pcsx2/common/src/Utilities/ThreadTools.cpp

626 lines
17 KiB
C++
Raw Normal View History

/* PCSX2 - PS2 Emulator for PCs
* Copyright (C) 2002-2009 PCSX2 Dev Team
*
* PCSX2 is free software: you can redistribute it and/or modify it under the terms
* of the GNU Lesser General Public License as published by the Free Software Found-
* ation, either version 3 of the License, or (at your option) any later version.
*
* PCSX2 is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY;
* without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR
* PURPOSE. See the GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License along with PCSX2.
* If not, see <http://www.gnu.org/licenses/>.
*/
#include "PrecompiledHeader.h"
#include "Threading.h"
#include "wxBaseTools.h"
#include <wx/datetime.h>
#include <wx/thread.h>
#include <wx/app.h>
#ifdef __LINUX__
# include <signal.h> // for pthread_kill, which is in pthread.h on w32-pthreads
#endif
using namespace Threading;
namespace Threading
{
static const wxTimeSpan ts_msec_250( 0, 0, 0, 250 );
static void _pt_callback_cleanup( void* handle )
{
((PersistentThread*)handle)->_ThreadCleanup();
}
PersistentThread::PersistentThread() :
m_name( L"PersistentThread" )
, m_thread()
, m_sem_event()
, m_sem_finished()
, m_lock_start( true ) // recursive mutexing!
, m_detached( true ) // start out with m_thread in detached/invalid state
, m_running( false )
{
}
// This destructor performs basic "last chance" cleanup, which is a blocking join
// against the thread. Extending classes should almost always implement their own
// thread closure process, since any PersistentThread will, by design, not terminate
// unless it has been properly canceled.
//
// Thread safetly: This class must not be deleted from its own thread. That would be
// like marrying your sister, and then cheating on her with your daughter.
PersistentThread::~PersistentThread() throw()
{
try
{
wxString logfix = L"Thread Destructor for " + m_name;
if( m_running )
{
Console.WriteLn( logfix + L": Waiting for running thread to end.");
#if wxUSE_GUI
m_sem_finished.WaitGui();
#else
m_sem_finished.Wait();
#endif
// Need to lock here so that the thread can finish shutting down before
// it gets destroyed, otherwise th mutex handle would become invalid.
ScopedLock locker( m_lock_start );
}
else
Console.WriteLn( logfix + L": thread not running.");
Sleep( 1 );
Detach();
}
DESTRUCTOR_CATCHALL
}
// Main entry point for starting or e-starting a persistent thread. This function performs necessary
// locks and checks for avoiding race conditions, and then calls OnStart() immeediately before
// the actual thread creation. Extending classes should generally not override Start(), and should
// instead override DoPrepStart instead.
//
// This function should not be called from the owner thread.
void PersistentThread::Start()
{
ScopedLock startlock( m_lock_start ); // Prevents sudden parallel startup
if( m_running ) return;
Detach(); // clean up previous thread handle, if one exists.
m_sem_finished.Reset();
OnStart();
if( pthread_create( &m_thread, NULL, _internal_callback, this ) != 0 )
throw Exception::ThreadCreationError();
m_detached = false;
}
// Returns: TRUE if the detachment was performed, or FALSE if the thread was
// already detached or isn't running at all.
// This function should not be called from the owner thread.
bool PersistentThread::Detach()
{
wxASSERT( !IsSelf() ); // not allowed from our own thread.
if( _InterlockedExchange( &m_detached, true ) ) return false;
pthread_detach( m_thread );
return true;
}
// Remarks:
// Provision of non-blocking Cancel() is probably academic, since destroying a PersistentThread
// object performs a blocking Cancel regardless of if you explicitly do a non-blocking Cancel()
// prior, since the ExecuteTask() method requires a valid object state. If you really need
// fire-and-forget behavior on threads, use pthreads directly for now.
//
// This function should not be called from the owner thread.
//
// Parameters:
// isBlocking - indicates if the Cancel action should block for thread completion or not.
//
void PersistentThread::Cancel( bool isBlocking )
{
wxASSERT( !IsSelf() );
if( !m_running ) return;
if( m_detached )
{
Console.Notice( "Threading Warning: Attempted to cancel detached thread; Ignoring..." );
return;
}
pthread_cancel( m_thread );
if( isBlocking )
{
#if wxUSE_GUI
m_sem_finished.WaitGui();
#else
m_sem_finished.Wait();
#endif
}
}
// Blocks execution of the calling thread until this thread completes its task. The
// caller should make sure to signal the thread to exit, or else blocking may deadlock the
// calling thread. Classes which extend PersistentThread should override this method
// and signal any necessary thread exit variables prior to blocking.
//
// Returns the return code of the thread.
// This method is roughly the equivalent of pthread_join().
//
void PersistentThread::Block()
{
pxAssertDev( !IsSelf(), "Thread deadlock detected; Block() should never be called by the owner thread." );
if( m_running )
#if wxUSE_GUI
m_sem_finished.WaitGui();
#else
m_sem_finished.Wait();
#endif
}
bool PersistentThread::IsSelf() const
{
return pthread_self() == m_thread;
}
bool PersistentThread::IsRunning() const
{
return !!m_running;
}
// Throws an exception if the thread encountered one. Uses the BaseException's Rethrow() method,
// which ensures the exception type remains consistent. Debuggable stacktraces will be lost, since
// the thread will have allowed itself to terminate properly.
void PersistentThread::RethrowException() const
{
if( !m_except ) return;
m_except->Rethrow();
}
// invoked internally when canceling or exiting the thread. Extending classes should implement
// OnThreadCleanup() to extend clenup functionality.
void PersistentThread::_ThreadCleanup()
{
wxASSERT( IsSelf() ); // only allowed from our own thread, thanks.
// Typically thread cleanup needs to lock against thread startup, since both
// will perform some measure of variable inits or resets, depending on how the
// derrived class is implemented.
ScopedLock startlock( m_lock_start );
OnThreadCleanup();
m_running = false;
m_sem_finished.Post();
}
wxString PersistentThread::GetName() const
{
return m_name;
}
void PersistentThread::_internal_execute()
{
m_running = true;
DoSetThreadName( m_name );
try {
ExecuteTask();
}
catch( std::logic_error& ex )
{
throw Exception::LogicError( wxsFormat( L"(thread: %s) STL Logic Error: %s\n\t%s",
GetName().c_str(), wxString::FromUTF8( ex.what() ) )
);
}
catch( Exception::LogicError& ex )
{
m_except->DiagMsg() = wxsFormat( L"(thread:%s) ", GetName() ) + m_except->DiagMsg();
ex.Rethrow();
}
catch( std::runtime_error& ex )
{
m_except = new Exception::RuntimeError(
// Diagnostic message:
wxsFormat( L"(thread: %s) STL Runtime Error: %s\n\t%s",
GetName().c_str(), wxString::FromUTF8( ex.what() )
),
// User Message (not translated, std::exception doesn't have that kind of fancy!
wxsFormat( L"A runtime error occurred in %s:\n\n%s (STL)",
GetName().c_str(), wxString::FromUTF8( ex.what() )
)
);
}
catch( Exception::RuntimeError& ex )
{
m_except = ex.Clone();
m_except->DiagMsg() = wxsFormat( L"(thread:%s) ", GetName() ) + m_except->DiagMsg();
}
}
void PersistentThread::OnStart() {}
void PersistentThread::OnThreadCleanup() {}
void* PersistentThread::_internal_callback( void* itsme )
{
jASSUME( itsme != NULL );
PersistentThread& owner = *((PersistentThread*)itsme);
pthread_cleanup_push( _pt_callback_cleanup, itsme );
owner._internal_execute();
pthread_cleanup_pop( true );
return NULL;
}
void PersistentThread::DoSetThreadName( const wxString& name )
{
DoSetThreadName( toUTF8(name) );
}
void PersistentThread::DoSetThreadName( __unused const char* name )
{
wxASSERT( IsSelf() ); // only allowed from our own thread, thanks.
#ifdef _WINDOWS_
// This code sample was borrowed form some obscure MSDN article.
// In a rare bout of sanity, it's an actual Micrsoft-published hack
// that actually works!
static const int MS_VC_EXCEPTION = 0x406D1388;
#pragma pack(push,8)
struct THREADNAME_INFO
{
DWORD dwType; // Must be 0x1000.
LPCSTR szName; // Pointer to name (in user addr space).
DWORD dwThreadID; // Thread ID (-1=caller thread).
DWORD dwFlags; // Reserved for future use, must be zero.
};
#pragma pack(pop)
THREADNAME_INFO info;
info.dwType = 0x1000;
info.szName = name;
info.dwThreadID = GetCurrentThreadId();
info.dwFlags = 0;
__try
{
RaiseException( MS_VC_EXCEPTION, 0, sizeof(info)/sizeof(ULONG_PTR), (ULONG_PTR*)&info );
}
__except(EXCEPTION_EXECUTE_HANDLER)
{
}
#endif
}
// --------------------------------------------------------------------------------------
// BaseTaskThread Implementations
// --------------------------------------------------------------------------------------
// Tells the thread to exit and then waits for thread termination.
void BaseTaskThread::Block()
{
if( !IsRunning() ) return;
m_Done = true;
m_sem_event.Post();
PersistentThread::Block();
}
// Initiates the new task. This should be called after your own StartTask has
// initialized internal variables / preparations for task execution.
void BaseTaskThread::PostTask()
{
wxASSERT( !m_detached );
ScopedLock locker( m_lock_TaskComplete );
m_TaskPending = true;
m_post_TaskComplete.Reset();
m_sem_event.Post();
}
// Blocks current thread execution pending the completion of the parallel task.
void BaseTaskThread::WaitForResult()
{
if( m_detached || !m_running ) return;
if( m_TaskPending )
#ifdef wxUSE_GUI
m_post_TaskComplete.WaitGui();
#else
m_post_TaskComplete.Wait();
#endif
m_post_TaskComplete.Reset();
}
void BaseTaskThread::ExecuteTask()
{
while( !m_Done )
{
// Wait for a job -- or get a pthread_cancel. I'm easy.
m_sem_event.Wait();
Task();
m_lock_TaskComplete.Lock();
m_TaskPending = false;
m_post_TaskComplete.Post();
m_lock_TaskComplete.Unlock();
};
return;
}
// --------------------------------------------------------------------------------------
// pthread Cond is an evil api that is not suited for Pcsx2 needs.
// Let's not use it. (Air)
// --------------------------------------------------------------------------------------
#if 0
WaitEvent::WaitEvent()
{
int err = 0;
err = pthread_cond_init(&cond, NULL);
err = pthread_mutex_init(&mutex, NULL);
}
WaitEvent::~WaitEvent()
{
pthread_cond_destroy( &cond );
pthread_mutex_destroy( &mutex );
}
void WaitEvent::Set()
{
pthread_mutex_lock( &mutex );
pthread_cond_signal( &cond );
pthread_mutex_unlock( &mutex );
}
void WaitEvent::Wait()
{
pthread_mutex_lock( &mutex );
pthread_cond_wait( &cond, &mutex );
pthread_mutex_unlock( &mutex );
}
#endif
// --------------------------------------------------------------------------------------
// Semaphore Implementations
// --------------------------------------------------------------------------------------
Semaphore::Semaphore()
{
sem_init( &sema, false, 0 );
}
Semaphore::~Semaphore()
{
sem_destroy( &sema );
}
void Semaphore::Reset()
{
sem_destroy( &sema );
sem_init( &sema, false, 0 );
}
void Semaphore::Post()
{
sem_post( &sema );
}
// Valid on Win32 builds only!! Attempts to use it on Linux will result in unresolved
// external linker errors.
void Semaphore::Post( int multiple )
{
#if defined(_MSC_VER)
sem_post_multiple( &sema, multiple );
#else
// Only w32pthreads has the post_multiple, but it's easy enough to fake:
while( multiple > 0 )
{
multiple--;
sem_post( &sema );
}
#endif
}
#if wxUSE_GUI
// This is a wxApp-safe implementation of Wait, which makes sure and executes the App's
// pending messages *if* the Wait is performed on the Main/GUI thread. If the Wait is
// called from another thread, no message pumping is performed.
void Semaphore::WaitGui()
{
if( !wxThread::IsMain() || (wxTheApp == NULL) )
Wait();
else
{
// In order to avoid deadlock we need to make sure we cut some time
// to handle messages.
do {
wxTheApp->Yield();
} while( !Wait( ts_msec_250 ) );
}
}
bool Semaphore::WaitGui( const wxTimeSpan& timeout )
{
if( !wxThread::IsMain() || (wxTheApp == NULL) )
{
return Wait( timeout );
}
else
{
wxTimeSpan countdown( (timeout) );
// In order to avoid deadlock we need to make sure we cut some time
// to handle messages.
do {
wxTheApp->Yield();
if( Wait( ts_msec_250 ) ) break;
countdown -= ts_msec_250;
} while( countdown.GetMilliseconds() > 0 );
return countdown.GetMilliseconds() > 0;
}
}
#endif
void Semaphore::Wait()
{
sem_wait( &sema );
}
bool Semaphore::Wait( const wxTimeSpan& timeout )
{
wxDateTime megafail( wxDateTime::UNow() + timeout );
const timespec fail = { megafail.GetTicks(), megafail.GetMillisecond() * 1000000 };
return sem_timedwait( &sema, &fail ) != -1;
}
// Performs an uncancellable wait on a semaphore; restoring the thread's previous cancel state
// after the wait has completed. Useful for situations where the semaphore itself is stored on
// the stack and passed to another thread via GUI message or such, avoiding complications where
// the thread might be canceled and the stack value becomes invalid.
//
// Performance note: this function has quite a bit more overhead compared to Semaphore::Wait(), so
// consider manually specifying the thread as uncancellable and using Wait() instead if you need
// to do a lot of no-cancel waits in a tight loop worker thread, for example.
void Semaphore::WaitNoCancel()
{
int oldstate;
pthread_setcancelstate( PTHREAD_CANCEL_DISABLE, &oldstate );
Wait();
pthread_setcancelstate( oldstate, NULL );
}
int Semaphore::Count()
{
int retval;
sem_getvalue( &sema, &retval );
return retval;
}
// --------------------------------------------------------------------------------------
// MutexLock Implementations
// --------------------------------------------------------------------------------------
MutexLock::MutexLock()
{
int err = 0;
err = pthread_mutex_init( &mutex, NULL );
}
MutexLock::MutexLock( bool isRecursive )
{
if( isRecursive )
{
pthread_mutexattr_t mutexAttribute;
int status = pthread_mutexattr_init( &mutexAttribute );
if (status != 0) { /* ... */ }
status = pthread_mutexattr_settype( &mutexAttribute, PTHREAD_MUTEX_RECURSIVE);
if (status != 0) { /* ... */}
int err = 0;
err = pthread_mutex_init( &mutex, &mutexAttribute );
}
else
{
int err = 0;
err = pthread_mutex_init( &mutex, NULL );
}
}
MutexLock::~MutexLock()
{
pthread_mutex_destroy( &mutex );
}
void MutexLock::Lock()
{
pthread_mutex_lock( &mutex );
}
void MutexLock::Unlock()
{
pthread_mutex_unlock( &mutex );
}
bool MutexLock::TryLock()
{
return EBUSY != pthread_mutex_trylock( &mutex );
}
// --------------------------------------------------------------------------------------
// InterlockedExchanges / AtomicExchanges (PCSX2's Helper versions)
// --------------------------------------------------------------------------------------
// define some overloads for InterlockedExchanges for commonly used types, like u32 and s32.
__forceinline void AtomicExchange( volatile u32& Target, u32 value )
{
_InterlockedExchange( (volatile long*)&Target, value );
}
__forceinline void AtomicExchangeAdd( volatile u32& Target, u32 value )
{
_InterlockedExchangeAdd( (volatile long*)&Target, value );
}
__forceinline void AtomicIncrement( volatile u32& Target )
{
_InterlockedExchangeAdd( (volatile long*)&Target, 1 );
}
__forceinline void AtomicDecrement( volatile u32& Target )
{
_InterlockedExchangeAdd( (volatile long*)&Target, -1 );
}
__forceinline void AtomicExchange( volatile s32& Target, s32 value )
{
_InterlockedExchange( (volatile long*)&Target, value );
}
__forceinline void AtomicExchangeAdd( s32& Target, u32 value )
{
_InterlockedExchangeAdd( (volatile long*)&Target, value );
}
__forceinline void AtomicIncrement( volatile s32& Target )
{
_InterlockedExchangeAdd( (volatile long*)&Target, 1 );
}
__forceinline void AtomicDecrement( volatile s32& Target )
{
_InterlockedExchangeAdd( (volatile long*)&Target, -1 );
}
__forceinline void _AtomicExchangePointer( const void ** target, const void* value )
{
_InterlockedExchange( (volatile long*)target, (long)value );
}
__forceinline void _AtomicCompareExchangePointer( const void ** target, const void* value, const void* comparand )
{
_InterlockedCompareExchange( (volatile long*)target, (long)value, (long)comparand );
}
}