtech.txt, so ... yeah. It's pretty broken, but it's a start. I could really use some help with this, as I'm very lost right now with rendering :/ ----- Note that the SuperGrafx is technically its own system, it's not an add-on. As such, I'm giving it a separate .sys folder, and a separate library. There's debate over how to name this thing. "SuperGrafx" appears more popular than "Super Grafx". And you might also call it the "PC Engine SuperGrafx", but I decided to leave off the prefix so it appears more distinct. |
|
Tim Allen | bdc100e123 |
Update to v102r02 release.
byuu says: Changelog: - I caved on the `samples[] = {0.0}` thing, but I'm very unhappy about it - if it's really invalid C++, then GCC needs to stop accepting it in strict `-std=c++14` mode - Emulator::Interface::Information::resettable is gone - Emulator::Interface::reset() is gone - FC, SFC, MD cores updated to remove soft reset behavior - split GameBoy::Interface into GameBoyInterface, GameBoyColorInterface - split WonderSwan::Interface into WonderSwanInterface, WonderSwanColorInterface - PCE: fixed off-by-one scanline error [hex_usr] - PCE: temporary hack to prevent crashing when VDS is set to < 2 - hiro: Cocoa: removed (u)int(#) constants; converted (u)int(#) types to (u)int_(#)t types - icarus: replaced usage of unique with strip instead (so we don't mess up frameworks on macOS) - libco: added macOS-specific section marker [Ryphecha] So ... the major news this time is the removal of the soft reset behavior. This is a major!! change that results in a 100KiB diff file, and it's very prone to accidental mistakes!! If anyone is up for testing, or even better -- looking over the code changes between v102r01 and v102r02 and looking for any issues, please do so. Ideally we'll want to test every NES mapper type and every SNES coprocessor type by loading said games and power cycling to make sure the games are all cleanly resetting. It's too big of a change for me to cover there not being any issues on my own, but this is truly critical code, so yeah ... please help if you can. We technically lose a bit of hardware documentation here. The soft reset events do all kinds of interesting things in all kinds of different chips -- or at least they do on the SNES. This is obviously not ideal. But in the process of removing these portions of code, I found a few mistakes I had made previously. It simplifies resetting the system state a lot when not trying to have all the power() functions call the reset() functions to share partial functionality. In the future, the goal will be to come up with a way to add back in the soft reset behavior via keyboard binding as with the Master System core. What's going to have to happen is that the key binding will have to send a "reset pulse" to every emulated chip, and those chips are going to have to act independently to power() instead of reusing functionality. We'll get there eventually, but there's many things of vastly greater importance to work on right now, so it'll be a while. The information isn't lost ... we'll just have to pull it out of v102 when we are ready. Note that I left the SNES reset vector simulation code in, even though it's not possible to trigger, for the time being. Also ... the Super Game Boy core is still disconnected. To be honest, it totally slipped my mind when I released v102 that it wasn't connected again yet. This one's going to be pretty tricky to be honest. I'm thinking about making a third GameBoy::Interface class just for SGB, and coming up with some way of bypassing platform-> calls when in this mode. |
|
Tim Allen | ae5968cfeb |
Update to v102 release.
byuu says (in the public announcement): This release adds very preliminary emulation of the Sega Master System (Mark III), Sega Game Gear, Sega Mega Drive (Genesis), and NEC PC Engine (Turbografx-16). These cores do not yet offer sound emulation, save states or cheat codes. I'm always very hesitant to release a new emulation core in its alpha stages, as in the past this has resulted in lasting bad impressions of cores that have since improved greatly. For instance, the Game Boy Advance emulation offered today is easily the second most accurate around, yet it is still widely judged by its much older alpha implementation. However, it's always been tradition with higan to not hold onto code in secret. Rather than delay future releases for another year or two, I'll put my faith in you all to understand that the emulation of these systems will improve over time. I hope that by releasing things as they are now, I might be able to receive some much needed assistance in improving these cores, as the documentation for these new systems is very much less than ideal. byuu says (in the WIP forum): Changelog: - PCE: latch background scroll registers (fixes Neutopia scrolling) - PCE: clip background attribute table scrolling (fixes Blazing Lazers scrolling) - PCE: support background/sprite enable/disable bits - PCE: fix large sprite indexing (fixes Blazing Lazers title screen sprites) - HuC6280: wrap zeropage accesses to never go beyond $20xx - HuC6280: fix alternating addresses for block move instructions (fixes Neutopia II) - HuC6280: block move instructions save and restore A,X,Y registers - HuC6280: emulate BCD mode (may not be 100% correct, based on SNES BCD) (fixes Blazing Lazers scoring) |
|
Tim Allen | b03563426f |
Update to v101r35 release.
byuu says: Changelog: - PCE: added 384KB HuCard ROM mirroring mode - PCE: corrected D-pad polling order - PCE: corrected palette color ordering (GRB, not RGB -- yes, seriously) - PCE: corrected SATB DMA -- should write to SATB, not to VRAM - PCE: broke out Background, Sprite VDC settings to separate subclasses - PCE: emulated VDC backgrounds - PCE: emulated VDC sprites - PCE: emulated VDC sprite overflow, collision interrupts - HuC6280: fixed disassembler output for STi instructions - HuC6280: added missing LastCycle check to interrupt() - HuC6280: fixed BIT, CMP, CPX, CPY, TRB, TSB, TST flag testing and result - HuC6280: added extra cycle delays to the block move instructions - HuC6280: fixed ordering for flag set/clear instructions (happens after LastCycle check) - HuC6280: removed extra cycle from immediate instructions - HuC6280: fixed indirectLoad, indirectYStore absolute addressing - HuC6280: fixed BBR, BBS zeropage value testing - HuC6280: fixed stack push/pull direction Neutopia looks okay until the main title screen, then there's some gibberish on the bottom. The game also locks up with some gibberish once you actually start a new game. So, still not playable just yet =( |
|
Tim Allen | f500426158 |
Update to v101r34 release.
byuu says: Changelog: - PCE: emulated gamepad polling - PCE: emulated CPU interrupt sources - PCE: emulated timer - PCE: smarter emulation of ST0,ST1,ST2 instructions - PCE: better structuring of CPU, VDP IO registers - PCE: connected palette generation to the interface - PCE: emulated basic VDC timing - PCE: emulated VDC Vblank, Coincidence, and DMA completion IRQs - PCE: emulated VRAM, SATB DMA transfers - PCE: emulated VDC I/O registers Everything I've implemented today likely has lots of bugs, and is untested for obvious reasons. So basically, after I fix many horrendous bugs, it should now be possible to implement the VDC and start getting graphical output. |
|
Tim Allen | 8499c64756 |
Update to v101r33 release.
byuu says: Changelog: - PCE: HuC6280 core completed There's bound to be a countless stream of bugs, and the cycle counts are almost certainly not exact yet, but ... all instructions are implemented. So at this point, I can start comparing trace logs against Mednafen's debugger output. Of course, we're very likely to immediately slam into a wall of needing I/O registers implemented for the VDC in order to proceed further. |
|
Tim Allen | 26bd7590ad |
Update to v101r32 release.
byuu says: Changelog: - SMS: fixed controller connection bug - SMS: fixed Z80 reset bug - PCE: emulated HuC6280 MMU - PCE: emulated HuC6280 RAM - PCE: emulated HuCard ROM reading - PCE: implemented 178 instructions - tomoko: removed "soft reset" functionality - tomoko: moved "power cycle" to just above "unload" option I'm not sure of the exact number of HuC6280 instructions, but it's less than 260. Many of the ones I skipped are HuC6280-originals that I don't know how to emulate just yet. I'm also really unsure about the zero page stuff. I believe we should be adding 0x2000 to the addresses to hit page 1, which is supposed to be mapped to the zero page (RAM). But when I look at turboEMU's source, I have no clue how the hell it could possibly be doing that. It looks to be reading from page 0, which is almost always ROM, which would be ... really weird. I also don't know if I've emulated the T mode opcodes correctly or not. The documentation on them is really confusing. |
|
Tim Allen | bf90bdfcc8 |
Update to v101r31 release.
byuu says: Changelog: - converted Emulator::Interface::Bind to Emulator::Platform - temporarily disabled SGB hooks - SMS: emulated Game Gear palette (latching word-write behavior not implemented yet) - SMS: emulated Master System 'Reset' button, Game Gear 'Start' button - SMS: removed reset() functionality, driven by the mappable input now instead - SMS: split interface class in two: one for Master System, one for Game Gear - SMS: emulated Game Gear video cropping to 160x144 - PCE: started on HuC6280 CPU core—so far only registers, NOP instruction has been implemented Errata: - Super Game Boy support is broken and thus disabled - if you switch between Master System and Game Gear without restarting, bad things happen: - SMS→GG, no video output on the GG - GG→SMS, no input on the SMS I'm not sure what's causing the SMS\<-\>GG switch bug, having a hard time debugging it. Help would be very much appreciated, if anyone's up for it. Otherwise I'll keep trying to track it down on my end. |
|
Tim Allen | 0ad70a30f8 |
Update to v101r30 release.
byuu says: Changelog: - SMS: added cartridge ROM/RAM mirroring (fixes Alex Kidd) - SMS: fixed 8x16 sprite mode (fixes Wonder Boy, Ys graphics) - Z80: emulated "ex (sp),hl" instruction - Z80: fixed INx NF (should be set instead of cleared) - Z80: fixed loop condition check for CPxR, INxR, LDxR, OTxR (fixes walking in Wonder Boy) - SFC: removed Debugger and sfc/debugger.hpp - icarus: connected MS, GG, MD importing to the scan dialog - PCE: added emulation skeleton to higan and icarus At this point, Master System games are fairly highly compatible, sans audio. Game Gear games are running, but I need to crop the resolution and support the higher color palette that they can utilize. It's really something else the way they handled the resolution shrink on that thing. The last change is obviously going to be the biggest news. I'm very well aware it's not an ideal time to start on a new emulation core, with the MS and MD cores only just now coming to life with no audio support. But, for whatever reason, my heart's really set on working on the PC Engine. I wanted to write the final higan skeleton core, and get things ready so that whenever I'm in the mood to work on the PCE, I can do so. The skeleton is far and away the most tedious and obnoxious part of the emulator development, because it's basically all just lots of boilerplate templated code, lots of new files to create, etc. I really don't know how things are going to proceed ... but I can say with 99.9% certainty that this will be the final brand new core ever added to higan -- at least one written by me, that is. This was basically the last system from my childhood that I ever cared about. It's the last 2D system with games that I really enjoy playing. No other system is worth dividing my efforts and reducing the quality and amount of time to work on the systems I have. In the future, there will be potential for FDS, Mega CD and PCE-CD support. But those will all be add-ons, and they'll all be really difficult and challenge the entire design of higan's UI (it's entirely cartridge-driven at this time.) None of them will be entirely new cores like this one. |
|
Tim Allen | 79c83ade70 |
Update to v101r29 release.
byuu says: Changelog: - SMS: background VDP clips partial tiles on the left (math may not be right ... it's hard to reason about) - SMS: fix background VDP scroll locks - SMS: fix VDP sprite coordinates - SMS: paint black after the end of the visible display - todo: shouldn't be a brute force at the end of the main VDP loop, should happen in each rendering unit - higan: removed emulator/debugger.hpp - higan: removed privileged: access specifier - SFC: removed debugger hooks - todo: remove sfc/debugger.hpp - Z80: fixed disassembly of (fd,dd) cb (displacement) (opcode) instructions - Z80: fix to prevent interrupts from firing between ix/iy prefixes and opcodes - todo: this is a rather hacky fix that could, if exploited, crash the stack frame - Z80: fix BIT flags - Z80: fix ADD hl,reg flags - Z80: fix CPD, CPI flags - Z80: fix IND, INI flags - Z80: fix INDR, INIT loop flag check - Z80: fix OUTD, OUTI flags - Z80: fix OTDR, OTIR loop flag check |
|
Tim Allen | a3aea95e6b |
Update to v101r28 release.
byuu says: Changelog: - SMS: emulated the remaining 240 instructions in the (0xfd, 0xdd) 0xcb (displacement) (opcode) set - 1/8th of these were "legal" instructions, and apparently games use them a lot - SMS: emulated the standard gamepad controllers - reset button not emulated yet The reset button is tricky. In every other case, reset is a hardware thing that instantly reboots the entire machine. But on the SMS, it's more like a gamepad button that's attached to the front of the device. When you press it, it fires off a reset vector interrupt and the gamepad polling routine lets you query the status of the button. Just having a reset option in the "Master System" hardware menu is not sufficient to fully emulate the behavior. Even more annoying is that the Game Gear doesn't have such a button, yet the core information structs aren't flexible enough for the Master System to have it, and the Game Gear to not have it, in the main menu. But that doesn't matter anyway, since it won't work having it in the menu for the Master System. So as a result, I'm going to have to have a new "input device" called "Hardware" that has the "Reset" button listed under there. And for the sake of consistency, I'm not sure if we should treat the other systems the same way or not :/ |
|
Tim Allen | 569f5abc28 |
Update to v101r27 release.
byuu says: Changelog: - SMS: emulated the generic Sega memory mapper (none of the more limited forms of it yet) - (missing ROM shift, ROM write enable emulation -- no commercial games use either, though) - SMS: bus I/O returns 0xff instead of 0x00 so games don't think every key is being pressed at once - (this is a hack until I implement proper controller pad reading) - SMS: very limited protection against reading/writing past the end of ROM/RAM (todo: should mirror) - SMS: VDP background HSCROLL subtracts, rather than adds, to the offset (unlike VSCROLL) - SMS: VDP VSCROLL is 9-bit, modulates voffset+vscroll to 224 in 192-line mode (32x28 tilemap) - SMS: VDP tiledata for backgrounds and sprites use `7-(x&7)` rather than `(x&7)` - SMS: fix output color to be 6-bit rather than 5-bit - SMS: left clip uses register `#7`, not palette color `#7` - (todo: do we want `color[reg7]` or `color[16 + reg7]`?) - SMS: refined handling of 0xcb, 0xed prefixes in the Z80 core and its disassembler - SMS: emulated (0xfd, 0xdd) 0xcb opcodes 0x00-0x0f (still missing 0x10-0xff) - SMS: fixed 0xcb 0b-----110 opcodes to use direct HL and never allow (IX,IY)+d - SMS: fixed major logic bug in (IX,IY)+d displacement - (was using `read(x)` instead of `operand()` for the displacement byte fetch before) - icarus: fake there always being 32KiB of RAM in all SMS cartridges for the time being - (not sure how to detect this stuff yet; although I've read it's not even really possible `>_>`) TODO: remove processor/z80/dissassembler.cpp code block at line 396 (as it's unnecessary.) Lots of commercial games are starting to show trashed graphical output now. |
|
Tim Allen | e30780bb72 |
Update to v101r25 release.
byuu says: Changelog: - Makefile: added $(windres), -lpthread to Windows port - GBA: WAITCNT.prefetch is not writable (should fix Donkey Kong: King of Swing) \[endrift\] - SMS: fixed hcounter shift value \[hex\_usr\] - SMS: emulated interrupts (reset button isn't hooked up anywhere, not sure where to put it yet) This WIP actually took a really long time because the documentation on SMS interrupts was all over the place. I'm hoping I've emulated them correctly, but I honestly have no idea. It's based off my best understanding from four or five different sources. So it's probably quite buggy. However, a few interrupts fire in Sonic the Hedgehog, so that's something to start with. Now I just have to hope I've gotten some games far enough in that I can start seeing some data in the VDP VRAM. I need that before I can start emulating graphics mode 4 to get some actual screen output. Or I can just say to hell with it and use a "Hello World" test ROM. That'd probably be smarter. |