pcsx2/common/src/Utilities/ThreadTools.cpp

460 lines
12 KiB
C++
Raw Normal View History

/* Pcsx2 - Pc Ps2 Emulator
* Copyright (C) 2002-2009 Pcsx2 Team
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA
*/
#include "PrecompiledHeader.h"
#include "Threading.h"
#include <wx/datetime.h>
#include <wx/thread.h>
#include <wx/app.h>
#ifdef __LINUX__
# include <signal.h> // for pthread_kill, which is in pthread.h on w32-pthreads
#endif
using namespace Threading;
namespace Threading
{
static const timespec ts_msec_200 = { 0, 200 * 1000000 };
static void _pt_callback_cleanup( void* handle )
{
((PersistentThread*)handle)->DoThreadCleanup();
}
PersistentThread::PersistentThread() :
m_thread()
, m_sem_event()
, m_sem_finished()
, m_returncode( 0 )
, m_detached( false )
, m_running( false )
{
}
// This destructor performs basic "last chance" cleanup, which is a blocking
// join against non-detached threads. Detached threads are unhandled.
// Extending classes should always implement their own thread closure process.
// This class must not be deleted from its own thread. That would be like marrying
// your sister, and then cheating on her with your daughter.
PersistentThread::~PersistentThread()
{
if( !m_running ) return;
wxASSERT( !IsSelf() ); // not allowed from our own thread.
if( !_InterlockedExchange( &m_detached, true ) )
{
#if wxUSE_GUI
m_sem_finished.WaitGui();
#else
m_sem_finished.Wait();
#endif
m_running = false;
}
}
// This function should not be called from the owner thread.
void PersistentThread::Start()
{
if( m_running ) return;
m_sem_finished.Reset();
if( pthread_create( &m_thread, NULL, _internal_callback, this ) != 0 )
throw Exception::ThreadCreationError();
m_running = true;
}
// This function should not be called from the owner thread.
void PersistentThread::Detach()
{
if( !m_running ) return;
if( _InterlockedExchange( &m_detached, true ) ) return;
wxASSERT( !IsSelf() ); // not allowed from our own thread.
pthread_detach( m_thread );
}
// Remarks:
// Provision of non-blocking Cancel() is probably academic, since destroying a PersistentThread
// object performs a blocking Cancel regardless of if you explicitly do a non-blocking Cancel()
// prior, since the ExecuteTask() method requires a valid object state. If you really need
// fire-and-forget behavior on threads, use pthreads directly for now.
//
// This function should not be called from the owner thread.
//
// Parameters:
// isBlocking - indicates if the Cancel action should block for thread completion or not.
//
void PersistentThread::Cancel( bool isBlocking )
{
if( !m_running ) return;
if( _InterlockedExchange( &m_detached, true ) )
{
Console::Notice( "Threading Warning: Attempted to cancel detached thread; Ignoring..." );
return;
}
wxASSERT( !IsSelf() );
pthread_cancel( m_thread );
if( isBlocking )
{
#if wxUSE_GUI
m_sem_finished.WaitGui();
#else
m_sem_finished.Wait();
#endif
}
else
pthread_detach( m_thread );
m_running = false;
}
// Blocks execution of the calling thread until this thread completes its task. The
// caller should make sure to signal the thread to exit, or else blocking may deadlock the
// calling thread. Classes which extend PersistentThread should override this method
// and signal any necessary thread exit variables prior to blocking.
//
// Returns the return code of the thread.
// This method is roughly the equivalent of pthread_join().
//
sptr PersistentThread::Block()
{
if( _InterlockedExchange( &m_detached, true ) )
{
// already detached: if we're still running then its an invalid operation
if( m_running )
throw Exception::InvalidOperation( "Blocking on detached threads requires manual semaphore implementation." );
return m_returncode;
}
else
{
DevAssert( !IsSelf(), "Thread deadlock detected; Block() should never be called by the owner thread." );
#if wxUSE_GUI
m_sem_finished.WaitGui();
#else
m_sem_finished.Wait();
#endif
return m_returncode;
}
}
bool PersistentThread::IsSelf() const
{
return pthread_self() == m_thread;
}
bool PersistentThread::IsRunning() const
{
if( !!m_detached )
return !!m_running;
else
return ( ESRCH != pthread_kill( m_thread, 0 ) );
}
// Exceptions:
// InvalidOperation - thrown if the thread is still running or has never been started.
//
sptr PersistentThread::GetReturnCode() const
{
if( IsRunning() )
throw Exception::InvalidOperation( "Thread.GetReturnCode : thread is still running." );
return m_returncode;
}
// invoked when canceling or exiting the thread.
void PersistentThread::DoThreadCleanup()
{
wxASSERT( IsSelf() ); // only allowed from our own thread, thanks.
_InterlockedExchange( &m_running, false );
m_sem_finished.Post();
}
void* PersistentThread::_internal_callback( void* itsme )
{
jASSUME( itsme != NULL );
PersistentThread& owner = *((PersistentThread*)itsme);
pthread_cleanup_push( _pt_callback_cleanup, itsme );
owner.m_returncode = owner.ExecuteTask();
pthread_cleanup_pop( true );
return (void*)owner.m_returncode;
}
// pthread Cond is an evil api that is not suited for Pcsx2 needs.
// Let's not use it. (Air)
#if 0
WaitEvent::WaitEvent()
{
int err = 0;
err = pthread_cond_init(&cond, NULL);
err = pthread_mutex_init(&mutex, NULL);
}
WaitEvent::~WaitEvent()
{
pthread_cond_destroy( &cond );
pthread_mutex_destroy( &mutex );
}
void WaitEvent::Set()
{
pthread_mutex_lock( &mutex );
pthread_cond_signal( &cond );
pthread_mutex_unlock( &mutex );
}
void WaitEvent::Wait()
{
pthread_mutex_lock( &mutex );
pthread_cond_wait( &cond, &mutex );
pthread_mutex_unlock( &mutex );
}
#endif
Semaphore::Semaphore()
{
sem_init( &sema, false, 0 );
}
Semaphore::~Semaphore()
{
sem_destroy( &sema );
}
void Semaphore::Reset()
{
sem_destroy( &sema );
sem_init( &sema, false, 0 );
}
void Semaphore::Post()
{
sem_post( &sema );
}
// Valid on Win32 builds only!! Attempts to use it on Linux will result in unresolved
// external linker errors.
#if defined(_MSC_VER)
void Semaphore::Post( int multiple )
{
sem_post_multiple( &sema, multiple );
}
#endif
#if wxUSE_GUI
// This is a wxApp-safe implementation of Wait, which makes sure and executes the App's
// pending messages *if* the Wait is performed on the Main/GUI thread. If the Wait is
// called from another thread, no message pumping is performed.
void Semaphore::WaitGui()
{
if( !wxThread::IsMain() || (wxTheApp == NULL) )
Wait();
else
{
// In order to avoid deadlock we need to make sure we cut some time
// to handle messages. I choose 200ms:
do {
wxTheApp->ProcessPendingEvents();
} while( (sem_timedwait( &sema, &ts_msec_200 ) == -1) && (errno == ETIMEDOUT) );
}
}
bool Semaphore::WaitGui( const wxTimeSpan& timeout )
{
if( !wxThread::IsMain() || (wxTheApp == NULL) )
{
return Wait( timeout );
}
else
{
wxTimeSpan countdown( (timeout) );
// In order to avoid deadlock we need to make sure we cut some time
// to handle messages. I choose 200ms:
static const wxTimeSpan pass( 0, 0, 0, 200 );
do {
wxTheApp->ProcessPendingEvents();
if( (sem_timedwait( &sema, &ts_msec_200 ) == -1) && (errno == ETIMEDOUT) )
break;
countdown -= pass;
} while( countdown.GetMilliseconds() > 0 );
return countdown.GetMilliseconds() > 0;
}
}
#endif
void Semaphore::Wait()
{
sem_wait( &sema );
}
bool Semaphore::Wait( const wxTimeSpan& timeout )
{
const timespec fail = { timeout.GetSeconds().GetLo(), 0 };
return sem_timedwait( &sema, &fail ) != -1;
}
// Performs an uncancellable wait on a semaphore; restoring the thread's previous cancel state
// after the wait has completed. Useful for situations where the semaphore itself is stored on
// the stack and passed to another thread via GUI message or such, avoiding complications where
// the thread might be canceled and the stack value becomes invalid.
//
// Performance note: this function has quite a bit more overhead compared to Semaphore::Wait(), so
// consider manually specifying the thread as uncancellable and using Wait() instead if you need
// to do a lot of no-cancel waits in a tight loop worker thread, for example.
void Semaphore::WaitNoCancel()
{
int oldstate;
pthread_setcancelstate( PTHREAD_CANCEL_DISABLE, &oldstate );
Wait();
pthread_setcancelstate( oldstate, NULL );
}
int Semaphore::Count()
{
int retval;
sem_getvalue( &sema, &retval );
return retval;
}
MutexLock::MutexLock()
{
int err = 0;
err = pthread_mutex_init( &mutex, NULL );
}
MutexLock::MutexLock( bool isRecursive )
{
if( isRecursive )
{
pthread_mutexattr_t mutexAttribute;
int status = pthread_mutexattr_init( &mutexAttribute );
if (status != 0) { /* ... */ }
status = pthread_mutexattr_settype( &mutexAttribute, PTHREAD_MUTEX_RECURSIVE);
if (status != 0) { /* ... */}
int err = 0;
err = pthread_mutex_init( &mutex, &mutexAttribute );
}
else
{
int err = 0;
err = pthread_mutex_init( &mutex, NULL );
}
}
MutexLock::~MutexLock()
{
pthread_mutex_destroy( &mutex );
}
void MutexLock::Lock()
{
pthread_mutex_lock( &mutex );
}
void MutexLock::Unlock()
{
pthread_mutex_unlock( &mutex );
}
//////////////////////////////////////////////////////////////////////
// define some overloads for InterlockedExchanges
// for commonly used types, like u32 and s32.
__forceinline long pcsx2_InterlockedExchange( volatile long* target, long srcval )
{
return _InterlockedExchange( target, srcval );
}
__forceinline long pcsx2_InterlockedCompareExchange( volatile long* target, long srcval, long comp )
{
// Use the pthreads-win32 implementation...
return _InterlockedCompareExchange( target, srcval, comp );
}
__forceinline long pcsx2_InterlockedExchangeAdd( volatile long* target, long srcval )
{
return _InterlockedExchangeAdd( target, srcval );
}
__forceinline void AtomicExchange( volatile u32& Target, u32 value )
{
pcsx2_InterlockedExchange( (volatile long*)&Target, value );
}
__forceinline void AtomicExchangeAdd( volatile u32& Target, u32 value )
{
pcsx2_InterlockedExchangeAdd( (volatile long*)&Target, value );
}
__forceinline void AtomicIncrement( volatile u32& Target )
{
pcsx2_InterlockedExchangeAdd( (volatile long*)&Target, 1 );
}
__forceinline void AtomicDecrement( volatile u32& Target )
{
pcsx2_InterlockedExchangeAdd( (volatile long*)&Target, -1 );
}
__forceinline void AtomicExchange( volatile s32& Target, s32 value )
{
pcsx2_InterlockedExchange( (volatile long*)&Target, value );
}
__forceinline void AtomicExchangeAdd( s32& Target, u32 value )
{
pcsx2_InterlockedExchangeAdd( (volatile long*)&Target, value );
}
__forceinline void AtomicIncrement( volatile s32& Target )
{
pcsx2_InterlockedExchangeAdd( (volatile long*)&Target, 1 );
}
__forceinline void AtomicDecrement( volatile s32& Target )
{
pcsx2_InterlockedExchangeAdd( (volatile long*)&Target, -1 );
}
__forceinline void _AtomicExchangePointer( const void ** target, const void* value )
{
pcsx2_InterlockedExchange( (volatile long*)target, (long)value );
}
__forceinline void _AtomicCompareExchangePointer( const void ** target, const void* value, const void* comparand )
{
pcsx2_InterlockedCompareExchange( (volatile long*)target, (long)value, (long)comparand );
}
}