melonDS/src/DSi.cpp

3210 lines
100 KiB
C++
Raw Normal View History

2019-06-13 11:59:11 +00:00
/*
2022-01-09 01:15:50 +00:00
Copyright 2016-2022 melonDS team
2019-06-13 11:59:11 +00:00
This file is part of melonDS.
melonDS is free software: you can redistribute it and/or modify it under
the terms of the GNU General Public License as published by the Free
Software Foundation, either version 3 of the License, or (at your option)
any later version.
melonDS is distributed in the hope that it will be useful, but WITHOUT ANY
WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details.
You should have received a copy of the GNU General Public License along
with melonDS. If not, see http://www.gnu.org/licenses/.
*/
2019-06-13 12:41:54 +00:00
2019-06-15 11:46:20 +00:00
#include <stdio.h>
#include <string.h>
#include <inttypes.h>
2019-06-15 11:09:11 +00:00
#include "NDS.h"
2019-06-13 12:41:54 +00:00
#include "DSi.h"
#include "ARM.h"
2019-06-20 00:31:46 +00:00
#include "GPU.h"
#include "NDSCart.h"
#include "SPI.h"
#include "DSi_SPI_TSC.h"
2019-06-15 11:09:11 +00:00
#include "Platform.h"
#ifdef JIT_ENABLED
#include "ARMJIT.h"
#include "ARMJIT_Memory.h"
#endif
#include "DSi_NDMA.h"
2019-06-15 14:58:02 +00:00
#include "DSi_I2C.h"
2019-06-16 15:01:49 +00:00
#include "DSi_SD.h"
#include "DSi_AES.h"
#include "DSi_NAND.h"
#include "DSi_DSP.h"
2020-09-08 18:19:37 +00:00
#include "DSi_Camera.h"
2019-06-15 14:58:02 +00:00
#include "tiny-AES-c/aes.hpp"
Assorted portability enhancements (#1800) * Introduce some Platform calls for managing dynamic libraries * Add Platform::WriteFATSectors * Introduce some Platform calls for managing dynamic libraries * Add Platform::WriteFATSectors * Change includes of "../types.h" to "types.h" - Makes it easier to directly include these headers in downstream projects * Change an include of "../Wifi.h" to "Wifi.h" * Allow CommonFuncs.cpp to compile on Android * Tidy up some logging calls - Use Platform::Log in LAN_Socket.cpp - Soften some warnings to Debug logs (since they don't necessarily represent problems) * Add Platform::EnterGBAMode - Gracefully stop the emulator if trying to enter GBA mode * Soften some logs that most players won't care about * Soften some more logs * Introduce Platform wrappers for file operations * Fix pointer spacing * Fix more style nits * Log the errno when ftruncate fails * Fix FileSeek offset argument - With an s32 offset, we couldn't access files larger than 2GB * Revise Platform::StopEmu to address feedback - Remove Platform::EnterGBAMode in favor of adding a reason to Platform::StopEmu - Also rename Platform::StopEmu to Platform::SignalStop - Add an optional argument to NDS::Stop - Use the new argument everywhere that the console stops itself * Rename FileGetString to FileReadLine - It conveys the meaning better * Rename FileSeekOrigin::Set to Start - It conveys the meaning better * Change definition of FileGetString to FileReadLine - Oops, almost forgot it * Rename FlushFile to FileFlush - To remain consistent with the other File functions * Add a FileType usage * Fix line break in FileSeekOrigin * Document Platform::DeInit * Clarify that StopReason::Unknown doesn't always mean an error * Move and document FileType::HostFile * Remove Platform::OpenDataFile - Nothing currently uses it * Refactor Platform::OpenFile and Platform::OpenLocalFile to accept a FileMode enum instead of a string - The enum is converted to fopen flags under the hood - The file type is used to decide whether to add the "b" flag - Some helper functions are exposed for the benefit of consistent behavior among frontends - Equivalent behavior is maintained * Fix a tab that should be spaces * Use Windows' 64-bit implementations of fseek/ftell * Move Platform::IsBinaryFile to Platform.cpp - It could vary by frontend * Remove an unused FileType * Rename an enum constant * Document various Platform items * Use Platform::DynamicLibrary to load libandroid - And clean it up at the end * Fix a typo * Pass the correct filetype to FATStorage - Since it can be used for DSI NAND images or for SD cards * Remove Platform::FileType
2023-08-18 20:50:57 +00:00
using namespace Platform;
2019-06-13 12:41:54 +00:00
namespace DSi
{
u16 SCFG_BIOS;
u16 SCFG_Clock9;
u16 SCFG_Clock7;
u32 SCFG_EXT[2];
2019-06-20 21:34:32 +00:00
u32 SCFG_MC;
u16 SCFG_RST;
2019-06-20 21:34:32 +00:00
u8 ARM9iBIOS[0x10000] = { 0 };
u8 ARM7iBIOS[0x10000] = { 0 };
2019-06-15 11:46:20 +00:00
u32 MBK[2][9];
u8* NWRAM_A;
u8* NWRAM_B;
u8* NWRAM_C;
2019-06-15 11:46:20 +00:00
u8* NWRAMMap_A[2][4];
u8* NWRAMMap_B[3][8];
u8* NWRAMMap_C[3][8];
2019-06-15 11:46:20 +00:00
u32 NWRAMStart[2][3];
u32 NWRAMEnd[2][3];
u32 NWRAMMask[2][3];
2019-06-15 11:09:11 +00:00
u32 NDMACnt[2];
DSi_NDMA* NDMAs[8];
std::unique_ptr<DSi_NAND::NANDImage> NANDImage;
2019-06-17 11:24:37 +00:00
DSi_SDHost* SDMMC;
DSi_SDHost* SDIO;
2019-06-16 15:01:49 +00:00
// FIXME: these currently have no effect (and aren't stored in a savestate)
// ... not that they matter all that much
u8 GPIO_Data;
u8 GPIO_Dir;
u8 GPIO_IEdgeSel;
u8 GPIO_IE;
u8 GPIO_WiFi;
2019-06-16 15:01:49 +00:00
void Set_SCFG_Clock9(u16 val);
void Set_SCFG_MC(u32 val);
2019-06-16 15:01:49 +00:00
bool Init()
{
#ifndef JIT_ENABLED
NWRAM_A = new u8[NWRAMSize];
NWRAM_B = new u8[NWRAMSize];
NWRAM_C = new u8[NWRAMSize];
#endif
2019-06-16 15:01:49 +00:00
if (!DSi_I2C::Init()) return false;
if (!DSi_CamModule::Init()) return false;
if (!DSi_AES::Init()) return false;
if (!DSi_DSP::Init()) return false;
2019-06-16 15:01:49 +00:00
NDMAs[0] = new DSi_NDMA(0, 0);
NDMAs[1] = new DSi_NDMA(0, 1);
NDMAs[2] = new DSi_NDMA(0, 2);
NDMAs[3] = new DSi_NDMA(0, 3);
NDMAs[4] = new DSi_NDMA(1, 0);
NDMAs[5] = new DSi_NDMA(1, 1);
NDMAs[6] = new DSi_NDMA(1, 2);
NDMAs[7] = new DSi_NDMA(1, 3);
2019-06-17 11:24:37 +00:00
SDMMC = new DSi_SDHost(0);
SDIO = new DSi_SDHost(1);
2019-06-16 15:01:49 +00:00
return true;
}
void DeInit()
{
#ifndef JIT_ENABLED
delete[] NWRAM_A;
delete[] NWRAM_B;
delete[] NWRAM_C;
NWRAM_A = nullptr;
NWRAM_B = nullptr;
NWRAM_C = nullptr;
#endif
2019-06-16 15:01:49 +00:00
DSi_I2C::DeInit();
DSi_CamModule::DeInit();
DSi_AES::DeInit();
DSi_DSP::DeInit();
2019-06-16 15:01:49 +00:00
for (int i = 0; i < 8; i++)
{
delete NDMAs[i];
NDMAs[i] = nullptr;
}
2019-06-16 15:01:49 +00:00
delete SDMMC;
SDMMC = nullptr;
2019-06-16 15:01:49 +00:00
delete SDIO;
SDIO = nullptr;
NANDImage = nullptr;
// The NANDImage is cleaned up (and its underlying file closed)
// as part of unique_ptr's destructor
2019-06-16 15:01:49 +00:00
}
2019-06-15 11:09:11 +00:00
void Reset()
{
2019-06-15 15:23:48 +00:00
//NDS::ARM9->CP15Write(0x910, 0x0D00000A);
//NDS::ARM9->CP15Write(0x911, 0x00000020);
//NDS::ARM9->CP15Write(0x100, NDS::ARM9->CP15Read(0x100) | 0x00050000);
NDS::MapSharedWRAM(3);
2019-06-15 14:58:02 +00:00
NDMACnt[0] = 0; NDMACnt[1] = 0;
for (int i = 0; i < 8; i++) NDMAs[i]->Reset();
2019-06-15 14:58:02 +00:00
DSi_I2C::Reset();
DSi_CamModule::Reset();
DSi_DSP::Reset();
2019-06-16 15:01:49 +00:00
SDMMC->CloseHandles();
SDIO->CloseHandles();
LoadNAND();
2019-06-16 15:01:49 +00:00
SDMMC->Reset();
SDIO->Reset();
2019-06-20 00:31:46 +00:00
DSi_AES::Reset();
if (Platform::GetConfigBool(Platform::DSi_FullBIOSBoot))
{
SCFG_BIOS = 0x0000;
}
else
{
SCFG_BIOS = 0x0101;
}
SCFG_Clock9 = 0x0187; // CHECKME
SCFG_Clock7 = 0x0187;
SCFG_EXT[0] = 0x8307F100;
SCFG_EXT[1] = 0x93FFFB06;
Split the cart parsing and loading steps (#1707) * Split ROMList into a .cpp file - Its definition in ROMList.h was causing multiple-definition linker errors - Introduce ROMListSize, since you can't take a sizeof() of an extern declaration - Mark ROMList and ROMListSize as const * Update ReadROMParams to accommodate ROMList changes * Split parsing and loading of NDS ROMs - Introduce an NDSCartData class for parsing a ROM file - Introduce InsertROM for loading a NDS cart - Refactor LoadROM to use NDSCartData and InsertROM under the hood * Reset cart state and initialize save memory in the NDSCartData constructor - Otherwise there's no way to know about SRAM-specific attributes before inserting the game * Add a comment to NDSCartData * First crack at splitting parsing and loading for GBACart * Add some logging calls for encrypting the secure area * Log the XXH64 hash of the inserted NDS ROM * Log the XXH64 hash of the secure area after decryption * Add some logging to Key1_LoadKeyBuf * Re-encrypt the secure area when inserting the cart, not when parsing it - This way, constructing a NDSCart doesn't imply a read from the filesystem (as is done in Key1_KeyBuf) * Load Key1_KeyBuf from memory, not from the file system - Now that the cart's secure area isn't re-encrypted until insertion, we can expect that the BIOS will be ready at this point * Add some helper query methods to NDSHeader * Query the DSi region directly from the header instead of checking the ROM again * Introduce a CartType enum - So CartCommon::Type doesn't have to return magic numbers * Reset the cart in NDSCart::InsertROM instead of the NDSCartData constructor - That way the constructor doesn't rely on the config or on file I/O when loading homebrew - This keeps the use of global state closer to one place * Add non-const getters for the carts * Add InsertROM overloads that accept unique_ptrs * Fix a comment * Rename member functions on NDSCartData and GBACartData to adhere to the convention * Rename members on NDSCartData and GBACartData to adhere to the convention * Fix build errors on some platforms * Add NDSHeader::IsDSiWare * Add a ROMListEntry parameter to the cart constructors - To allow for looking up details of SRAM or expected ROM size * Add some new getters to CartCommon * Use the Header/Banner members instead of globals * Make CartCommon abstract - It's not supposed to be instantiated anyway * Change the signature of CartCommon::Checksum - It's neither overridden nor mutating * Add some clarifying comments to NDSHeader * Delete CartCommon::ROM in its destructor - ParseROM copies its input and gives that copy to the cart object, so it's okay * Add some getters to CartCommon * Refactor NDSCart - Get rid of NDSCartData - Get rid of cart-specific global state within NDSCart (so registers are untouched) - Refactor uses of removed global variables to use the Cart pointer instead - Refactor ROMInfoDialog's icon functions to accept const arguments * Return the cart pointer - So *that's* why it was crashing. Whoops - Why is this even allowed? * Refactor GBACart - Delete CartGame::ROM in the destructor - Get rid of GBACartData - Remove some global state * Mark NDSCart::CartCommon::Type as const * Slightly refactor GBACart::CartCommon - Mark Type as const - Use enum constants - Make CartCommon itself abstract * Mark CRC32's data parameter as const * Mark GBACart::CartCommon::Checksum as const * Use assert.h instead of cassert - As demanded by the style guide * Fix some includes to adhere to the style guide * Get the ARM9 entry address directly from the header object * Use more Header fields directly * Rename some parameters to match the style guide * Remove some unused includes * Slightly change NDS_Header::IsHomebrew for clarity
2023-06-30 11:28:52 +00:00
SCFG_MC = 0x0010 | (~((u32)(NDSCart::Cart != nullptr))&1);//0x0011;
SCFG_RST = 0;
DSi_DSP::SetRstLine(false);
2019-06-20 21:34:32 +00:00
GPIO_Data = 0xff; // these actually initialize to high after reset
GPIO_Dir = 0x80; // enable sound out, all others input
GPIO_IEdgeSel = 0;
GPIO_IE = 0;
GPIO_WiFi = 0;
2019-06-20 00:31:46 +00:00
// LCD init flag
GPU::DispStat[0] |= (1<<6);
GPU::DispStat[1] |= (1<<6);
}
void Stop()
{
DSi_CamModule::Stop();
}
void DoSavestate(Savestate* file)
{
file->Section("DSIG");
file->Var16(&SCFG_BIOS);
file->Var16(&SCFG_Clock9);
file->Var16(&SCFG_Clock7);
file->VarArray(&SCFG_EXT[0], sizeof(u32)*2);
file->Var32(&SCFG_MC);
file->Var16(&SCFG_RST);
//file->VarArray(ARM9iBIOS, 0x10000);
//file->VarArray(ARM7iBIOS, 0x10000);
if (file->Saving)
{
file->VarArray(&MBK[0][0], sizeof(u32)*8);
file->VarArray(&MBK[1][5], sizeof(u32)*3);
file->Var32(&MBK[0][8]);
}
else
{
Set_SCFG_Clock9(SCFG_Clock9);
Set_SCFG_MC(SCFG_MC);
DSi_DSP::SetRstLine(SCFG_RST & 0x0001);
MBK[0][8] = 0;
MBK[1][8] = 0;
u32 mbk[12];
file->VarArray(&mbk, sizeof(u32)*12);
MapNWRAM_A(0, mbk[0] & 0xFF);
MapNWRAM_A(1, (mbk[0] >> 8) & 0xFF);
MapNWRAM_A(2, (mbk[0] >> 16) & 0xFF);
MapNWRAM_A(3, mbk[0] >> 24);
MapNWRAM_B(0, mbk[1] & 0xFF);
MapNWRAM_B(1, (mbk[1] >> 8) & 0xFF);
MapNWRAM_B(2, (mbk[1] >> 16) & 0xFF);
MapNWRAM_B(3, mbk[1] >> 24);
MapNWRAM_B(4, mbk[2] & 0xFF);
MapNWRAM_B(5, (mbk[2] >> 8) & 0xFF);
MapNWRAM_B(6, (mbk[2] >> 16) & 0xFF);
MapNWRAM_B(7, mbk[2] >> 24);
MapNWRAM_C(0, mbk[3] & 0xFF);
MapNWRAM_C(1, (mbk[3] >> 8) & 0xFF);
MapNWRAM_C(2, (mbk[3] >> 16) & 0xFF);
MapNWRAM_C(3, mbk[3] >> 24);
MapNWRAM_C(4, mbk[4] & 0xFF);
MapNWRAM_C(5, (mbk[4] >> 8) & 0xFF);
MapNWRAM_C(6, (mbk[4] >> 16) & 0xFF);
MapNWRAM_C(7, mbk[4] >> 24);
MapNWRAMRange(0, 0, mbk[5]);
MapNWRAMRange(0, 1, mbk[6]);
MapNWRAMRange(0, 2, mbk[7]);
MapNWRAMRange(1, 0, mbk[8]);
MapNWRAMRange(1, 1, mbk[9]);
MapNWRAMRange(1, 2, mbk[10]);
mbk[11] &= 0x00FFFF0F;
MBK[0][8] = mbk[11];
MBK[1][8] = mbk[11];
}
for (int i = 0; i < 8; i++)
NDMAs[i]->DoSavestate(file);
DSi_AES::DoSavestate(file);
DSi_CamModule::DoSavestate(file);
DSi_DSP::DoSavestate(file);
DSi_I2C::DoSavestate(file);
SDMMC->DoSavestate(file);
SDIO->DoSavestate(file);
}
2022-08-21 20:11:22 +00:00
void SetCartInserted(bool inserted)
{
if (inserted)
SCFG_MC &= ~1;
else
SCFG_MC |= 1;
}
void DecryptModcryptArea(u32 offset, u32 size, u8* iv)
{
AES_ctx ctx;
u8 key[16];
u8 tmp[16];
if ((offset == 0) || (size == 0))
return;
Split the cart parsing and loading steps (#1707) * Split ROMList into a .cpp file - Its definition in ROMList.h was causing multiple-definition linker errors - Introduce ROMListSize, since you can't take a sizeof() of an extern declaration - Mark ROMList and ROMListSize as const * Update ReadROMParams to accommodate ROMList changes * Split parsing and loading of NDS ROMs - Introduce an NDSCartData class for parsing a ROM file - Introduce InsertROM for loading a NDS cart - Refactor LoadROM to use NDSCartData and InsertROM under the hood * Reset cart state and initialize save memory in the NDSCartData constructor - Otherwise there's no way to know about SRAM-specific attributes before inserting the game * Add a comment to NDSCartData * First crack at splitting parsing and loading for GBACart * Add some logging calls for encrypting the secure area * Log the XXH64 hash of the inserted NDS ROM * Log the XXH64 hash of the secure area after decryption * Add some logging to Key1_LoadKeyBuf * Re-encrypt the secure area when inserting the cart, not when parsing it - This way, constructing a NDSCart doesn't imply a read from the filesystem (as is done in Key1_KeyBuf) * Load Key1_KeyBuf from memory, not from the file system - Now that the cart's secure area isn't re-encrypted until insertion, we can expect that the BIOS will be ready at this point * Add some helper query methods to NDSHeader * Query the DSi region directly from the header instead of checking the ROM again * Introduce a CartType enum - So CartCommon::Type doesn't have to return magic numbers * Reset the cart in NDSCart::InsertROM instead of the NDSCartData constructor - That way the constructor doesn't rely on the config or on file I/O when loading homebrew - This keeps the use of global state closer to one place * Add non-const getters for the carts * Add InsertROM overloads that accept unique_ptrs * Fix a comment * Rename member functions on NDSCartData and GBACartData to adhere to the convention * Rename members on NDSCartData and GBACartData to adhere to the convention * Fix build errors on some platforms * Add NDSHeader::IsDSiWare * Add a ROMListEntry parameter to the cart constructors - To allow for looking up details of SRAM or expected ROM size * Add some new getters to CartCommon * Use the Header/Banner members instead of globals * Make CartCommon abstract - It's not supposed to be instantiated anyway * Change the signature of CartCommon::Checksum - It's neither overridden nor mutating * Add some clarifying comments to NDSHeader * Delete CartCommon::ROM in its destructor - ParseROM copies its input and gives that copy to the cart object, so it's okay * Add some getters to CartCommon * Refactor NDSCart - Get rid of NDSCartData - Get rid of cart-specific global state within NDSCart (so registers are untouched) - Refactor uses of removed global variables to use the Cart pointer instead - Refactor ROMInfoDialog's icon functions to accept const arguments * Return the cart pointer - So *that's* why it was crashing. Whoops - Why is this even allowed? * Refactor GBACart - Delete CartGame::ROM in the destructor - Get rid of GBACartData - Remove some global state * Mark NDSCart::CartCommon::Type as const * Slightly refactor GBACart::CartCommon - Mark Type as const - Use enum constants - Make CartCommon itself abstract * Mark CRC32's data parameter as const * Mark GBACart::CartCommon::Checksum as const * Use assert.h instead of cassert - As demanded by the style guide * Fix some includes to adhere to the style guide * Get the ARM9 entry address directly from the header object * Use more Header fields directly * Rename some parameters to match the style guide * Remove some unused includes * Slightly change NDS_Header::IsHomebrew for clarity
2023-06-30 11:28:52 +00:00
const NDSHeader& header = NDSCart::Cart->GetHeader();
if ((header.DSiCryptoFlags & (1<<4)) ||
(header.AppFlags & (1<<7)))
{
// dev key
Split the cart parsing and loading steps (#1707) * Split ROMList into a .cpp file - Its definition in ROMList.h was causing multiple-definition linker errors - Introduce ROMListSize, since you can't take a sizeof() of an extern declaration - Mark ROMList and ROMListSize as const * Update ReadROMParams to accommodate ROMList changes * Split parsing and loading of NDS ROMs - Introduce an NDSCartData class for parsing a ROM file - Introduce InsertROM for loading a NDS cart - Refactor LoadROM to use NDSCartData and InsertROM under the hood * Reset cart state and initialize save memory in the NDSCartData constructor - Otherwise there's no way to know about SRAM-specific attributes before inserting the game * Add a comment to NDSCartData * First crack at splitting parsing and loading for GBACart * Add some logging calls for encrypting the secure area * Log the XXH64 hash of the inserted NDS ROM * Log the XXH64 hash of the secure area after decryption * Add some logging to Key1_LoadKeyBuf * Re-encrypt the secure area when inserting the cart, not when parsing it - This way, constructing a NDSCart doesn't imply a read from the filesystem (as is done in Key1_KeyBuf) * Load Key1_KeyBuf from memory, not from the file system - Now that the cart's secure area isn't re-encrypted until insertion, we can expect that the BIOS will be ready at this point * Add some helper query methods to NDSHeader * Query the DSi region directly from the header instead of checking the ROM again * Introduce a CartType enum - So CartCommon::Type doesn't have to return magic numbers * Reset the cart in NDSCart::InsertROM instead of the NDSCartData constructor - That way the constructor doesn't rely on the config or on file I/O when loading homebrew - This keeps the use of global state closer to one place * Add non-const getters for the carts * Add InsertROM overloads that accept unique_ptrs * Fix a comment * Rename member functions on NDSCartData and GBACartData to adhere to the convention * Rename members on NDSCartData and GBACartData to adhere to the convention * Fix build errors on some platforms * Add NDSHeader::IsDSiWare * Add a ROMListEntry parameter to the cart constructors - To allow for looking up details of SRAM or expected ROM size * Add some new getters to CartCommon * Use the Header/Banner members instead of globals * Make CartCommon abstract - It's not supposed to be instantiated anyway * Change the signature of CartCommon::Checksum - It's neither overridden nor mutating * Add some clarifying comments to NDSHeader * Delete CartCommon::ROM in its destructor - ParseROM copies its input and gives that copy to the cart object, so it's okay * Add some getters to CartCommon * Refactor NDSCart - Get rid of NDSCartData - Get rid of cart-specific global state within NDSCart (so registers are untouched) - Refactor uses of removed global variables to use the Cart pointer instead - Refactor ROMInfoDialog's icon functions to accept const arguments * Return the cart pointer - So *that's* why it was crashing. Whoops - Why is this even allowed? * Refactor GBACart - Delete CartGame::ROM in the destructor - Get rid of GBACartData - Remove some global state * Mark NDSCart::CartCommon::Type as const * Slightly refactor GBACart::CartCommon - Mark Type as const - Use enum constants - Make CartCommon itself abstract * Mark CRC32's data parameter as const * Mark GBACart::CartCommon::Checksum as const * Use assert.h instead of cassert - As demanded by the style guide * Fix some includes to adhere to the style guide * Get the ARM9 entry address directly from the header object * Use more Header fields directly * Rename some parameters to match the style guide * Remove some unused includes * Slightly change NDS_Header::IsHomebrew for clarity
2023-06-30 11:28:52 +00:00
const u8* cartrom = NDSCart::Cart->GetROM();
memcpy(key, &cartrom[0], 16);
}
else
{
u8 keyX[16], keyY[16];
*(u32*)&keyX[0] = 0x746E694E;
*(u32*)&keyX[4] = 0x6F646E65;
Split the cart parsing and loading steps (#1707) * Split ROMList into a .cpp file - Its definition in ROMList.h was causing multiple-definition linker errors - Introduce ROMListSize, since you can't take a sizeof() of an extern declaration - Mark ROMList and ROMListSize as const * Update ReadROMParams to accommodate ROMList changes * Split parsing and loading of NDS ROMs - Introduce an NDSCartData class for parsing a ROM file - Introduce InsertROM for loading a NDS cart - Refactor LoadROM to use NDSCartData and InsertROM under the hood * Reset cart state and initialize save memory in the NDSCartData constructor - Otherwise there's no way to know about SRAM-specific attributes before inserting the game * Add a comment to NDSCartData * First crack at splitting parsing and loading for GBACart * Add some logging calls for encrypting the secure area * Log the XXH64 hash of the inserted NDS ROM * Log the XXH64 hash of the secure area after decryption * Add some logging to Key1_LoadKeyBuf * Re-encrypt the secure area when inserting the cart, not when parsing it - This way, constructing a NDSCart doesn't imply a read from the filesystem (as is done in Key1_KeyBuf) * Load Key1_KeyBuf from memory, not from the file system - Now that the cart's secure area isn't re-encrypted until insertion, we can expect that the BIOS will be ready at this point * Add some helper query methods to NDSHeader * Query the DSi region directly from the header instead of checking the ROM again * Introduce a CartType enum - So CartCommon::Type doesn't have to return magic numbers * Reset the cart in NDSCart::InsertROM instead of the NDSCartData constructor - That way the constructor doesn't rely on the config or on file I/O when loading homebrew - This keeps the use of global state closer to one place * Add non-const getters for the carts * Add InsertROM overloads that accept unique_ptrs * Fix a comment * Rename member functions on NDSCartData and GBACartData to adhere to the convention * Rename members on NDSCartData and GBACartData to adhere to the convention * Fix build errors on some platforms * Add NDSHeader::IsDSiWare * Add a ROMListEntry parameter to the cart constructors - To allow for looking up details of SRAM or expected ROM size * Add some new getters to CartCommon * Use the Header/Banner members instead of globals * Make CartCommon abstract - It's not supposed to be instantiated anyway * Change the signature of CartCommon::Checksum - It's neither overridden nor mutating * Add some clarifying comments to NDSHeader * Delete CartCommon::ROM in its destructor - ParseROM copies its input and gives that copy to the cart object, so it's okay * Add some getters to CartCommon * Refactor NDSCart - Get rid of NDSCartData - Get rid of cart-specific global state within NDSCart (so registers are untouched) - Refactor uses of removed global variables to use the Cart pointer instead - Refactor ROMInfoDialog's icon functions to accept const arguments * Return the cart pointer - So *that's* why it was crashing. Whoops - Why is this even allowed? * Refactor GBACart - Delete CartGame::ROM in the destructor - Get rid of GBACartData - Remove some global state * Mark NDSCart::CartCommon::Type as const * Slightly refactor GBACart::CartCommon - Mark Type as const - Use enum constants - Make CartCommon itself abstract * Mark CRC32's data parameter as const * Mark GBACart::CartCommon::Checksum as const * Use assert.h instead of cassert - As demanded by the style guide * Fix some includes to adhere to the style guide * Get the ARM9 entry address directly from the header object * Use more Header fields directly * Rename some parameters to match the style guide * Remove some unused includes * Slightly change NDS_Header::IsHomebrew for clarity
2023-06-30 11:28:52 +00:00
keyX[8] = header.GameCode[0];
keyX[9] = header.GameCode[1];
keyX[10] = header.GameCode[2];
keyX[11] = header.GameCode[3];
keyX[12] = header.GameCode[3];
keyX[13] = header.GameCode[2];
keyX[14] = header.GameCode[1];
keyX[15] = header.GameCode[0];
Split the cart parsing and loading steps (#1707) * Split ROMList into a .cpp file - Its definition in ROMList.h was causing multiple-definition linker errors - Introduce ROMListSize, since you can't take a sizeof() of an extern declaration - Mark ROMList and ROMListSize as const * Update ReadROMParams to accommodate ROMList changes * Split parsing and loading of NDS ROMs - Introduce an NDSCartData class for parsing a ROM file - Introduce InsertROM for loading a NDS cart - Refactor LoadROM to use NDSCartData and InsertROM under the hood * Reset cart state and initialize save memory in the NDSCartData constructor - Otherwise there's no way to know about SRAM-specific attributes before inserting the game * Add a comment to NDSCartData * First crack at splitting parsing and loading for GBACart * Add some logging calls for encrypting the secure area * Log the XXH64 hash of the inserted NDS ROM * Log the XXH64 hash of the secure area after decryption * Add some logging to Key1_LoadKeyBuf * Re-encrypt the secure area when inserting the cart, not when parsing it - This way, constructing a NDSCart doesn't imply a read from the filesystem (as is done in Key1_KeyBuf) * Load Key1_KeyBuf from memory, not from the file system - Now that the cart's secure area isn't re-encrypted until insertion, we can expect that the BIOS will be ready at this point * Add some helper query methods to NDSHeader * Query the DSi region directly from the header instead of checking the ROM again * Introduce a CartType enum - So CartCommon::Type doesn't have to return magic numbers * Reset the cart in NDSCart::InsertROM instead of the NDSCartData constructor - That way the constructor doesn't rely on the config or on file I/O when loading homebrew - This keeps the use of global state closer to one place * Add non-const getters for the carts * Add InsertROM overloads that accept unique_ptrs * Fix a comment * Rename member functions on NDSCartData and GBACartData to adhere to the convention * Rename members on NDSCartData and GBACartData to adhere to the convention * Fix build errors on some platforms * Add NDSHeader::IsDSiWare * Add a ROMListEntry parameter to the cart constructors - To allow for looking up details of SRAM or expected ROM size * Add some new getters to CartCommon * Use the Header/Banner members instead of globals * Make CartCommon abstract - It's not supposed to be instantiated anyway * Change the signature of CartCommon::Checksum - It's neither overridden nor mutating * Add some clarifying comments to NDSHeader * Delete CartCommon::ROM in its destructor - ParseROM copies its input and gives that copy to the cart object, so it's okay * Add some getters to CartCommon * Refactor NDSCart - Get rid of NDSCartData - Get rid of cart-specific global state within NDSCart (so registers are untouched) - Refactor uses of removed global variables to use the Cart pointer instead - Refactor ROMInfoDialog's icon functions to accept const arguments * Return the cart pointer - So *that's* why it was crashing. Whoops - Why is this even allowed? * Refactor GBACart - Delete CartGame::ROM in the destructor - Get rid of GBACartData - Remove some global state * Mark NDSCart::CartCommon::Type as const * Slightly refactor GBACart::CartCommon - Mark Type as const - Use enum constants - Make CartCommon itself abstract * Mark CRC32's data parameter as const * Mark GBACart::CartCommon::Checksum as const * Use assert.h instead of cassert - As demanded by the style guide * Fix some includes to adhere to the style guide * Get the ARM9 entry address directly from the header object * Use more Header fields directly * Rename some parameters to match the style guide * Remove some unused includes * Slightly change NDS_Header::IsHomebrew for clarity
2023-06-30 11:28:52 +00:00
memcpy(keyY, header.DSiARM9iHash, 16);
DSi_AES::DeriveNormalKey(keyX, keyY, tmp);
}
Bswap128(key, tmp);
Bswap128(tmp, iv);
AES_init_ctx_iv(&ctx, key, tmp);
// find a matching binary area
u32 binaryaddr, binarysize;
u32 roundedsize = (size + 0xF) & ~0xF;
// CHECKME: GBAtek says the modcrypt area should be the same size, or bigger,
// than the binary area being considered
// but I have seen modcrypt areas smaller than the ARM9i binary
#define BINARY_GOOD(name) \
Split the cart parsing and loading steps (#1707) * Split ROMList into a .cpp file - Its definition in ROMList.h was causing multiple-definition linker errors - Introduce ROMListSize, since you can't take a sizeof() of an extern declaration - Mark ROMList and ROMListSize as const * Update ReadROMParams to accommodate ROMList changes * Split parsing and loading of NDS ROMs - Introduce an NDSCartData class for parsing a ROM file - Introduce InsertROM for loading a NDS cart - Refactor LoadROM to use NDSCartData and InsertROM under the hood * Reset cart state and initialize save memory in the NDSCartData constructor - Otherwise there's no way to know about SRAM-specific attributes before inserting the game * Add a comment to NDSCartData * First crack at splitting parsing and loading for GBACart * Add some logging calls for encrypting the secure area * Log the XXH64 hash of the inserted NDS ROM * Log the XXH64 hash of the secure area after decryption * Add some logging to Key1_LoadKeyBuf * Re-encrypt the secure area when inserting the cart, not when parsing it - This way, constructing a NDSCart doesn't imply a read from the filesystem (as is done in Key1_KeyBuf) * Load Key1_KeyBuf from memory, not from the file system - Now that the cart's secure area isn't re-encrypted until insertion, we can expect that the BIOS will be ready at this point * Add some helper query methods to NDSHeader * Query the DSi region directly from the header instead of checking the ROM again * Introduce a CartType enum - So CartCommon::Type doesn't have to return magic numbers * Reset the cart in NDSCart::InsertROM instead of the NDSCartData constructor - That way the constructor doesn't rely on the config or on file I/O when loading homebrew - This keeps the use of global state closer to one place * Add non-const getters for the carts * Add InsertROM overloads that accept unique_ptrs * Fix a comment * Rename member functions on NDSCartData and GBACartData to adhere to the convention * Rename members on NDSCartData and GBACartData to adhere to the convention * Fix build errors on some platforms * Add NDSHeader::IsDSiWare * Add a ROMListEntry parameter to the cart constructors - To allow for looking up details of SRAM or expected ROM size * Add some new getters to CartCommon * Use the Header/Banner members instead of globals * Make CartCommon abstract - It's not supposed to be instantiated anyway * Change the signature of CartCommon::Checksum - It's neither overridden nor mutating * Add some clarifying comments to NDSHeader * Delete CartCommon::ROM in its destructor - ParseROM copies its input and gives that copy to the cart object, so it's okay * Add some getters to CartCommon * Refactor NDSCart - Get rid of NDSCartData - Get rid of cart-specific global state within NDSCart (so registers are untouched) - Refactor uses of removed global variables to use the Cart pointer instead - Refactor ROMInfoDialog's icon functions to accept const arguments * Return the cart pointer - So *that's* why it was crashing. Whoops - Why is this even allowed? * Refactor GBACart - Delete CartGame::ROM in the destructor - Get rid of GBACartData - Remove some global state * Mark NDSCart::CartCommon::Type as const * Slightly refactor GBACart::CartCommon - Mark Type as const - Use enum constants - Make CartCommon itself abstract * Mark CRC32's data parameter as const * Mark GBACart::CartCommon::Checksum as const * Use assert.h instead of cassert - As demanded by the style guide * Fix some includes to adhere to the style guide * Get the ARM9 entry address directly from the header object * Use more Header fields directly * Rename some parameters to match the style guide * Remove some unused includes * Slightly change NDS_Header::IsHomebrew for clarity
2023-06-30 11:28:52 +00:00
((offset >= header.name##ROMOffset) && \
(offset+roundedsize) <= (header.name##ROMOffset + ((header.name##Size + 0xF) & ~0xF)))
if (BINARY_GOOD(ARM9))
{
Split the cart parsing and loading steps (#1707) * Split ROMList into a .cpp file - Its definition in ROMList.h was causing multiple-definition linker errors - Introduce ROMListSize, since you can't take a sizeof() of an extern declaration - Mark ROMList and ROMListSize as const * Update ReadROMParams to accommodate ROMList changes * Split parsing and loading of NDS ROMs - Introduce an NDSCartData class for parsing a ROM file - Introduce InsertROM for loading a NDS cart - Refactor LoadROM to use NDSCartData and InsertROM under the hood * Reset cart state and initialize save memory in the NDSCartData constructor - Otherwise there's no way to know about SRAM-specific attributes before inserting the game * Add a comment to NDSCartData * First crack at splitting parsing and loading for GBACart * Add some logging calls for encrypting the secure area * Log the XXH64 hash of the inserted NDS ROM * Log the XXH64 hash of the secure area after decryption * Add some logging to Key1_LoadKeyBuf * Re-encrypt the secure area when inserting the cart, not when parsing it - This way, constructing a NDSCart doesn't imply a read from the filesystem (as is done in Key1_KeyBuf) * Load Key1_KeyBuf from memory, not from the file system - Now that the cart's secure area isn't re-encrypted until insertion, we can expect that the BIOS will be ready at this point * Add some helper query methods to NDSHeader * Query the DSi region directly from the header instead of checking the ROM again * Introduce a CartType enum - So CartCommon::Type doesn't have to return magic numbers * Reset the cart in NDSCart::InsertROM instead of the NDSCartData constructor - That way the constructor doesn't rely on the config or on file I/O when loading homebrew - This keeps the use of global state closer to one place * Add non-const getters for the carts * Add InsertROM overloads that accept unique_ptrs * Fix a comment * Rename member functions on NDSCartData and GBACartData to adhere to the convention * Rename members on NDSCartData and GBACartData to adhere to the convention * Fix build errors on some platforms * Add NDSHeader::IsDSiWare * Add a ROMListEntry parameter to the cart constructors - To allow for looking up details of SRAM or expected ROM size * Add some new getters to CartCommon * Use the Header/Banner members instead of globals * Make CartCommon abstract - It's not supposed to be instantiated anyway * Change the signature of CartCommon::Checksum - It's neither overridden nor mutating * Add some clarifying comments to NDSHeader * Delete CartCommon::ROM in its destructor - ParseROM copies its input and gives that copy to the cart object, so it's okay * Add some getters to CartCommon * Refactor NDSCart - Get rid of NDSCartData - Get rid of cart-specific global state within NDSCart (so registers are untouched) - Refactor uses of removed global variables to use the Cart pointer instead - Refactor ROMInfoDialog's icon functions to accept const arguments * Return the cart pointer - So *that's* why it was crashing. Whoops - Why is this even allowed? * Refactor GBACart - Delete CartGame::ROM in the destructor - Get rid of GBACartData - Remove some global state * Mark NDSCart::CartCommon::Type as const * Slightly refactor GBACart::CartCommon - Mark Type as const - Use enum constants - Make CartCommon itself abstract * Mark CRC32's data parameter as const * Mark GBACart::CartCommon::Checksum as const * Use assert.h instead of cassert - As demanded by the style guide * Fix some includes to adhere to the style guide * Get the ARM9 entry address directly from the header object * Use more Header fields directly * Rename some parameters to match the style guide * Remove some unused includes * Slightly change NDS_Header::IsHomebrew for clarity
2023-06-30 11:28:52 +00:00
binaryaddr = header.ARM9RAMAddress;
binarysize = header.ARM9Size;
}
else if (BINARY_GOOD(ARM7))
{
Split the cart parsing and loading steps (#1707) * Split ROMList into a .cpp file - Its definition in ROMList.h was causing multiple-definition linker errors - Introduce ROMListSize, since you can't take a sizeof() of an extern declaration - Mark ROMList and ROMListSize as const * Update ReadROMParams to accommodate ROMList changes * Split parsing and loading of NDS ROMs - Introduce an NDSCartData class for parsing a ROM file - Introduce InsertROM for loading a NDS cart - Refactor LoadROM to use NDSCartData and InsertROM under the hood * Reset cart state and initialize save memory in the NDSCartData constructor - Otherwise there's no way to know about SRAM-specific attributes before inserting the game * Add a comment to NDSCartData * First crack at splitting parsing and loading for GBACart * Add some logging calls for encrypting the secure area * Log the XXH64 hash of the inserted NDS ROM * Log the XXH64 hash of the secure area after decryption * Add some logging to Key1_LoadKeyBuf * Re-encrypt the secure area when inserting the cart, not when parsing it - This way, constructing a NDSCart doesn't imply a read from the filesystem (as is done in Key1_KeyBuf) * Load Key1_KeyBuf from memory, not from the file system - Now that the cart's secure area isn't re-encrypted until insertion, we can expect that the BIOS will be ready at this point * Add some helper query methods to NDSHeader * Query the DSi region directly from the header instead of checking the ROM again * Introduce a CartType enum - So CartCommon::Type doesn't have to return magic numbers * Reset the cart in NDSCart::InsertROM instead of the NDSCartData constructor - That way the constructor doesn't rely on the config or on file I/O when loading homebrew - This keeps the use of global state closer to one place * Add non-const getters for the carts * Add InsertROM overloads that accept unique_ptrs * Fix a comment * Rename member functions on NDSCartData and GBACartData to adhere to the convention * Rename members on NDSCartData and GBACartData to adhere to the convention * Fix build errors on some platforms * Add NDSHeader::IsDSiWare * Add a ROMListEntry parameter to the cart constructors - To allow for looking up details of SRAM or expected ROM size * Add some new getters to CartCommon * Use the Header/Banner members instead of globals * Make CartCommon abstract - It's not supposed to be instantiated anyway * Change the signature of CartCommon::Checksum - It's neither overridden nor mutating * Add some clarifying comments to NDSHeader * Delete CartCommon::ROM in its destructor - ParseROM copies its input and gives that copy to the cart object, so it's okay * Add some getters to CartCommon * Refactor NDSCart - Get rid of NDSCartData - Get rid of cart-specific global state within NDSCart (so registers are untouched) - Refactor uses of removed global variables to use the Cart pointer instead - Refactor ROMInfoDialog's icon functions to accept const arguments * Return the cart pointer - So *that's* why it was crashing. Whoops - Why is this even allowed? * Refactor GBACart - Delete CartGame::ROM in the destructor - Get rid of GBACartData - Remove some global state * Mark NDSCart::CartCommon::Type as const * Slightly refactor GBACart::CartCommon - Mark Type as const - Use enum constants - Make CartCommon itself abstract * Mark CRC32's data parameter as const * Mark GBACart::CartCommon::Checksum as const * Use assert.h instead of cassert - As demanded by the style guide * Fix some includes to adhere to the style guide * Get the ARM9 entry address directly from the header object * Use more Header fields directly * Rename some parameters to match the style guide * Remove some unused includes * Slightly change NDS_Header::IsHomebrew for clarity
2023-06-30 11:28:52 +00:00
binaryaddr = header.ARM7RAMAddress;
binarysize = header.ARM7Size;
}
else if (BINARY_GOOD(DSiARM9i))
{
Split the cart parsing and loading steps (#1707) * Split ROMList into a .cpp file - Its definition in ROMList.h was causing multiple-definition linker errors - Introduce ROMListSize, since you can't take a sizeof() of an extern declaration - Mark ROMList and ROMListSize as const * Update ReadROMParams to accommodate ROMList changes * Split parsing and loading of NDS ROMs - Introduce an NDSCartData class for parsing a ROM file - Introduce InsertROM for loading a NDS cart - Refactor LoadROM to use NDSCartData and InsertROM under the hood * Reset cart state and initialize save memory in the NDSCartData constructor - Otherwise there's no way to know about SRAM-specific attributes before inserting the game * Add a comment to NDSCartData * First crack at splitting parsing and loading for GBACart * Add some logging calls for encrypting the secure area * Log the XXH64 hash of the inserted NDS ROM * Log the XXH64 hash of the secure area after decryption * Add some logging to Key1_LoadKeyBuf * Re-encrypt the secure area when inserting the cart, not when parsing it - This way, constructing a NDSCart doesn't imply a read from the filesystem (as is done in Key1_KeyBuf) * Load Key1_KeyBuf from memory, not from the file system - Now that the cart's secure area isn't re-encrypted until insertion, we can expect that the BIOS will be ready at this point * Add some helper query methods to NDSHeader * Query the DSi region directly from the header instead of checking the ROM again * Introduce a CartType enum - So CartCommon::Type doesn't have to return magic numbers * Reset the cart in NDSCart::InsertROM instead of the NDSCartData constructor - That way the constructor doesn't rely on the config or on file I/O when loading homebrew - This keeps the use of global state closer to one place * Add non-const getters for the carts * Add InsertROM overloads that accept unique_ptrs * Fix a comment * Rename member functions on NDSCartData and GBACartData to adhere to the convention * Rename members on NDSCartData and GBACartData to adhere to the convention * Fix build errors on some platforms * Add NDSHeader::IsDSiWare * Add a ROMListEntry parameter to the cart constructors - To allow for looking up details of SRAM or expected ROM size * Add some new getters to CartCommon * Use the Header/Banner members instead of globals * Make CartCommon abstract - It's not supposed to be instantiated anyway * Change the signature of CartCommon::Checksum - It's neither overridden nor mutating * Add some clarifying comments to NDSHeader * Delete CartCommon::ROM in its destructor - ParseROM copies its input and gives that copy to the cart object, so it's okay * Add some getters to CartCommon * Refactor NDSCart - Get rid of NDSCartData - Get rid of cart-specific global state within NDSCart (so registers are untouched) - Refactor uses of removed global variables to use the Cart pointer instead - Refactor ROMInfoDialog's icon functions to accept const arguments * Return the cart pointer - So *that's* why it was crashing. Whoops - Why is this even allowed? * Refactor GBACart - Delete CartGame::ROM in the destructor - Get rid of GBACartData - Remove some global state * Mark NDSCart::CartCommon::Type as const * Slightly refactor GBACart::CartCommon - Mark Type as const - Use enum constants - Make CartCommon itself abstract * Mark CRC32's data parameter as const * Mark GBACart::CartCommon::Checksum as const * Use assert.h instead of cassert - As demanded by the style guide * Fix some includes to adhere to the style guide * Get the ARM9 entry address directly from the header object * Use more Header fields directly * Rename some parameters to match the style guide * Remove some unused includes * Slightly change NDS_Header::IsHomebrew for clarity
2023-06-30 11:28:52 +00:00
binaryaddr = header.DSiARM9iRAMAddress;
binarysize = header.DSiARM9iSize;
}
else if (BINARY_GOOD(DSiARM7i))
{
Split the cart parsing and loading steps (#1707) * Split ROMList into a .cpp file - Its definition in ROMList.h was causing multiple-definition linker errors - Introduce ROMListSize, since you can't take a sizeof() of an extern declaration - Mark ROMList and ROMListSize as const * Update ReadROMParams to accommodate ROMList changes * Split parsing and loading of NDS ROMs - Introduce an NDSCartData class for parsing a ROM file - Introduce InsertROM for loading a NDS cart - Refactor LoadROM to use NDSCartData and InsertROM under the hood * Reset cart state and initialize save memory in the NDSCartData constructor - Otherwise there's no way to know about SRAM-specific attributes before inserting the game * Add a comment to NDSCartData * First crack at splitting parsing and loading for GBACart * Add some logging calls for encrypting the secure area * Log the XXH64 hash of the inserted NDS ROM * Log the XXH64 hash of the secure area after decryption * Add some logging to Key1_LoadKeyBuf * Re-encrypt the secure area when inserting the cart, not when parsing it - This way, constructing a NDSCart doesn't imply a read from the filesystem (as is done in Key1_KeyBuf) * Load Key1_KeyBuf from memory, not from the file system - Now that the cart's secure area isn't re-encrypted until insertion, we can expect that the BIOS will be ready at this point * Add some helper query methods to NDSHeader * Query the DSi region directly from the header instead of checking the ROM again * Introduce a CartType enum - So CartCommon::Type doesn't have to return magic numbers * Reset the cart in NDSCart::InsertROM instead of the NDSCartData constructor - That way the constructor doesn't rely on the config or on file I/O when loading homebrew - This keeps the use of global state closer to one place * Add non-const getters for the carts * Add InsertROM overloads that accept unique_ptrs * Fix a comment * Rename member functions on NDSCartData and GBACartData to adhere to the convention * Rename members on NDSCartData and GBACartData to adhere to the convention * Fix build errors on some platforms * Add NDSHeader::IsDSiWare * Add a ROMListEntry parameter to the cart constructors - To allow for looking up details of SRAM or expected ROM size * Add some new getters to CartCommon * Use the Header/Banner members instead of globals * Make CartCommon abstract - It's not supposed to be instantiated anyway * Change the signature of CartCommon::Checksum - It's neither overridden nor mutating * Add some clarifying comments to NDSHeader * Delete CartCommon::ROM in its destructor - ParseROM copies its input and gives that copy to the cart object, so it's okay * Add some getters to CartCommon * Refactor NDSCart - Get rid of NDSCartData - Get rid of cart-specific global state within NDSCart (so registers are untouched) - Refactor uses of removed global variables to use the Cart pointer instead - Refactor ROMInfoDialog's icon functions to accept const arguments * Return the cart pointer - So *that's* why it was crashing. Whoops - Why is this even allowed? * Refactor GBACart - Delete CartGame::ROM in the destructor - Get rid of GBACartData - Remove some global state * Mark NDSCart::CartCommon::Type as const * Slightly refactor GBACart::CartCommon - Mark Type as const - Use enum constants - Make CartCommon itself abstract * Mark CRC32's data parameter as const * Mark GBACart::CartCommon::Checksum as const * Use assert.h instead of cassert - As demanded by the style guide * Fix some includes to adhere to the style guide * Get the ARM9 entry address directly from the header object * Use more Header fields directly * Rename some parameters to match the style guide * Remove some unused includes * Slightly change NDS_Header::IsHomebrew for clarity
2023-06-30 11:28:52 +00:00
binaryaddr = header.DSiARM7iRAMAddress;
binarysize = header.DSiARM7iSize;
}
else
return;
#undef BINARY_GOOD
for (u32 i = 0; i < size; i+=16)
{
u32 data[4];
data[0] = ARM9Read32(binaryaddr+i);
data[1] = ARM9Read32(binaryaddr+i+4);
data[2] = ARM9Read32(binaryaddr+i+8);
data[3] = ARM9Read32(binaryaddr+i+12);
Bswap128(tmp, data);
AES_CTR_xcrypt_buffer(&ctx, tmp, sizeof(tmp));
Bswap128(data, tmp);
ARM9Write32(binaryaddr+i, data[0]);
ARM9Write32(binaryaddr+i+4, data[1]);
ARM9Write32(binaryaddr+i+8, data[2]);
ARM9Write32(binaryaddr+i+12, data[3]);
}
}
void SetupDirectBoot()
{
bool dsmode = false;
Split the cart parsing and loading steps (#1707) * Split ROMList into a .cpp file - Its definition in ROMList.h was causing multiple-definition linker errors - Introduce ROMListSize, since you can't take a sizeof() of an extern declaration - Mark ROMList and ROMListSize as const * Update ReadROMParams to accommodate ROMList changes * Split parsing and loading of NDS ROMs - Introduce an NDSCartData class for parsing a ROM file - Introduce InsertROM for loading a NDS cart - Refactor LoadROM to use NDSCartData and InsertROM under the hood * Reset cart state and initialize save memory in the NDSCartData constructor - Otherwise there's no way to know about SRAM-specific attributes before inserting the game * Add a comment to NDSCartData * First crack at splitting parsing and loading for GBACart * Add some logging calls for encrypting the secure area * Log the XXH64 hash of the inserted NDS ROM * Log the XXH64 hash of the secure area after decryption * Add some logging to Key1_LoadKeyBuf * Re-encrypt the secure area when inserting the cart, not when parsing it - This way, constructing a NDSCart doesn't imply a read from the filesystem (as is done in Key1_KeyBuf) * Load Key1_KeyBuf from memory, not from the file system - Now that the cart's secure area isn't re-encrypted until insertion, we can expect that the BIOS will be ready at this point * Add some helper query methods to NDSHeader * Query the DSi region directly from the header instead of checking the ROM again * Introduce a CartType enum - So CartCommon::Type doesn't have to return magic numbers * Reset the cart in NDSCart::InsertROM instead of the NDSCartData constructor - That way the constructor doesn't rely on the config or on file I/O when loading homebrew - This keeps the use of global state closer to one place * Add non-const getters for the carts * Add InsertROM overloads that accept unique_ptrs * Fix a comment * Rename member functions on NDSCartData and GBACartData to adhere to the convention * Rename members on NDSCartData and GBACartData to adhere to the convention * Fix build errors on some platforms * Add NDSHeader::IsDSiWare * Add a ROMListEntry parameter to the cart constructors - To allow for looking up details of SRAM or expected ROM size * Add some new getters to CartCommon * Use the Header/Banner members instead of globals * Make CartCommon abstract - It's not supposed to be instantiated anyway * Change the signature of CartCommon::Checksum - It's neither overridden nor mutating * Add some clarifying comments to NDSHeader * Delete CartCommon::ROM in its destructor - ParseROM copies its input and gives that copy to the cart object, so it's okay * Add some getters to CartCommon * Refactor NDSCart - Get rid of NDSCartData - Get rid of cart-specific global state within NDSCart (so registers are untouched) - Refactor uses of removed global variables to use the Cart pointer instead - Refactor ROMInfoDialog's icon functions to accept const arguments * Return the cart pointer - So *that's* why it was crashing. Whoops - Why is this even allowed? * Refactor GBACart - Delete CartGame::ROM in the destructor - Get rid of GBACartData - Remove some global state * Mark NDSCart::CartCommon::Type as const * Slightly refactor GBACart::CartCommon - Mark Type as const - Use enum constants - Make CartCommon itself abstract * Mark CRC32's data parameter as const * Mark GBACart::CartCommon::Checksum as const * Use assert.h instead of cassert - As demanded by the style guide * Fix some includes to adhere to the style guide * Get the ARM9 entry address directly from the header object * Use more Header fields directly * Rename some parameters to match the style guide * Remove some unused includes * Slightly change NDS_Header::IsHomebrew for clarity
2023-06-30 11:28:52 +00:00
NDSHeader& header = NDSCart::Cart->GetHeader();
const u8* cartrom = NDSCart::Cart->GetROM();
u32 cartid = NDSCart::Cart->ID();
// TODO: add controls for forcing DS or DSi mode?
Split the cart parsing and loading steps (#1707) * Split ROMList into a .cpp file - Its definition in ROMList.h was causing multiple-definition linker errors - Introduce ROMListSize, since you can't take a sizeof() of an extern declaration - Mark ROMList and ROMListSize as const * Update ReadROMParams to accommodate ROMList changes * Split parsing and loading of NDS ROMs - Introduce an NDSCartData class for parsing a ROM file - Introduce InsertROM for loading a NDS cart - Refactor LoadROM to use NDSCartData and InsertROM under the hood * Reset cart state and initialize save memory in the NDSCartData constructor - Otherwise there's no way to know about SRAM-specific attributes before inserting the game * Add a comment to NDSCartData * First crack at splitting parsing and loading for GBACart * Add some logging calls for encrypting the secure area * Log the XXH64 hash of the inserted NDS ROM * Log the XXH64 hash of the secure area after decryption * Add some logging to Key1_LoadKeyBuf * Re-encrypt the secure area when inserting the cart, not when parsing it - This way, constructing a NDSCart doesn't imply a read from the filesystem (as is done in Key1_KeyBuf) * Load Key1_KeyBuf from memory, not from the file system - Now that the cart's secure area isn't re-encrypted until insertion, we can expect that the BIOS will be ready at this point * Add some helper query methods to NDSHeader * Query the DSi region directly from the header instead of checking the ROM again * Introduce a CartType enum - So CartCommon::Type doesn't have to return magic numbers * Reset the cart in NDSCart::InsertROM instead of the NDSCartData constructor - That way the constructor doesn't rely on the config or on file I/O when loading homebrew - This keeps the use of global state closer to one place * Add non-const getters for the carts * Add InsertROM overloads that accept unique_ptrs * Fix a comment * Rename member functions on NDSCartData and GBACartData to adhere to the convention * Rename members on NDSCartData and GBACartData to adhere to the convention * Fix build errors on some platforms * Add NDSHeader::IsDSiWare * Add a ROMListEntry parameter to the cart constructors - To allow for looking up details of SRAM or expected ROM size * Add some new getters to CartCommon * Use the Header/Banner members instead of globals * Make CartCommon abstract - It's not supposed to be instantiated anyway * Change the signature of CartCommon::Checksum - It's neither overridden nor mutating * Add some clarifying comments to NDSHeader * Delete CartCommon::ROM in its destructor - ParseROM copies its input and gives that copy to the cart object, so it's okay * Add some getters to CartCommon * Refactor NDSCart - Get rid of NDSCartData - Get rid of cart-specific global state within NDSCart (so registers are untouched) - Refactor uses of removed global variables to use the Cart pointer instead - Refactor ROMInfoDialog's icon functions to accept const arguments * Return the cart pointer - So *that's* why it was crashing. Whoops - Why is this even allowed? * Refactor GBACart - Delete CartGame::ROM in the destructor - Get rid of GBACartData - Remove some global state * Mark NDSCart::CartCommon::Type as const * Slightly refactor GBACart::CartCommon - Mark Type as const - Use enum constants - Make CartCommon itself abstract * Mark CRC32's data parameter as const * Mark GBACart::CartCommon::Checksum as const * Use assert.h instead of cassert - As demanded by the style guide * Fix some includes to adhere to the style guide * Get the ARM9 entry address directly from the header object * Use more Header fields directly * Rename some parameters to match the style guide * Remove some unused includes * Slightly change NDS_Header::IsHomebrew for clarity
2023-06-30 11:28:52 +00:00
if (!(header.UnitCode & 0x02))
dsmode = true;
if (dsmode)
{
SCFG_BIOS = 0x0303;
// no NWRAM Mapping
for (int i = 0; i < 4; i++)
MapNWRAM_A(i, 0);
for (int i = 0; i < 8; i++)
MapNWRAM_B(i, 0);
for (int i = 0; i < 8; i++)
MapNWRAM_C(i, 0);
// No NWRAM Window
for (int i = 0; i < 3; i++)
{
MapNWRAMRange(0, i, 0);
MapNWRAMRange(1, i, 0);
}
NDS::MapSharedWRAM(3);
DSi_SPI_TSC::SetMode(0x00);
Set_SCFG_Clock9(0x0000);
}
else
{
SCFG_BIOS = 0x0101;
// WRAM mapping
MBK[0][8] = 0;
MBK[1][8] = 0;
u32 mbk[12];
Split the cart parsing and loading steps (#1707) * Split ROMList into a .cpp file - Its definition in ROMList.h was causing multiple-definition linker errors - Introduce ROMListSize, since you can't take a sizeof() of an extern declaration - Mark ROMList and ROMListSize as const * Update ReadROMParams to accommodate ROMList changes * Split parsing and loading of NDS ROMs - Introduce an NDSCartData class for parsing a ROM file - Introduce InsertROM for loading a NDS cart - Refactor LoadROM to use NDSCartData and InsertROM under the hood * Reset cart state and initialize save memory in the NDSCartData constructor - Otherwise there's no way to know about SRAM-specific attributes before inserting the game * Add a comment to NDSCartData * First crack at splitting parsing and loading for GBACart * Add some logging calls for encrypting the secure area * Log the XXH64 hash of the inserted NDS ROM * Log the XXH64 hash of the secure area after decryption * Add some logging to Key1_LoadKeyBuf * Re-encrypt the secure area when inserting the cart, not when parsing it - This way, constructing a NDSCart doesn't imply a read from the filesystem (as is done in Key1_KeyBuf) * Load Key1_KeyBuf from memory, not from the file system - Now that the cart's secure area isn't re-encrypted until insertion, we can expect that the BIOS will be ready at this point * Add some helper query methods to NDSHeader * Query the DSi region directly from the header instead of checking the ROM again * Introduce a CartType enum - So CartCommon::Type doesn't have to return magic numbers * Reset the cart in NDSCart::InsertROM instead of the NDSCartData constructor - That way the constructor doesn't rely on the config or on file I/O when loading homebrew - This keeps the use of global state closer to one place * Add non-const getters for the carts * Add InsertROM overloads that accept unique_ptrs * Fix a comment * Rename member functions on NDSCartData and GBACartData to adhere to the convention * Rename members on NDSCartData and GBACartData to adhere to the convention * Fix build errors on some platforms * Add NDSHeader::IsDSiWare * Add a ROMListEntry parameter to the cart constructors - To allow for looking up details of SRAM or expected ROM size * Add some new getters to CartCommon * Use the Header/Banner members instead of globals * Make CartCommon abstract - It's not supposed to be instantiated anyway * Change the signature of CartCommon::Checksum - It's neither overridden nor mutating * Add some clarifying comments to NDSHeader * Delete CartCommon::ROM in its destructor - ParseROM copies its input and gives that copy to the cart object, so it's okay * Add some getters to CartCommon * Refactor NDSCart - Get rid of NDSCartData - Get rid of cart-specific global state within NDSCart (so registers are untouched) - Refactor uses of removed global variables to use the Cart pointer instead - Refactor ROMInfoDialog's icon functions to accept const arguments * Return the cart pointer - So *that's* why it was crashing. Whoops - Why is this even allowed? * Refactor GBACart - Delete CartGame::ROM in the destructor - Get rid of GBACartData - Remove some global state * Mark NDSCart::CartCommon::Type as const * Slightly refactor GBACart::CartCommon - Mark Type as const - Use enum constants - Make CartCommon itself abstract * Mark CRC32's data parameter as const * Mark GBACart::CartCommon::Checksum as const * Use assert.h instead of cassert - As demanded by the style guide * Fix some includes to adhere to the style guide * Get the ARM9 entry address directly from the header object * Use more Header fields directly * Rename some parameters to match the style guide * Remove some unused includes * Slightly change NDS_Header::IsHomebrew for clarity
2023-06-30 11:28:52 +00:00
memcpy(mbk, &cartrom[0x180], 12*4);
MapNWRAM_A(0, mbk[0] & 0xFF);
MapNWRAM_A(1, (mbk[0] >> 8) & 0xFF);
MapNWRAM_A(2, (mbk[0] >> 16) & 0xFF);
MapNWRAM_A(3, mbk[0] >> 24);
MapNWRAM_B(0, mbk[1] & 0xFF);
MapNWRAM_B(1, (mbk[1] >> 8) & 0xFF);
MapNWRAM_B(2, (mbk[1] >> 16) & 0xFF);
MapNWRAM_B(3, mbk[1] >> 24);
MapNWRAM_B(4, mbk[2] & 0xFF);
MapNWRAM_B(5, (mbk[2] >> 8) & 0xFF);
MapNWRAM_B(6, (mbk[2] >> 16) & 0xFF);
MapNWRAM_B(7, mbk[2] >> 24);
MapNWRAM_C(0, mbk[3] & 0xFF);
MapNWRAM_C(1, (mbk[3] >> 8) & 0xFF);
MapNWRAM_C(2, (mbk[3] >> 16) & 0xFF);
MapNWRAM_C(3, mbk[3] >> 24);
MapNWRAM_C(4, mbk[4] & 0xFF);
MapNWRAM_C(5, (mbk[4] >> 8) & 0xFF);
MapNWRAM_C(6, (mbk[4] >> 16) & 0xFF);
MapNWRAM_C(7, mbk[4] >> 24);
MapNWRAMRange(0, 0, mbk[5]);
MapNWRAMRange(0, 1, mbk[6]);
MapNWRAMRange(0, 2, mbk[7]);
MapNWRAMRange(1, 0, mbk[8]);
MapNWRAMRange(1, 1, mbk[9]);
MapNWRAMRange(1, 2, mbk[10]);
MBK[0][8] = mbk[11] & 0x00FFFF0F;
MBK[1][8] = mbk[11] & 0x00FFFF0F;
NDS::MapSharedWRAM(mbk[11] >> 24);
Split the cart parsing and loading steps (#1707) * Split ROMList into a .cpp file - Its definition in ROMList.h was causing multiple-definition linker errors - Introduce ROMListSize, since you can't take a sizeof() of an extern declaration - Mark ROMList and ROMListSize as const * Update ReadROMParams to accommodate ROMList changes * Split parsing and loading of NDS ROMs - Introduce an NDSCartData class for parsing a ROM file - Introduce InsertROM for loading a NDS cart - Refactor LoadROM to use NDSCartData and InsertROM under the hood * Reset cart state and initialize save memory in the NDSCartData constructor - Otherwise there's no way to know about SRAM-specific attributes before inserting the game * Add a comment to NDSCartData * First crack at splitting parsing and loading for GBACart * Add some logging calls for encrypting the secure area * Log the XXH64 hash of the inserted NDS ROM * Log the XXH64 hash of the secure area after decryption * Add some logging to Key1_LoadKeyBuf * Re-encrypt the secure area when inserting the cart, not when parsing it - This way, constructing a NDSCart doesn't imply a read from the filesystem (as is done in Key1_KeyBuf) * Load Key1_KeyBuf from memory, not from the file system - Now that the cart's secure area isn't re-encrypted until insertion, we can expect that the BIOS will be ready at this point * Add some helper query methods to NDSHeader * Query the DSi region directly from the header instead of checking the ROM again * Introduce a CartType enum - So CartCommon::Type doesn't have to return magic numbers * Reset the cart in NDSCart::InsertROM instead of the NDSCartData constructor - That way the constructor doesn't rely on the config or on file I/O when loading homebrew - This keeps the use of global state closer to one place * Add non-const getters for the carts * Add InsertROM overloads that accept unique_ptrs * Fix a comment * Rename member functions on NDSCartData and GBACartData to adhere to the convention * Rename members on NDSCartData and GBACartData to adhere to the convention * Fix build errors on some platforms * Add NDSHeader::IsDSiWare * Add a ROMListEntry parameter to the cart constructors - To allow for looking up details of SRAM or expected ROM size * Add some new getters to CartCommon * Use the Header/Banner members instead of globals * Make CartCommon abstract - It's not supposed to be instantiated anyway * Change the signature of CartCommon::Checksum - It's neither overridden nor mutating * Add some clarifying comments to NDSHeader * Delete CartCommon::ROM in its destructor - ParseROM copies its input and gives that copy to the cart object, so it's okay * Add some getters to CartCommon * Refactor NDSCart - Get rid of NDSCartData - Get rid of cart-specific global state within NDSCart (so registers are untouched) - Refactor uses of removed global variables to use the Cart pointer instead - Refactor ROMInfoDialog's icon functions to accept const arguments * Return the cart pointer - So *that's* why it was crashing. Whoops - Why is this even allowed? * Refactor GBACart - Delete CartGame::ROM in the destructor - Get rid of GBACartData - Remove some global state * Mark NDSCart::CartCommon::Type as const * Slightly refactor GBACart::CartCommon - Mark Type as const - Use enum constants - Make CartCommon itself abstract * Mark CRC32's data parameter as const * Mark GBACart::CartCommon::Checksum as const * Use assert.h instead of cassert - As demanded by the style guide * Fix some includes to adhere to the style guide * Get the ARM9 entry address directly from the header object * Use more Header fields directly * Rename some parameters to match the style guide * Remove some unused includes * Slightly change NDS_Header::IsHomebrew for clarity
2023-06-30 11:28:52 +00:00
if (!(header.AppFlags & (1<<0)))
DSi_SPI_TSC::SetMode(0x00);
}
2022-10-28 19:31:51 +00:00
// setup main RAM data
// TODO: verify what changes when loading a DS-mode ROM
if (dsmode)
{
for (u32 i = 0; i < 0x170; i+=4)
{
Split the cart parsing and loading steps (#1707) * Split ROMList into a .cpp file - Its definition in ROMList.h was causing multiple-definition linker errors - Introduce ROMListSize, since you can't take a sizeof() of an extern declaration - Mark ROMList and ROMListSize as const * Update ReadROMParams to accommodate ROMList changes * Split parsing and loading of NDS ROMs - Introduce an NDSCartData class for parsing a ROM file - Introduce InsertROM for loading a NDS cart - Refactor LoadROM to use NDSCartData and InsertROM under the hood * Reset cart state and initialize save memory in the NDSCartData constructor - Otherwise there's no way to know about SRAM-specific attributes before inserting the game * Add a comment to NDSCartData * First crack at splitting parsing and loading for GBACart * Add some logging calls for encrypting the secure area * Log the XXH64 hash of the inserted NDS ROM * Log the XXH64 hash of the secure area after decryption * Add some logging to Key1_LoadKeyBuf * Re-encrypt the secure area when inserting the cart, not when parsing it - This way, constructing a NDSCart doesn't imply a read from the filesystem (as is done in Key1_KeyBuf) * Load Key1_KeyBuf from memory, not from the file system - Now that the cart's secure area isn't re-encrypted until insertion, we can expect that the BIOS will be ready at this point * Add some helper query methods to NDSHeader * Query the DSi region directly from the header instead of checking the ROM again * Introduce a CartType enum - So CartCommon::Type doesn't have to return magic numbers * Reset the cart in NDSCart::InsertROM instead of the NDSCartData constructor - That way the constructor doesn't rely on the config or on file I/O when loading homebrew - This keeps the use of global state closer to one place * Add non-const getters for the carts * Add InsertROM overloads that accept unique_ptrs * Fix a comment * Rename member functions on NDSCartData and GBACartData to adhere to the convention * Rename members on NDSCartData and GBACartData to adhere to the convention * Fix build errors on some platforms * Add NDSHeader::IsDSiWare * Add a ROMListEntry parameter to the cart constructors - To allow for looking up details of SRAM or expected ROM size * Add some new getters to CartCommon * Use the Header/Banner members instead of globals * Make CartCommon abstract - It's not supposed to be instantiated anyway * Change the signature of CartCommon::Checksum - It's neither overridden nor mutating * Add some clarifying comments to NDSHeader * Delete CartCommon::ROM in its destructor - ParseROM copies its input and gives that copy to the cart object, so it's okay * Add some getters to CartCommon * Refactor NDSCart - Get rid of NDSCartData - Get rid of cart-specific global state within NDSCart (so registers are untouched) - Refactor uses of removed global variables to use the Cart pointer instead - Refactor ROMInfoDialog's icon functions to accept const arguments * Return the cart pointer - So *that's* why it was crashing. Whoops - Why is this even allowed? * Refactor GBACart - Delete CartGame::ROM in the destructor - Get rid of GBACartData - Remove some global state * Mark NDSCart::CartCommon::Type as const * Slightly refactor GBACart::CartCommon - Mark Type as const - Use enum constants - Make CartCommon itself abstract * Mark CRC32's data parameter as const * Mark GBACart::CartCommon::Checksum as const * Use assert.h instead of cassert - As demanded by the style guide * Fix some includes to adhere to the style guide * Get the ARM9 entry address directly from the header object * Use more Header fields directly * Rename some parameters to match the style guide * Remove some unused includes * Slightly change NDS_Header::IsHomebrew for clarity
2023-06-30 11:28:52 +00:00
u32 tmp = *(u32*)&cartrom[i];
2022-10-28 19:31:51 +00:00
ARM9Write32(0x027FFE00+i, tmp);
}
Split the cart parsing and loading steps (#1707) * Split ROMList into a .cpp file - Its definition in ROMList.h was causing multiple-definition linker errors - Introduce ROMListSize, since you can't take a sizeof() of an extern declaration - Mark ROMList and ROMListSize as const * Update ReadROMParams to accommodate ROMList changes * Split parsing and loading of NDS ROMs - Introduce an NDSCartData class for parsing a ROM file - Introduce InsertROM for loading a NDS cart - Refactor LoadROM to use NDSCartData and InsertROM under the hood * Reset cart state and initialize save memory in the NDSCartData constructor - Otherwise there's no way to know about SRAM-specific attributes before inserting the game * Add a comment to NDSCartData * First crack at splitting parsing and loading for GBACart * Add some logging calls for encrypting the secure area * Log the XXH64 hash of the inserted NDS ROM * Log the XXH64 hash of the secure area after decryption * Add some logging to Key1_LoadKeyBuf * Re-encrypt the secure area when inserting the cart, not when parsing it - This way, constructing a NDSCart doesn't imply a read from the filesystem (as is done in Key1_KeyBuf) * Load Key1_KeyBuf from memory, not from the file system - Now that the cart's secure area isn't re-encrypted until insertion, we can expect that the BIOS will be ready at this point * Add some helper query methods to NDSHeader * Query the DSi region directly from the header instead of checking the ROM again * Introduce a CartType enum - So CartCommon::Type doesn't have to return magic numbers * Reset the cart in NDSCart::InsertROM instead of the NDSCartData constructor - That way the constructor doesn't rely on the config or on file I/O when loading homebrew - This keeps the use of global state closer to one place * Add non-const getters for the carts * Add InsertROM overloads that accept unique_ptrs * Fix a comment * Rename member functions on NDSCartData and GBACartData to adhere to the convention * Rename members on NDSCartData and GBACartData to adhere to the convention * Fix build errors on some platforms * Add NDSHeader::IsDSiWare * Add a ROMListEntry parameter to the cart constructors - To allow for looking up details of SRAM or expected ROM size * Add some new getters to CartCommon * Use the Header/Banner members instead of globals * Make CartCommon abstract - It's not supposed to be instantiated anyway * Change the signature of CartCommon::Checksum - It's neither overridden nor mutating * Add some clarifying comments to NDSHeader * Delete CartCommon::ROM in its destructor - ParseROM copies its input and gives that copy to the cart object, so it's okay * Add some getters to CartCommon * Refactor NDSCart - Get rid of NDSCartData - Get rid of cart-specific global state within NDSCart (so registers are untouched) - Refactor uses of removed global variables to use the Cart pointer instead - Refactor ROMInfoDialog's icon functions to accept const arguments * Return the cart pointer - So *that's* why it was crashing. Whoops - Why is this even allowed? * Refactor GBACart - Delete CartGame::ROM in the destructor - Get rid of GBACartData - Remove some global state * Mark NDSCart::CartCommon::Type as const * Slightly refactor GBACart::CartCommon - Mark Type as const - Use enum constants - Make CartCommon itself abstract * Mark CRC32's data parameter as const * Mark GBACart::CartCommon::Checksum as const * Use assert.h instead of cassert - As demanded by the style guide * Fix some includes to adhere to the style guide * Get the ARM9 entry address directly from the header object * Use more Header fields directly * Rename some parameters to match the style guide * Remove some unused includes * Slightly change NDS_Header::IsHomebrew for clarity
2023-06-30 11:28:52 +00:00
ARM9Write32(0x027FF800, cartid);
ARM9Write32(0x027FF804, cartid);
ARM9Write16(0x027FF808, header.HeaderCRC16);
ARM9Write16(0x027FF80A, header.SecureAreaCRC16);
2022-10-28 19:31:51 +00:00
ARM9Write16(0x027FF850, 0x5835);
Split the cart parsing and loading steps (#1707) * Split ROMList into a .cpp file - Its definition in ROMList.h was causing multiple-definition linker errors - Introduce ROMListSize, since you can't take a sizeof() of an extern declaration - Mark ROMList and ROMListSize as const * Update ReadROMParams to accommodate ROMList changes * Split parsing and loading of NDS ROMs - Introduce an NDSCartData class for parsing a ROM file - Introduce InsertROM for loading a NDS cart - Refactor LoadROM to use NDSCartData and InsertROM under the hood * Reset cart state and initialize save memory in the NDSCartData constructor - Otherwise there's no way to know about SRAM-specific attributes before inserting the game * Add a comment to NDSCartData * First crack at splitting parsing and loading for GBACart * Add some logging calls for encrypting the secure area * Log the XXH64 hash of the inserted NDS ROM * Log the XXH64 hash of the secure area after decryption * Add some logging to Key1_LoadKeyBuf * Re-encrypt the secure area when inserting the cart, not when parsing it - This way, constructing a NDSCart doesn't imply a read from the filesystem (as is done in Key1_KeyBuf) * Load Key1_KeyBuf from memory, not from the file system - Now that the cart's secure area isn't re-encrypted until insertion, we can expect that the BIOS will be ready at this point * Add some helper query methods to NDSHeader * Query the DSi region directly from the header instead of checking the ROM again * Introduce a CartType enum - So CartCommon::Type doesn't have to return magic numbers * Reset the cart in NDSCart::InsertROM instead of the NDSCartData constructor - That way the constructor doesn't rely on the config or on file I/O when loading homebrew - This keeps the use of global state closer to one place * Add non-const getters for the carts * Add InsertROM overloads that accept unique_ptrs * Fix a comment * Rename member functions on NDSCartData and GBACartData to adhere to the convention * Rename members on NDSCartData and GBACartData to adhere to the convention * Fix build errors on some platforms * Add NDSHeader::IsDSiWare * Add a ROMListEntry parameter to the cart constructors - To allow for looking up details of SRAM or expected ROM size * Add some new getters to CartCommon * Use the Header/Banner members instead of globals * Make CartCommon abstract - It's not supposed to be instantiated anyway * Change the signature of CartCommon::Checksum - It's neither overridden nor mutating * Add some clarifying comments to NDSHeader * Delete CartCommon::ROM in its destructor - ParseROM copies its input and gives that copy to the cart object, so it's okay * Add some getters to CartCommon * Refactor NDSCart - Get rid of NDSCartData - Get rid of cart-specific global state within NDSCart (so registers are untouched) - Refactor uses of removed global variables to use the Cart pointer instead - Refactor ROMInfoDialog's icon functions to accept const arguments * Return the cart pointer - So *that's* why it was crashing. Whoops - Why is this even allowed? * Refactor GBACart - Delete CartGame::ROM in the destructor - Get rid of GBACartData - Remove some global state * Mark NDSCart::CartCommon::Type as const * Slightly refactor GBACart::CartCommon - Mark Type as const - Use enum constants - Make CartCommon itself abstract * Mark CRC32's data parameter as const * Mark GBACart::CartCommon::Checksum as const * Use assert.h instead of cassert - As demanded by the style guide * Fix some includes to adhere to the style guide * Get the ARM9 entry address directly from the header object * Use more Header fields directly * Rename some parameters to match the style guide * Remove some unused includes * Slightly change NDS_Header::IsHomebrew for clarity
2023-06-30 11:28:52 +00:00
ARM9Write32(0x027FFC00, cartid);
ARM9Write32(0x027FFC04, cartid);
ARM9Write16(0x027FFC08, header.HeaderCRC16);
ARM9Write16(0x027FFC0A, header.SecureAreaCRC16);
2022-10-28 19:31:51 +00:00
ARM9Write16(0x027FFC10, 0x5835);
ARM9Write16(0x027FFC30, 0xFFFF);
ARM9Write16(0x027FFC40, 0x0001);
}
else
{
// CHECKME: some of these are 'only for NDS ROM', presumably
// only for when loading a cart? (as opposed to DSiWare)
for (u32 i = 0; i < 0x160; i+=4)
{
Split the cart parsing and loading steps (#1707) * Split ROMList into a .cpp file - Its definition in ROMList.h was causing multiple-definition linker errors - Introduce ROMListSize, since you can't take a sizeof() of an extern declaration - Mark ROMList and ROMListSize as const * Update ReadROMParams to accommodate ROMList changes * Split parsing and loading of NDS ROMs - Introduce an NDSCartData class for parsing a ROM file - Introduce InsertROM for loading a NDS cart - Refactor LoadROM to use NDSCartData and InsertROM under the hood * Reset cart state and initialize save memory in the NDSCartData constructor - Otherwise there's no way to know about SRAM-specific attributes before inserting the game * Add a comment to NDSCartData * First crack at splitting parsing and loading for GBACart * Add some logging calls for encrypting the secure area * Log the XXH64 hash of the inserted NDS ROM * Log the XXH64 hash of the secure area after decryption * Add some logging to Key1_LoadKeyBuf * Re-encrypt the secure area when inserting the cart, not when parsing it - This way, constructing a NDSCart doesn't imply a read from the filesystem (as is done in Key1_KeyBuf) * Load Key1_KeyBuf from memory, not from the file system - Now that the cart's secure area isn't re-encrypted until insertion, we can expect that the BIOS will be ready at this point * Add some helper query methods to NDSHeader * Query the DSi region directly from the header instead of checking the ROM again * Introduce a CartType enum - So CartCommon::Type doesn't have to return magic numbers * Reset the cart in NDSCart::InsertROM instead of the NDSCartData constructor - That way the constructor doesn't rely on the config or on file I/O when loading homebrew - This keeps the use of global state closer to one place * Add non-const getters for the carts * Add InsertROM overloads that accept unique_ptrs * Fix a comment * Rename member functions on NDSCartData and GBACartData to adhere to the convention * Rename members on NDSCartData and GBACartData to adhere to the convention * Fix build errors on some platforms * Add NDSHeader::IsDSiWare * Add a ROMListEntry parameter to the cart constructors - To allow for looking up details of SRAM or expected ROM size * Add some new getters to CartCommon * Use the Header/Banner members instead of globals * Make CartCommon abstract - It's not supposed to be instantiated anyway * Change the signature of CartCommon::Checksum - It's neither overridden nor mutating * Add some clarifying comments to NDSHeader * Delete CartCommon::ROM in its destructor - ParseROM copies its input and gives that copy to the cart object, so it's okay * Add some getters to CartCommon * Refactor NDSCart - Get rid of NDSCartData - Get rid of cart-specific global state within NDSCart (so registers are untouched) - Refactor uses of removed global variables to use the Cart pointer instead - Refactor ROMInfoDialog's icon functions to accept const arguments * Return the cart pointer - So *that's* why it was crashing. Whoops - Why is this even allowed? * Refactor GBACart - Delete CartGame::ROM in the destructor - Get rid of GBACartData - Remove some global state * Mark NDSCart::CartCommon::Type as const * Slightly refactor GBACart::CartCommon - Mark Type as const - Use enum constants - Make CartCommon itself abstract * Mark CRC32's data parameter as const * Mark GBACart::CartCommon::Checksum as const * Use assert.h instead of cassert - As demanded by the style guide * Fix some includes to adhere to the style guide * Get the ARM9 entry address directly from the header object * Use more Header fields directly * Rename some parameters to match the style guide * Remove some unused includes * Slightly change NDS_Header::IsHomebrew for clarity
2023-06-30 11:28:52 +00:00
u32 tmp = *(u32*)&cartrom[i];
2022-10-28 19:31:51 +00:00
ARM9Write32(0x02FFFA80+i, tmp);
ARM9Write32(0x02FFFE00+i, tmp);
}
for (u32 i = 0; i < 0x1000; i+=4)
{
Split the cart parsing and loading steps (#1707) * Split ROMList into a .cpp file - Its definition in ROMList.h was causing multiple-definition linker errors - Introduce ROMListSize, since you can't take a sizeof() of an extern declaration - Mark ROMList and ROMListSize as const * Update ReadROMParams to accommodate ROMList changes * Split parsing and loading of NDS ROMs - Introduce an NDSCartData class for parsing a ROM file - Introduce InsertROM for loading a NDS cart - Refactor LoadROM to use NDSCartData and InsertROM under the hood * Reset cart state and initialize save memory in the NDSCartData constructor - Otherwise there's no way to know about SRAM-specific attributes before inserting the game * Add a comment to NDSCartData * First crack at splitting parsing and loading for GBACart * Add some logging calls for encrypting the secure area * Log the XXH64 hash of the inserted NDS ROM * Log the XXH64 hash of the secure area after decryption * Add some logging to Key1_LoadKeyBuf * Re-encrypt the secure area when inserting the cart, not when parsing it - This way, constructing a NDSCart doesn't imply a read from the filesystem (as is done in Key1_KeyBuf) * Load Key1_KeyBuf from memory, not from the file system - Now that the cart's secure area isn't re-encrypted until insertion, we can expect that the BIOS will be ready at this point * Add some helper query methods to NDSHeader * Query the DSi region directly from the header instead of checking the ROM again * Introduce a CartType enum - So CartCommon::Type doesn't have to return magic numbers * Reset the cart in NDSCart::InsertROM instead of the NDSCartData constructor - That way the constructor doesn't rely on the config or on file I/O when loading homebrew - This keeps the use of global state closer to one place * Add non-const getters for the carts * Add InsertROM overloads that accept unique_ptrs * Fix a comment * Rename member functions on NDSCartData and GBACartData to adhere to the convention * Rename members on NDSCartData and GBACartData to adhere to the convention * Fix build errors on some platforms * Add NDSHeader::IsDSiWare * Add a ROMListEntry parameter to the cart constructors - To allow for looking up details of SRAM or expected ROM size * Add some new getters to CartCommon * Use the Header/Banner members instead of globals * Make CartCommon abstract - It's not supposed to be instantiated anyway * Change the signature of CartCommon::Checksum - It's neither overridden nor mutating * Add some clarifying comments to NDSHeader * Delete CartCommon::ROM in its destructor - ParseROM copies its input and gives that copy to the cart object, so it's okay * Add some getters to CartCommon * Refactor NDSCart - Get rid of NDSCartData - Get rid of cart-specific global state within NDSCart (so registers are untouched) - Refactor uses of removed global variables to use the Cart pointer instead - Refactor ROMInfoDialog's icon functions to accept const arguments * Return the cart pointer - So *that's* why it was crashing. Whoops - Why is this even allowed? * Refactor GBACart - Delete CartGame::ROM in the destructor - Get rid of GBACartData - Remove some global state * Mark NDSCart::CartCommon::Type as const * Slightly refactor GBACart::CartCommon - Mark Type as const - Use enum constants - Make CartCommon itself abstract * Mark CRC32's data parameter as const * Mark GBACart::CartCommon::Checksum as const * Use assert.h instead of cassert - As demanded by the style guide * Fix some includes to adhere to the style guide * Get the ARM9 entry address directly from the header object * Use more Header fields directly * Rename some parameters to match the style guide * Remove some unused includes * Slightly change NDS_Header::IsHomebrew for clarity
2023-06-30 11:28:52 +00:00
u32 tmp = *(u32*)&cartrom[i];
2022-10-28 19:31:51 +00:00
ARM9Write32(0x02FFC000+i, tmp);
ARM9Write32(0x02FFE000+i, tmp);
}
if (NANDImage && *NANDImage)
{ // If a NAND image is installed, and it's valid...
if (DSi_NAND::NANDMount nand = DSi_NAND::NANDMount(*NANDImage))
{
DSi_NAND::DSiFirmwareSystemSettings userdata {};
nand.ReadUserData(userdata);
for (u32 i = 0; i < 0x128; i+=4)
ARM9Write32(0x02000400+i, *(u32*)&userdata.Bytes[0x88+i]);
2022-10-28 19:31:51 +00:00
DSi_NAND::DSiSerialData hwinfoS {};
nand.ReadSerialData(hwinfoS);
DSi_NAND::DSiHardwareInfoN hwinfoN;
nand.ReadHardwareInfoN(hwinfoN);
2022-10-28 19:31:51 +00:00
for (u32 i = 0; i < 0x14; i+=4)
ARM9Write32(0x02000600+i, *(u32*)&hwinfoN[0x88+i]);
2022-10-28 19:31:51 +00:00
for (u32 i = 0; i < 0x18; i+=4)
ARM9Write32(0x02FFFD68+i, *(u32*)&hwinfoS.Bytes[0x88+i]);
}
2022-10-28 19:31:51 +00:00
}
Refactor the core's handling of firmware and BIOS images to rely less on the file system (#1826) * Introduce firmware-related structs * Fix some indents * Move the generated firmware identifier to a constant * Document the WifiAccessPoint constructors * Add some constants * Remove a stray comment * Implement Firmware::UserData * Add Firmware::Mask * Document Firmware::Buffer * Add a Firmware constructor that uses a FileHandle * Set the default username in UserData * Update the UserData checksum * Forgot to include Platform.h * Remove some redundant assignments in the default Firmware constructor * const-ify CRC16 * Replace the plain Firmware buffer with a Firmware object - Remove some functions that were reimplemented in the Firmware constructors * Fix some crashes due to undefined behavior * Fix the user data initialization - Initialize both user data objects to default - Set both user data objects to the same touch screen calibration * Follow the DS logic in determining which user data section is current * Remove an unneeded include * Remove another unneeded include * Initialize FirmwareMask in Firmware::Firmware * Use the DEFAULT_SSID constant * Add SPI_Firmware::InstallFirmware and SPI_Firmware::RemoveFirmware * Move a logging call to after the file is written * Add a SaveManager for the firmware * Touch up the SPI_Firmware::Firmware declaration * Move all firmware loading and customization to the frontend * Call Platform::WriteFirmware when it's time to write the firmware back to disk * Fix some missing stuff * Remove the Get* functions from SPI_Firmware in favor of GetFirmware() * Implement SPI_Firmware::DeInit in terms of RemoveFirmware * Add Firmware::UpdateChecksums * Fix an incorrect length * Update all checksums in the firmware after setting touch screen calibration data * Use the Firmware object's Position methods * Remove register fields from the Firmware object * Install the firmware before seeing if direct boot is necessary * Install the firmware before calling NDS::Reset in LoadROM * Slight cleanup in ROMManager * Fix the default access point name * Shorten the various getters in Firmware * Add qualifiers for certain uses of firmware types - GCC can get picky if -fpermissive isn't defined * Add an InstallFirmware overload that takes a unique_ptr * Log when firmware is added or removed * Don't clear the firmware in SPI_Firmware::Init - The original code didn't, it just set the pointer to nullptr * Fix a typo * Write back the full firmware if it's not generated * Move the FreeBIOS to an external file * Load wfcsettings.bin into the correct part of the generated firmware blob * Load BIOS files in the frontend, not in the core * Fix logging the firmware ID * Add some utility functions * Mark Firmware's constructors as explicit * Remove obsolete ConfigEntry values * Include <locale> explicitly in ROMManager * Fix up some includes * Add Firmware::IsBootable() * Add a newline to a log entry - Whoops * Log the number of bytes written out in SaveManager * Mark FirmwareHeader's constructor as explicit * Clean up GenerateDefaultFirmware and LoadFirmwareFromFile - Now they return a pair instead of two by-ref values * Refactor SaveManager a little bit - Manage its buffers as unique_ptrs to mitigate leaks - Reallocate the internal buffer if SetPath is asked to reload the file (and the new length is different) * Remove some stray parens * Fix some firmware-related bugs I introduced - Firmware settings are now properly saved to disk (beforehand I misunderstood when the firmware blob was written) - Firmware is no longer overwritten by contents of wfcsettings.bin * Slight cleanup
2023-09-18 19:09:11 +00:00
SPI_Firmware::WifiBoard nwifiver = SPI_Firmware::GetFirmware()->Header().WifiBoard;
ARM9Write8(0x020005E0, static_cast<u8>(nwifiver));
2022-10-28 19:31:51 +00:00
// TODO: these should be taken from the wifi firmware in NAND
// but, hey, this works too.
Refactor the core's handling of firmware and BIOS images to rely less on the file system (#1826) * Introduce firmware-related structs * Fix some indents * Move the generated firmware identifier to a constant * Document the WifiAccessPoint constructors * Add some constants * Remove a stray comment * Implement Firmware::UserData * Add Firmware::Mask * Document Firmware::Buffer * Add a Firmware constructor that uses a FileHandle * Set the default username in UserData * Update the UserData checksum * Forgot to include Platform.h * Remove some redundant assignments in the default Firmware constructor * const-ify CRC16 * Replace the plain Firmware buffer with a Firmware object - Remove some functions that were reimplemented in the Firmware constructors * Fix some crashes due to undefined behavior * Fix the user data initialization - Initialize both user data objects to default - Set both user data objects to the same touch screen calibration * Follow the DS logic in determining which user data section is current * Remove an unneeded include * Remove another unneeded include * Initialize FirmwareMask in Firmware::Firmware * Use the DEFAULT_SSID constant * Add SPI_Firmware::InstallFirmware and SPI_Firmware::RemoveFirmware * Move a logging call to after the file is written * Add a SaveManager for the firmware * Touch up the SPI_Firmware::Firmware declaration * Move all firmware loading and customization to the frontend * Call Platform::WriteFirmware when it's time to write the firmware back to disk * Fix some missing stuff * Remove the Get* functions from SPI_Firmware in favor of GetFirmware() * Implement SPI_Firmware::DeInit in terms of RemoveFirmware * Add Firmware::UpdateChecksums * Fix an incorrect length * Update all checksums in the firmware after setting touch screen calibration data * Use the Firmware object's Position methods * Remove register fields from the Firmware object * Install the firmware before seeing if direct boot is necessary * Install the firmware before calling NDS::Reset in LoadROM * Slight cleanup in ROMManager * Fix the default access point name * Shorten the various getters in Firmware * Add qualifiers for certain uses of firmware types - GCC can get picky if -fpermissive isn't defined * Add an InstallFirmware overload that takes a unique_ptr * Log when firmware is added or removed * Don't clear the firmware in SPI_Firmware::Init - The original code didn't, it just set the pointer to nullptr * Fix a typo * Write back the full firmware if it's not generated * Move the FreeBIOS to an external file * Load wfcsettings.bin into the correct part of the generated firmware blob * Load BIOS files in the frontend, not in the core * Fix logging the firmware ID * Add some utility functions * Mark Firmware's constructors as explicit * Remove obsolete ConfigEntry values * Include <locale> explicitly in ROMManager * Fix up some includes * Add Firmware::IsBootable() * Add a newline to a log entry - Whoops * Log the number of bytes written out in SaveManager * Mark FirmwareHeader's constructor as explicit * Clean up GenerateDefaultFirmware and LoadFirmwareFromFile - Now they return a pair instead of two by-ref values * Refactor SaveManager a little bit - Manage its buffers as unique_ptrs to mitigate leaks - Reallocate the internal buffer if SetPath is asked to reload the file (and the new length is different) * Remove some stray parens * Fix some firmware-related bugs I introduced - Firmware settings are now properly saved to disk (beforehand I misunderstood when the firmware blob was written) - Firmware is no longer overwritten by contents of wfcsettings.bin * Slight cleanup
2023-09-18 19:09:11 +00:00
if (nwifiver == SPI_Firmware::WifiBoard::W015)
2022-10-28 19:31:51 +00:00
{
ARM9Write16(0x020005E2, 0xB57E);
ARM9Write32(0x020005E4, 0x00500400);
ARM9Write32(0x020005E8, 0x00500000);
ARM9Write32(0x020005EC, 0x0002E000);
}
else
{
ARM9Write16(0x020005E2, 0x5BCA);
ARM9Write32(0x020005E4, 0x00520000);
ARM9Write32(0x020005E8, 0x00520000);
ARM9Write32(0x020005EC, 0x00020000);
}
// TODO: the shit at 02FFD7B0..02FFDC00
// and some other extra shit?
Split the cart parsing and loading steps (#1707) * Split ROMList into a .cpp file - Its definition in ROMList.h was causing multiple-definition linker errors - Introduce ROMListSize, since you can't take a sizeof() of an extern declaration - Mark ROMList and ROMListSize as const * Update ReadROMParams to accommodate ROMList changes * Split parsing and loading of NDS ROMs - Introduce an NDSCartData class for parsing a ROM file - Introduce InsertROM for loading a NDS cart - Refactor LoadROM to use NDSCartData and InsertROM under the hood * Reset cart state and initialize save memory in the NDSCartData constructor - Otherwise there's no way to know about SRAM-specific attributes before inserting the game * Add a comment to NDSCartData * First crack at splitting parsing and loading for GBACart * Add some logging calls for encrypting the secure area * Log the XXH64 hash of the inserted NDS ROM * Log the XXH64 hash of the secure area after decryption * Add some logging to Key1_LoadKeyBuf * Re-encrypt the secure area when inserting the cart, not when parsing it - This way, constructing a NDSCart doesn't imply a read from the filesystem (as is done in Key1_KeyBuf) * Load Key1_KeyBuf from memory, not from the file system - Now that the cart's secure area isn't re-encrypted until insertion, we can expect that the BIOS will be ready at this point * Add some helper query methods to NDSHeader * Query the DSi region directly from the header instead of checking the ROM again * Introduce a CartType enum - So CartCommon::Type doesn't have to return magic numbers * Reset the cart in NDSCart::InsertROM instead of the NDSCartData constructor - That way the constructor doesn't rely on the config or on file I/O when loading homebrew - This keeps the use of global state closer to one place * Add non-const getters for the carts * Add InsertROM overloads that accept unique_ptrs * Fix a comment * Rename member functions on NDSCartData and GBACartData to adhere to the convention * Rename members on NDSCartData and GBACartData to adhere to the convention * Fix build errors on some platforms * Add NDSHeader::IsDSiWare * Add a ROMListEntry parameter to the cart constructors - To allow for looking up details of SRAM or expected ROM size * Add some new getters to CartCommon * Use the Header/Banner members instead of globals * Make CartCommon abstract - It's not supposed to be instantiated anyway * Change the signature of CartCommon::Checksum - It's neither overridden nor mutating * Add some clarifying comments to NDSHeader * Delete CartCommon::ROM in its destructor - ParseROM copies its input and gives that copy to the cart object, so it's okay * Add some getters to CartCommon * Refactor NDSCart - Get rid of NDSCartData - Get rid of cart-specific global state within NDSCart (so registers are untouched) - Refactor uses of removed global variables to use the Cart pointer instead - Refactor ROMInfoDialog's icon functions to accept const arguments * Return the cart pointer - So *that's* why it was crashing. Whoops - Why is this even allowed? * Refactor GBACart - Delete CartGame::ROM in the destructor - Get rid of GBACartData - Remove some global state * Mark NDSCart::CartCommon::Type as const * Slightly refactor GBACart::CartCommon - Mark Type as const - Use enum constants - Make CartCommon itself abstract * Mark CRC32's data parameter as const * Mark GBACart::CartCommon::Checksum as const * Use assert.h instead of cassert - As demanded by the style guide * Fix some includes to adhere to the style guide * Get the ARM9 entry address directly from the header object * Use more Header fields directly * Rename some parameters to match the style guide * Remove some unused includes * Slightly change NDS_Header::IsHomebrew for clarity
2023-06-30 11:28:52 +00:00
ARM9Write32(0x02FFFC00, cartid);
2022-10-28 19:31:51 +00:00
ARM9Write16(0x02FFFC40, 0x0001); // boot indicator
ARM9Write8(0x02FFFDFA, DSi_BPTWL::GetBootFlag() | 0x80);
ARM9Write8(0x02FFFDFB, 0x01);
}
// TODO: for DS-mode ROMs, switch RAM size here
u32 arm9start = 0;
// load the ARM9 secure area
Split the cart parsing and loading steps (#1707) * Split ROMList into a .cpp file - Its definition in ROMList.h was causing multiple-definition linker errors - Introduce ROMListSize, since you can't take a sizeof() of an extern declaration - Mark ROMList and ROMListSize as const * Update ReadROMParams to accommodate ROMList changes * Split parsing and loading of NDS ROMs - Introduce an NDSCartData class for parsing a ROM file - Introduce InsertROM for loading a NDS cart - Refactor LoadROM to use NDSCartData and InsertROM under the hood * Reset cart state and initialize save memory in the NDSCartData constructor - Otherwise there's no way to know about SRAM-specific attributes before inserting the game * Add a comment to NDSCartData * First crack at splitting parsing and loading for GBACart * Add some logging calls for encrypting the secure area * Log the XXH64 hash of the inserted NDS ROM * Log the XXH64 hash of the secure area after decryption * Add some logging to Key1_LoadKeyBuf * Re-encrypt the secure area when inserting the cart, not when parsing it - This way, constructing a NDSCart doesn't imply a read from the filesystem (as is done in Key1_KeyBuf) * Load Key1_KeyBuf from memory, not from the file system - Now that the cart's secure area isn't re-encrypted until insertion, we can expect that the BIOS will be ready at this point * Add some helper query methods to NDSHeader * Query the DSi region directly from the header instead of checking the ROM again * Introduce a CartType enum - So CartCommon::Type doesn't have to return magic numbers * Reset the cart in NDSCart::InsertROM instead of the NDSCartData constructor - That way the constructor doesn't rely on the config or on file I/O when loading homebrew - This keeps the use of global state closer to one place * Add non-const getters for the carts * Add InsertROM overloads that accept unique_ptrs * Fix a comment * Rename member functions on NDSCartData and GBACartData to adhere to the convention * Rename members on NDSCartData and GBACartData to adhere to the convention * Fix build errors on some platforms * Add NDSHeader::IsDSiWare * Add a ROMListEntry parameter to the cart constructors - To allow for looking up details of SRAM or expected ROM size * Add some new getters to CartCommon * Use the Header/Banner members instead of globals * Make CartCommon abstract - It's not supposed to be instantiated anyway * Change the signature of CartCommon::Checksum - It's neither overridden nor mutating * Add some clarifying comments to NDSHeader * Delete CartCommon::ROM in its destructor - ParseROM copies its input and gives that copy to the cart object, so it's okay * Add some getters to CartCommon * Refactor NDSCart - Get rid of NDSCartData - Get rid of cart-specific global state within NDSCart (so registers are untouched) - Refactor uses of removed global variables to use the Cart pointer instead - Refactor ROMInfoDialog's icon functions to accept const arguments * Return the cart pointer - So *that's* why it was crashing. Whoops - Why is this even allowed? * Refactor GBACart - Delete CartGame::ROM in the destructor - Get rid of GBACartData - Remove some global state * Mark NDSCart::CartCommon::Type as const * Slightly refactor GBACart::CartCommon - Mark Type as const - Use enum constants - Make CartCommon itself abstract * Mark CRC32's data parameter as const * Mark GBACart::CartCommon::Checksum as const * Use assert.h instead of cassert - As demanded by the style guide * Fix some includes to adhere to the style guide * Get the ARM9 entry address directly from the header object * Use more Header fields directly * Rename some parameters to match the style guide * Remove some unused includes * Slightly change NDS_Header::IsHomebrew for clarity
2023-06-30 11:28:52 +00:00
if (header.ARM9ROMOffset >= 0x4000 && header.ARM9ROMOffset < 0x8000)
{
u8 securearea[0x800];
NDSCart::DecryptSecureArea(securearea);
for (u32 i = 0; i < 0x800; i+=4)
{
Split the cart parsing and loading steps (#1707) * Split ROMList into a .cpp file - Its definition in ROMList.h was causing multiple-definition linker errors - Introduce ROMListSize, since you can't take a sizeof() of an extern declaration - Mark ROMList and ROMListSize as const * Update ReadROMParams to accommodate ROMList changes * Split parsing and loading of NDS ROMs - Introduce an NDSCartData class for parsing a ROM file - Introduce InsertROM for loading a NDS cart - Refactor LoadROM to use NDSCartData and InsertROM under the hood * Reset cart state and initialize save memory in the NDSCartData constructor - Otherwise there's no way to know about SRAM-specific attributes before inserting the game * Add a comment to NDSCartData * First crack at splitting parsing and loading for GBACart * Add some logging calls for encrypting the secure area * Log the XXH64 hash of the inserted NDS ROM * Log the XXH64 hash of the secure area after decryption * Add some logging to Key1_LoadKeyBuf * Re-encrypt the secure area when inserting the cart, not when parsing it - This way, constructing a NDSCart doesn't imply a read from the filesystem (as is done in Key1_KeyBuf) * Load Key1_KeyBuf from memory, not from the file system - Now that the cart's secure area isn't re-encrypted until insertion, we can expect that the BIOS will be ready at this point * Add some helper query methods to NDSHeader * Query the DSi region directly from the header instead of checking the ROM again * Introduce a CartType enum - So CartCommon::Type doesn't have to return magic numbers * Reset the cart in NDSCart::InsertROM instead of the NDSCartData constructor - That way the constructor doesn't rely on the config or on file I/O when loading homebrew - This keeps the use of global state closer to one place * Add non-const getters for the carts * Add InsertROM overloads that accept unique_ptrs * Fix a comment * Rename member functions on NDSCartData and GBACartData to adhere to the convention * Rename members on NDSCartData and GBACartData to adhere to the convention * Fix build errors on some platforms * Add NDSHeader::IsDSiWare * Add a ROMListEntry parameter to the cart constructors - To allow for looking up details of SRAM or expected ROM size * Add some new getters to CartCommon * Use the Header/Banner members instead of globals * Make CartCommon abstract - It's not supposed to be instantiated anyway * Change the signature of CartCommon::Checksum - It's neither overridden nor mutating * Add some clarifying comments to NDSHeader * Delete CartCommon::ROM in its destructor - ParseROM copies its input and gives that copy to the cart object, so it's okay * Add some getters to CartCommon * Refactor NDSCart - Get rid of NDSCartData - Get rid of cart-specific global state within NDSCart (so registers are untouched) - Refactor uses of removed global variables to use the Cart pointer instead - Refactor ROMInfoDialog's icon functions to accept const arguments * Return the cart pointer - So *that's* why it was crashing. Whoops - Why is this even allowed? * Refactor GBACart - Delete CartGame::ROM in the destructor - Get rid of GBACartData - Remove some global state * Mark NDSCart::CartCommon::Type as const * Slightly refactor GBACart::CartCommon - Mark Type as const - Use enum constants - Make CartCommon itself abstract * Mark CRC32's data parameter as const * Mark GBACart::CartCommon::Checksum as const * Use assert.h instead of cassert - As demanded by the style guide * Fix some includes to adhere to the style guide * Get the ARM9 entry address directly from the header object * Use more Header fields directly * Rename some parameters to match the style guide * Remove some unused includes * Slightly change NDS_Header::IsHomebrew for clarity
2023-06-30 11:28:52 +00:00
ARM9Write32(header.ARM9RAMAddress+i, *(u32*)&securearea[i]);
arm9start += 4;
}
}
Split the cart parsing and loading steps (#1707) * Split ROMList into a .cpp file - Its definition in ROMList.h was causing multiple-definition linker errors - Introduce ROMListSize, since you can't take a sizeof() of an extern declaration - Mark ROMList and ROMListSize as const * Update ReadROMParams to accommodate ROMList changes * Split parsing and loading of NDS ROMs - Introduce an NDSCartData class for parsing a ROM file - Introduce InsertROM for loading a NDS cart - Refactor LoadROM to use NDSCartData and InsertROM under the hood * Reset cart state and initialize save memory in the NDSCartData constructor - Otherwise there's no way to know about SRAM-specific attributes before inserting the game * Add a comment to NDSCartData * First crack at splitting parsing and loading for GBACart * Add some logging calls for encrypting the secure area * Log the XXH64 hash of the inserted NDS ROM * Log the XXH64 hash of the secure area after decryption * Add some logging to Key1_LoadKeyBuf * Re-encrypt the secure area when inserting the cart, not when parsing it - This way, constructing a NDSCart doesn't imply a read from the filesystem (as is done in Key1_KeyBuf) * Load Key1_KeyBuf from memory, not from the file system - Now that the cart's secure area isn't re-encrypted until insertion, we can expect that the BIOS will be ready at this point * Add some helper query methods to NDSHeader * Query the DSi region directly from the header instead of checking the ROM again * Introduce a CartType enum - So CartCommon::Type doesn't have to return magic numbers * Reset the cart in NDSCart::InsertROM instead of the NDSCartData constructor - That way the constructor doesn't rely on the config or on file I/O when loading homebrew - This keeps the use of global state closer to one place * Add non-const getters for the carts * Add InsertROM overloads that accept unique_ptrs * Fix a comment * Rename member functions on NDSCartData and GBACartData to adhere to the convention * Rename members on NDSCartData and GBACartData to adhere to the convention * Fix build errors on some platforms * Add NDSHeader::IsDSiWare * Add a ROMListEntry parameter to the cart constructors - To allow for looking up details of SRAM or expected ROM size * Add some new getters to CartCommon * Use the Header/Banner members instead of globals * Make CartCommon abstract - It's not supposed to be instantiated anyway * Change the signature of CartCommon::Checksum - It's neither overridden nor mutating * Add some clarifying comments to NDSHeader * Delete CartCommon::ROM in its destructor - ParseROM copies its input and gives that copy to the cart object, so it's okay * Add some getters to CartCommon * Refactor NDSCart - Get rid of NDSCartData - Get rid of cart-specific global state within NDSCart (so registers are untouched) - Refactor uses of removed global variables to use the Cart pointer instead - Refactor ROMInfoDialog's icon functions to accept const arguments * Return the cart pointer - So *that's* why it was crashing. Whoops - Why is this even allowed? * Refactor GBACart - Delete CartGame::ROM in the destructor - Get rid of GBACartData - Remove some global state * Mark NDSCart::CartCommon::Type as const * Slightly refactor GBACart::CartCommon - Mark Type as const - Use enum constants - Make CartCommon itself abstract * Mark CRC32's data parameter as const * Mark GBACart::CartCommon::Checksum as const * Use assert.h instead of cassert - As demanded by the style guide * Fix some includes to adhere to the style guide * Get the ARM9 entry address directly from the header object * Use more Header fields directly * Rename some parameters to match the style guide * Remove some unused includes * Slightly change NDS_Header::IsHomebrew for clarity
2023-06-30 11:28:52 +00:00
for (u32 i = arm9start; i < header.ARM9Size; i+=4)
{
Split the cart parsing and loading steps (#1707) * Split ROMList into a .cpp file - Its definition in ROMList.h was causing multiple-definition linker errors - Introduce ROMListSize, since you can't take a sizeof() of an extern declaration - Mark ROMList and ROMListSize as const * Update ReadROMParams to accommodate ROMList changes * Split parsing and loading of NDS ROMs - Introduce an NDSCartData class for parsing a ROM file - Introduce InsertROM for loading a NDS cart - Refactor LoadROM to use NDSCartData and InsertROM under the hood * Reset cart state and initialize save memory in the NDSCartData constructor - Otherwise there's no way to know about SRAM-specific attributes before inserting the game * Add a comment to NDSCartData * First crack at splitting parsing and loading for GBACart * Add some logging calls for encrypting the secure area * Log the XXH64 hash of the inserted NDS ROM * Log the XXH64 hash of the secure area after decryption * Add some logging to Key1_LoadKeyBuf * Re-encrypt the secure area when inserting the cart, not when parsing it - This way, constructing a NDSCart doesn't imply a read from the filesystem (as is done in Key1_KeyBuf) * Load Key1_KeyBuf from memory, not from the file system - Now that the cart's secure area isn't re-encrypted until insertion, we can expect that the BIOS will be ready at this point * Add some helper query methods to NDSHeader * Query the DSi region directly from the header instead of checking the ROM again * Introduce a CartType enum - So CartCommon::Type doesn't have to return magic numbers * Reset the cart in NDSCart::InsertROM instead of the NDSCartData constructor - That way the constructor doesn't rely on the config or on file I/O when loading homebrew - This keeps the use of global state closer to one place * Add non-const getters for the carts * Add InsertROM overloads that accept unique_ptrs * Fix a comment * Rename member functions on NDSCartData and GBACartData to adhere to the convention * Rename members on NDSCartData and GBACartData to adhere to the convention * Fix build errors on some platforms * Add NDSHeader::IsDSiWare * Add a ROMListEntry parameter to the cart constructors - To allow for looking up details of SRAM or expected ROM size * Add some new getters to CartCommon * Use the Header/Banner members instead of globals * Make CartCommon abstract - It's not supposed to be instantiated anyway * Change the signature of CartCommon::Checksum - It's neither overridden nor mutating * Add some clarifying comments to NDSHeader * Delete CartCommon::ROM in its destructor - ParseROM copies its input and gives that copy to the cart object, so it's okay * Add some getters to CartCommon * Refactor NDSCart - Get rid of NDSCartData - Get rid of cart-specific global state within NDSCart (so registers are untouched) - Refactor uses of removed global variables to use the Cart pointer instead - Refactor ROMInfoDialog's icon functions to accept const arguments * Return the cart pointer - So *that's* why it was crashing. Whoops - Why is this even allowed? * Refactor GBACart - Delete CartGame::ROM in the destructor - Get rid of GBACartData - Remove some global state * Mark NDSCart::CartCommon::Type as const * Slightly refactor GBACart::CartCommon - Mark Type as const - Use enum constants - Make CartCommon itself abstract * Mark CRC32's data parameter as const * Mark GBACart::CartCommon::Checksum as const * Use assert.h instead of cassert - As demanded by the style guide * Fix some includes to adhere to the style guide * Get the ARM9 entry address directly from the header object * Use more Header fields directly * Rename some parameters to match the style guide * Remove some unused includes * Slightly change NDS_Header::IsHomebrew for clarity
2023-06-30 11:28:52 +00:00
u32 tmp = *(u32*)&cartrom[header.ARM9ROMOffset+i];
ARM9Write32(header.ARM9RAMAddress+i, tmp);
}
Split the cart parsing and loading steps (#1707) * Split ROMList into a .cpp file - Its definition in ROMList.h was causing multiple-definition linker errors - Introduce ROMListSize, since you can't take a sizeof() of an extern declaration - Mark ROMList and ROMListSize as const * Update ReadROMParams to accommodate ROMList changes * Split parsing and loading of NDS ROMs - Introduce an NDSCartData class for parsing a ROM file - Introduce InsertROM for loading a NDS cart - Refactor LoadROM to use NDSCartData and InsertROM under the hood * Reset cart state and initialize save memory in the NDSCartData constructor - Otherwise there's no way to know about SRAM-specific attributes before inserting the game * Add a comment to NDSCartData * First crack at splitting parsing and loading for GBACart * Add some logging calls for encrypting the secure area * Log the XXH64 hash of the inserted NDS ROM * Log the XXH64 hash of the secure area after decryption * Add some logging to Key1_LoadKeyBuf * Re-encrypt the secure area when inserting the cart, not when parsing it - This way, constructing a NDSCart doesn't imply a read from the filesystem (as is done in Key1_KeyBuf) * Load Key1_KeyBuf from memory, not from the file system - Now that the cart's secure area isn't re-encrypted until insertion, we can expect that the BIOS will be ready at this point * Add some helper query methods to NDSHeader * Query the DSi region directly from the header instead of checking the ROM again * Introduce a CartType enum - So CartCommon::Type doesn't have to return magic numbers * Reset the cart in NDSCart::InsertROM instead of the NDSCartData constructor - That way the constructor doesn't rely on the config or on file I/O when loading homebrew - This keeps the use of global state closer to one place * Add non-const getters for the carts * Add InsertROM overloads that accept unique_ptrs * Fix a comment * Rename member functions on NDSCartData and GBACartData to adhere to the convention * Rename members on NDSCartData and GBACartData to adhere to the convention * Fix build errors on some platforms * Add NDSHeader::IsDSiWare * Add a ROMListEntry parameter to the cart constructors - To allow for looking up details of SRAM or expected ROM size * Add some new getters to CartCommon * Use the Header/Banner members instead of globals * Make CartCommon abstract - It's not supposed to be instantiated anyway * Change the signature of CartCommon::Checksum - It's neither overridden nor mutating * Add some clarifying comments to NDSHeader * Delete CartCommon::ROM in its destructor - ParseROM copies its input and gives that copy to the cart object, so it's okay * Add some getters to CartCommon * Refactor NDSCart - Get rid of NDSCartData - Get rid of cart-specific global state within NDSCart (so registers are untouched) - Refactor uses of removed global variables to use the Cart pointer instead - Refactor ROMInfoDialog's icon functions to accept const arguments * Return the cart pointer - So *that's* why it was crashing. Whoops - Why is this even allowed? * Refactor GBACart - Delete CartGame::ROM in the destructor - Get rid of GBACartData - Remove some global state * Mark NDSCart::CartCommon::Type as const * Slightly refactor GBACart::CartCommon - Mark Type as const - Use enum constants - Make CartCommon itself abstract * Mark CRC32's data parameter as const * Mark GBACart::CartCommon::Checksum as const * Use assert.h instead of cassert - As demanded by the style guide * Fix some includes to adhere to the style guide * Get the ARM9 entry address directly from the header object * Use more Header fields directly * Rename some parameters to match the style guide * Remove some unused includes * Slightly change NDS_Header::IsHomebrew for clarity
2023-06-30 11:28:52 +00:00
for (u32 i = 0; i < header.ARM7Size; i+=4)
{
Split the cart parsing and loading steps (#1707) * Split ROMList into a .cpp file - Its definition in ROMList.h was causing multiple-definition linker errors - Introduce ROMListSize, since you can't take a sizeof() of an extern declaration - Mark ROMList and ROMListSize as const * Update ReadROMParams to accommodate ROMList changes * Split parsing and loading of NDS ROMs - Introduce an NDSCartData class for parsing a ROM file - Introduce InsertROM for loading a NDS cart - Refactor LoadROM to use NDSCartData and InsertROM under the hood * Reset cart state and initialize save memory in the NDSCartData constructor - Otherwise there's no way to know about SRAM-specific attributes before inserting the game * Add a comment to NDSCartData * First crack at splitting parsing and loading for GBACart * Add some logging calls for encrypting the secure area * Log the XXH64 hash of the inserted NDS ROM * Log the XXH64 hash of the secure area after decryption * Add some logging to Key1_LoadKeyBuf * Re-encrypt the secure area when inserting the cart, not when parsing it - This way, constructing a NDSCart doesn't imply a read from the filesystem (as is done in Key1_KeyBuf) * Load Key1_KeyBuf from memory, not from the file system - Now that the cart's secure area isn't re-encrypted until insertion, we can expect that the BIOS will be ready at this point * Add some helper query methods to NDSHeader * Query the DSi region directly from the header instead of checking the ROM again * Introduce a CartType enum - So CartCommon::Type doesn't have to return magic numbers * Reset the cart in NDSCart::InsertROM instead of the NDSCartData constructor - That way the constructor doesn't rely on the config or on file I/O when loading homebrew - This keeps the use of global state closer to one place * Add non-const getters for the carts * Add InsertROM overloads that accept unique_ptrs * Fix a comment * Rename member functions on NDSCartData and GBACartData to adhere to the convention * Rename members on NDSCartData and GBACartData to adhere to the convention * Fix build errors on some platforms * Add NDSHeader::IsDSiWare * Add a ROMListEntry parameter to the cart constructors - To allow for looking up details of SRAM or expected ROM size * Add some new getters to CartCommon * Use the Header/Banner members instead of globals * Make CartCommon abstract - It's not supposed to be instantiated anyway * Change the signature of CartCommon::Checksum - It's neither overridden nor mutating * Add some clarifying comments to NDSHeader * Delete CartCommon::ROM in its destructor - ParseROM copies its input and gives that copy to the cart object, so it's okay * Add some getters to CartCommon * Refactor NDSCart - Get rid of NDSCartData - Get rid of cart-specific global state within NDSCart (so registers are untouched) - Refactor uses of removed global variables to use the Cart pointer instead - Refactor ROMInfoDialog's icon functions to accept const arguments * Return the cart pointer - So *that's* why it was crashing. Whoops - Why is this even allowed? * Refactor GBACart - Delete CartGame::ROM in the destructor - Get rid of GBACartData - Remove some global state * Mark NDSCart::CartCommon::Type as const * Slightly refactor GBACart::CartCommon - Mark Type as const - Use enum constants - Make CartCommon itself abstract * Mark CRC32's data parameter as const * Mark GBACart::CartCommon::Checksum as const * Use assert.h instead of cassert - As demanded by the style guide * Fix some includes to adhere to the style guide * Get the ARM9 entry address directly from the header object * Use more Header fields directly * Rename some parameters to match the style guide * Remove some unused includes * Slightly change NDS_Header::IsHomebrew for clarity
2023-06-30 11:28:52 +00:00
u32 tmp = *(u32*)&cartrom[header.ARM7ROMOffset+i];
ARM7Write32(header.ARM7RAMAddress+i, tmp);
}
Split the cart parsing and loading steps (#1707) * Split ROMList into a .cpp file - Its definition in ROMList.h was causing multiple-definition linker errors - Introduce ROMListSize, since you can't take a sizeof() of an extern declaration - Mark ROMList and ROMListSize as const * Update ReadROMParams to accommodate ROMList changes * Split parsing and loading of NDS ROMs - Introduce an NDSCartData class for parsing a ROM file - Introduce InsertROM for loading a NDS cart - Refactor LoadROM to use NDSCartData and InsertROM under the hood * Reset cart state and initialize save memory in the NDSCartData constructor - Otherwise there's no way to know about SRAM-specific attributes before inserting the game * Add a comment to NDSCartData * First crack at splitting parsing and loading for GBACart * Add some logging calls for encrypting the secure area * Log the XXH64 hash of the inserted NDS ROM * Log the XXH64 hash of the secure area after decryption * Add some logging to Key1_LoadKeyBuf * Re-encrypt the secure area when inserting the cart, not when parsing it - This way, constructing a NDSCart doesn't imply a read from the filesystem (as is done in Key1_KeyBuf) * Load Key1_KeyBuf from memory, not from the file system - Now that the cart's secure area isn't re-encrypted until insertion, we can expect that the BIOS will be ready at this point * Add some helper query methods to NDSHeader * Query the DSi region directly from the header instead of checking the ROM again * Introduce a CartType enum - So CartCommon::Type doesn't have to return magic numbers * Reset the cart in NDSCart::InsertROM instead of the NDSCartData constructor - That way the constructor doesn't rely on the config or on file I/O when loading homebrew - This keeps the use of global state closer to one place * Add non-const getters for the carts * Add InsertROM overloads that accept unique_ptrs * Fix a comment * Rename member functions on NDSCartData and GBACartData to adhere to the convention * Rename members on NDSCartData and GBACartData to adhere to the convention * Fix build errors on some platforms * Add NDSHeader::IsDSiWare * Add a ROMListEntry parameter to the cart constructors - To allow for looking up details of SRAM or expected ROM size * Add some new getters to CartCommon * Use the Header/Banner members instead of globals * Make CartCommon abstract - It's not supposed to be instantiated anyway * Change the signature of CartCommon::Checksum - It's neither overridden nor mutating * Add some clarifying comments to NDSHeader * Delete CartCommon::ROM in its destructor - ParseROM copies its input and gives that copy to the cart object, so it's okay * Add some getters to CartCommon * Refactor NDSCart - Get rid of NDSCartData - Get rid of cart-specific global state within NDSCart (so registers are untouched) - Refactor uses of removed global variables to use the Cart pointer instead - Refactor ROMInfoDialog's icon functions to accept const arguments * Return the cart pointer - So *that's* why it was crashing. Whoops - Why is this even allowed? * Refactor GBACart - Delete CartGame::ROM in the destructor - Get rid of GBACartData - Remove some global state * Mark NDSCart::CartCommon::Type as const * Slightly refactor GBACart::CartCommon - Mark Type as const - Use enum constants - Make CartCommon itself abstract * Mark CRC32's data parameter as const * Mark GBACart::CartCommon::Checksum as const * Use assert.h instead of cassert - As demanded by the style guide * Fix some includes to adhere to the style guide * Get the ARM9 entry address directly from the header object * Use more Header fields directly * Rename some parameters to match the style guide * Remove some unused includes * Slightly change NDS_Header::IsHomebrew for clarity
2023-06-30 11:28:52 +00:00
if ((!dsmode) && (header.DSiCryptoFlags & (1<<0)))
{
// load DSi-specific regions
Split the cart parsing and loading steps (#1707) * Split ROMList into a .cpp file - Its definition in ROMList.h was causing multiple-definition linker errors - Introduce ROMListSize, since you can't take a sizeof() of an extern declaration - Mark ROMList and ROMListSize as const * Update ReadROMParams to accommodate ROMList changes * Split parsing and loading of NDS ROMs - Introduce an NDSCartData class for parsing a ROM file - Introduce InsertROM for loading a NDS cart - Refactor LoadROM to use NDSCartData and InsertROM under the hood * Reset cart state and initialize save memory in the NDSCartData constructor - Otherwise there's no way to know about SRAM-specific attributes before inserting the game * Add a comment to NDSCartData * First crack at splitting parsing and loading for GBACart * Add some logging calls for encrypting the secure area * Log the XXH64 hash of the inserted NDS ROM * Log the XXH64 hash of the secure area after decryption * Add some logging to Key1_LoadKeyBuf * Re-encrypt the secure area when inserting the cart, not when parsing it - This way, constructing a NDSCart doesn't imply a read from the filesystem (as is done in Key1_KeyBuf) * Load Key1_KeyBuf from memory, not from the file system - Now that the cart's secure area isn't re-encrypted until insertion, we can expect that the BIOS will be ready at this point * Add some helper query methods to NDSHeader * Query the DSi region directly from the header instead of checking the ROM again * Introduce a CartType enum - So CartCommon::Type doesn't have to return magic numbers * Reset the cart in NDSCart::InsertROM instead of the NDSCartData constructor - That way the constructor doesn't rely on the config or on file I/O when loading homebrew - This keeps the use of global state closer to one place * Add non-const getters for the carts * Add InsertROM overloads that accept unique_ptrs * Fix a comment * Rename member functions on NDSCartData and GBACartData to adhere to the convention * Rename members on NDSCartData and GBACartData to adhere to the convention * Fix build errors on some platforms * Add NDSHeader::IsDSiWare * Add a ROMListEntry parameter to the cart constructors - To allow for looking up details of SRAM or expected ROM size * Add some new getters to CartCommon * Use the Header/Banner members instead of globals * Make CartCommon abstract - It's not supposed to be instantiated anyway * Change the signature of CartCommon::Checksum - It's neither overridden nor mutating * Add some clarifying comments to NDSHeader * Delete CartCommon::ROM in its destructor - ParseROM copies its input and gives that copy to the cart object, so it's okay * Add some getters to CartCommon * Refactor NDSCart - Get rid of NDSCartData - Get rid of cart-specific global state within NDSCart (so registers are untouched) - Refactor uses of removed global variables to use the Cart pointer instead - Refactor ROMInfoDialog's icon functions to accept const arguments * Return the cart pointer - So *that's* why it was crashing. Whoops - Why is this even allowed? * Refactor GBACart - Delete CartGame::ROM in the destructor - Get rid of GBACartData - Remove some global state * Mark NDSCart::CartCommon::Type as const * Slightly refactor GBACart::CartCommon - Mark Type as const - Use enum constants - Make CartCommon itself abstract * Mark CRC32's data parameter as const * Mark GBACart::CartCommon::Checksum as const * Use assert.h instead of cassert - As demanded by the style guide * Fix some includes to adhere to the style guide * Get the ARM9 entry address directly from the header object * Use more Header fields directly * Rename some parameters to match the style guide * Remove some unused includes * Slightly change NDS_Header::IsHomebrew for clarity
2023-06-30 11:28:52 +00:00
for (u32 i = 0; i < header.DSiARM9iSize; i+=4)
{
Split the cart parsing and loading steps (#1707) * Split ROMList into a .cpp file - Its definition in ROMList.h was causing multiple-definition linker errors - Introduce ROMListSize, since you can't take a sizeof() of an extern declaration - Mark ROMList and ROMListSize as const * Update ReadROMParams to accommodate ROMList changes * Split parsing and loading of NDS ROMs - Introduce an NDSCartData class for parsing a ROM file - Introduce InsertROM for loading a NDS cart - Refactor LoadROM to use NDSCartData and InsertROM under the hood * Reset cart state and initialize save memory in the NDSCartData constructor - Otherwise there's no way to know about SRAM-specific attributes before inserting the game * Add a comment to NDSCartData * First crack at splitting parsing and loading for GBACart * Add some logging calls for encrypting the secure area * Log the XXH64 hash of the inserted NDS ROM * Log the XXH64 hash of the secure area after decryption * Add some logging to Key1_LoadKeyBuf * Re-encrypt the secure area when inserting the cart, not when parsing it - This way, constructing a NDSCart doesn't imply a read from the filesystem (as is done in Key1_KeyBuf) * Load Key1_KeyBuf from memory, not from the file system - Now that the cart's secure area isn't re-encrypted until insertion, we can expect that the BIOS will be ready at this point * Add some helper query methods to NDSHeader * Query the DSi region directly from the header instead of checking the ROM again * Introduce a CartType enum - So CartCommon::Type doesn't have to return magic numbers * Reset the cart in NDSCart::InsertROM instead of the NDSCartData constructor - That way the constructor doesn't rely on the config or on file I/O when loading homebrew - This keeps the use of global state closer to one place * Add non-const getters for the carts * Add InsertROM overloads that accept unique_ptrs * Fix a comment * Rename member functions on NDSCartData and GBACartData to adhere to the convention * Rename members on NDSCartData and GBACartData to adhere to the convention * Fix build errors on some platforms * Add NDSHeader::IsDSiWare * Add a ROMListEntry parameter to the cart constructors - To allow for looking up details of SRAM or expected ROM size * Add some new getters to CartCommon * Use the Header/Banner members instead of globals * Make CartCommon abstract - It's not supposed to be instantiated anyway * Change the signature of CartCommon::Checksum - It's neither overridden nor mutating * Add some clarifying comments to NDSHeader * Delete CartCommon::ROM in its destructor - ParseROM copies its input and gives that copy to the cart object, so it's okay * Add some getters to CartCommon * Refactor NDSCart - Get rid of NDSCartData - Get rid of cart-specific global state within NDSCart (so registers are untouched) - Refactor uses of removed global variables to use the Cart pointer instead - Refactor ROMInfoDialog's icon functions to accept const arguments * Return the cart pointer - So *that's* why it was crashing. Whoops - Why is this even allowed? * Refactor GBACart - Delete CartGame::ROM in the destructor - Get rid of GBACartData - Remove some global state * Mark NDSCart::CartCommon::Type as const * Slightly refactor GBACart::CartCommon - Mark Type as const - Use enum constants - Make CartCommon itself abstract * Mark CRC32's data parameter as const * Mark GBACart::CartCommon::Checksum as const * Use assert.h instead of cassert - As demanded by the style guide * Fix some includes to adhere to the style guide * Get the ARM9 entry address directly from the header object * Use more Header fields directly * Rename some parameters to match the style guide * Remove some unused includes * Slightly change NDS_Header::IsHomebrew for clarity
2023-06-30 11:28:52 +00:00
u32 tmp = *(u32*)&cartrom[header.DSiARM9iROMOffset+i];
ARM9Write32(header.DSiARM9iRAMAddress+i, tmp);
}
Split the cart parsing and loading steps (#1707) * Split ROMList into a .cpp file - Its definition in ROMList.h was causing multiple-definition linker errors - Introduce ROMListSize, since you can't take a sizeof() of an extern declaration - Mark ROMList and ROMListSize as const * Update ReadROMParams to accommodate ROMList changes * Split parsing and loading of NDS ROMs - Introduce an NDSCartData class for parsing a ROM file - Introduce InsertROM for loading a NDS cart - Refactor LoadROM to use NDSCartData and InsertROM under the hood * Reset cart state and initialize save memory in the NDSCartData constructor - Otherwise there's no way to know about SRAM-specific attributes before inserting the game * Add a comment to NDSCartData * First crack at splitting parsing and loading for GBACart * Add some logging calls for encrypting the secure area * Log the XXH64 hash of the inserted NDS ROM * Log the XXH64 hash of the secure area after decryption * Add some logging to Key1_LoadKeyBuf * Re-encrypt the secure area when inserting the cart, not when parsing it - This way, constructing a NDSCart doesn't imply a read from the filesystem (as is done in Key1_KeyBuf) * Load Key1_KeyBuf from memory, not from the file system - Now that the cart's secure area isn't re-encrypted until insertion, we can expect that the BIOS will be ready at this point * Add some helper query methods to NDSHeader * Query the DSi region directly from the header instead of checking the ROM again * Introduce a CartType enum - So CartCommon::Type doesn't have to return magic numbers * Reset the cart in NDSCart::InsertROM instead of the NDSCartData constructor - That way the constructor doesn't rely on the config or on file I/O when loading homebrew - This keeps the use of global state closer to one place * Add non-const getters for the carts * Add InsertROM overloads that accept unique_ptrs * Fix a comment * Rename member functions on NDSCartData and GBACartData to adhere to the convention * Rename members on NDSCartData and GBACartData to adhere to the convention * Fix build errors on some platforms * Add NDSHeader::IsDSiWare * Add a ROMListEntry parameter to the cart constructors - To allow for looking up details of SRAM or expected ROM size * Add some new getters to CartCommon * Use the Header/Banner members instead of globals * Make CartCommon abstract - It's not supposed to be instantiated anyway * Change the signature of CartCommon::Checksum - It's neither overridden nor mutating * Add some clarifying comments to NDSHeader * Delete CartCommon::ROM in its destructor - ParseROM copies its input and gives that copy to the cart object, so it's okay * Add some getters to CartCommon * Refactor NDSCart - Get rid of NDSCartData - Get rid of cart-specific global state within NDSCart (so registers are untouched) - Refactor uses of removed global variables to use the Cart pointer instead - Refactor ROMInfoDialog's icon functions to accept const arguments * Return the cart pointer - So *that's* why it was crashing. Whoops - Why is this even allowed? * Refactor GBACart - Delete CartGame::ROM in the destructor - Get rid of GBACartData - Remove some global state * Mark NDSCart::CartCommon::Type as const * Slightly refactor GBACart::CartCommon - Mark Type as const - Use enum constants - Make CartCommon itself abstract * Mark CRC32's data parameter as const * Mark GBACart::CartCommon::Checksum as const * Use assert.h instead of cassert - As demanded by the style guide * Fix some includes to adhere to the style guide * Get the ARM9 entry address directly from the header object * Use more Header fields directly * Rename some parameters to match the style guide * Remove some unused includes * Slightly change NDS_Header::IsHomebrew for clarity
2023-06-30 11:28:52 +00:00
for (u32 i = 0; i < header.DSiARM7iSize; i+=4)
{
Split the cart parsing and loading steps (#1707) * Split ROMList into a .cpp file - Its definition in ROMList.h was causing multiple-definition linker errors - Introduce ROMListSize, since you can't take a sizeof() of an extern declaration - Mark ROMList and ROMListSize as const * Update ReadROMParams to accommodate ROMList changes * Split parsing and loading of NDS ROMs - Introduce an NDSCartData class for parsing a ROM file - Introduce InsertROM for loading a NDS cart - Refactor LoadROM to use NDSCartData and InsertROM under the hood * Reset cart state and initialize save memory in the NDSCartData constructor - Otherwise there's no way to know about SRAM-specific attributes before inserting the game * Add a comment to NDSCartData * First crack at splitting parsing and loading for GBACart * Add some logging calls for encrypting the secure area * Log the XXH64 hash of the inserted NDS ROM * Log the XXH64 hash of the secure area after decryption * Add some logging to Key1_LoadKeyBuf * Re-encrypt the secure area when inserting the cart, not when parsing it - This way, constructing a NDSCart doesn't imply a read from the filesystem (as is done in Key1_KeyBuf) * Load Key1_KeyBuf from memory, not from the file system - Now that the cart's secure area isn't re-encrypted until insertion, we can expect that the BIOS will be ready at this point * Add some helper query methods to NDSHeader * Query the DSi region directly from the header instead of checking the ROM again * Introduce a CartType enum - So CartCommon::Type doesn't have to return magic numbers * Reset the cart in NDSCart::InsertROM instead of the NDSCartData constructor - That way the constructor doesn't rely on the config or on file I/O when loading homebrew - This keeps the use of global state closer to one place * Add non-const getters for the carts * Add InsertROM overloads that accept unique_ptrs * Fix a comment * Rename member functions on NDSCartData and GBACartData to adhere to the convention * Rename members on NDSCartData and GBACartData to adhere to the convention * Fix build errors on some platforms * Add NDSHeader::IsDSiWare * Add a ROMListEntry parameter to the cart constructors - To allow for looking up details of SRAM or expected ROM size * Add some new getters to CartCommon * Use the Header/Banner members instead of globals * Make CartCommon abstract - It's not supposed to be instantiated anyway * Change the signature of CartCommon::Checksum - It's neither overridden nor mutating * Add some clarifying comments to NDSHeader * Delete CartCommon::ROM in its destructor - ParseROM copies its input and gives that copy to the cart object, so it's okay * Add some getters to CartCommon * Refactor NDSCart - Get rid of NDSCartData - Get rid of cart-specific global state within NDSCart (so registers are untouched) - Refactor uses of removed global variables to use the Cart pointer instead - Refactor ROMInfoDialog's icon functions to accept const arguments * Return the cart pointer - So *that's* why it was crashing. Whoops - Why is this even allowed? * Refactor GBACart - Delete CartGame::ROM in the destructor - Get rid of GBACartData - Remove some global state * Mark NDSCart::CartCommon::Type as const * Slightly refactor GBACart::CartCommon - Mark Type as const - Use enum constants - Make CartCommon itself abstract * Mark CRC32's data parameter as const * Mark GBACart::CartCommon::Checksum as const * Use assert.h instead of cassert - As demanded by the style guide * Fix some includes to adhere to the style guide * Get the ARM9 entry address directly from the header object * Use more Header fields directly * Rename some parameters to match the style guide * Remove some unused includes * Slightly change NDS_Header::IsHomebrew for clarity
2023-06-30 11:28:52 +00:00
u32 tmp = *(u32*)&cartrom[header.DSiARM7iROMOffset+i];
ARM7Write32(header.DSiARM7iRAMAddress+i, tmp);
}
// decrypt any modcrypt areas
Split the cart parsing and loading steps (#1707) * Split ROMList into a .cpp file - Its definition in ROMList.h was causing multiple-definition linker errors - Introduce ROMListSize, since you can't take a sizeof() of an extern declaration - Mark ROMList and ROMListSize as const * Update ReadROMParams to accommodate ROMList changes * Split parsing and loading of NDS ROMs - Introduce an NDSCartData class for parsing a ROM file - Introduce InsertROM for loading a NDS cart - Refactor LoadROM to use NDSCartData and InsertROM under the hood * Reset cart state and initialize save memory in the NDSCartData constructor - Otherwise there's no way to know about SRAM-specific attributes before inserting the game * Add a comment to NDSCartData * First crack at splitting parsing and loading for GBACart * Add some logging calls for encrypting the secure area * Log the XXH64 hash of the inserted NDS ROM * Log the XXH64 hash of the secure area after decryption * Add some logging to Key1_LoadKeyBuf * Re-encrypt the secure area when inserting the cart, not when parsing it - This way, constructing a NDSCart doesn't imply a read from the filesystem (as is done in Key1_KeyBuf) * Load Key1_KeyBuf from memory, not from the file system - Now that the cart's secure area isn't re-encrypted until insertion, we can expect that the BIOS will be ready at this point * Add some helper query methods to NDSHeader * Query the DSi region directly from the header instead of checking the ROM again * Introduce a CartType enum - So CartCommon::Type doesn't have to return magic numbers * Reset the cart in NDSCart::InsertROM instead of the NDSCartData constructor - That way the constructor doesn't rely on the config or on file I/O when loading homebrew - This keeps the use of global state closer to one place * Add non-const getters for the carts * Add InsertROM overloads that accept unique_ptrs * Fix a comment * Rename member functions on NDSCartData and GBACartData to adhere to the convention * Rename members on NDSCartData and GBACartData to adhere to the convention * Fix build errors on some platforms * Add NDSHeader::IsDSiWare * Add a ROMListEntry parameter to the cart constructors - To allow for looking up details of SRAM or expected ROM size * Add some new getters to CartCommon * Use the Header/Banner members instead of globals * Make CartCommon abstract - It's not supposed to be instantiated anyway * Change the signature of CartCommon::Checksum - It's neither overridden nor mutating * Add some clarifying comments to NDSHeader * Delete CartCommon::ROM in its destructor - ParseROM copies its input and gives that copy to the cart object, so it's okay * Add some getters to CartCommon * Refactor NDSCart - Get rid of NDSCartData - Get rid of cart-specific global state within NDSCart (so registers are untouched) - Refactor uses of removed global variables to use the Cart pointer instead - Refactor ROMInfoDialog's icon functions to accept const arguments * Return the cart pointer - So *that's* why it was crashing. Whoops - Why is this even allowed? * Refactor GBACart - Delete CartGame::ROM in the destructor - Get rid of GBACartData - Remove some global state * Mark NDSCart::CartCommon::Type as const * Slightly refactor GBACart::CartCommon - Mark Type as const - Use enum constants - Make CartCommon itself abstract * Mark CRC32's data parameter as const * Mark GBACart::CartCommon::Checksum as const * Use assert.h instead of cassert - As demanded by the style guide * Fix some includes to adhere to the style guide * Get the ARM9 entry address directly from the header object * Use more Header fields directly * Rename some parameters to match the style guide * Remove some unused includes * Slightly change NDS_Header::IsHomebrew for clarity
2023-06-30 11:28:52 +00:00
if (header.DSiCryptoFlags & (1<<1))
{
Split the cart parsing and loading steps (#1707) * Split ROMList into a .cpp file - Its definition in ROMList.h was causing multiple-definition linker errors - Introduce ROMListSize, since you can't take a sizeof() of an extern declaration - Mark ROMList and ROMListSize as const * Update ReadROMParams to accommodate ROMList changes * Split parsing and loading of NDS ROMs - Introduce an NDSCartData class for parsing a ROM file - Introduce InsertROM for loading a NDS cart - Refactor LoadROM to use NDSCartData and InsertROM under the hood * Reset cart state and initialize save memory in the NDSCartData constructor - Otherwise there's no way to know about SRAM-specific attributes before inserting the game * Add a comment to NDSCartData * First crack at splitting parsing and loading for GBACart * Add some logging calls for encrypting the secure area * Log the XXH64 hash of the inserted NDS ROM * Log the XXH64 hash of the secure area after decryption * Add some logging to Key1_LoadKeyBuf * Re-encrypt the secure area when inserting the cart, not when parsing it - This way, constructing a NDSCart doesn't imply a read from the filesystem (as is done in Key1_KeyBuf) * Load Key1_KeyBuf from memory, not from the file system - Now that the cart's secure area isn't re-encrypted until insertion, we can expect that the BIOS will be ready at this point * Add some helper query methods to NDSHeader * Query the DSi region directly from the header instead of checking the ROM again * Introduce a CartType enum - So CartCommon::Type doesn't have to return magic numbers * Reset the cart in NDSCart::InsertROM instead of the NDSCartData constructor - That way the constructor doesn't rely on the config or on file I/O when loading homebrew - This keeps the use of global state closer to one place * Add non-const getters for the carts * Add InsertROM overloads that accept unique_ptrs * Fix a comment * Rename member functions on NDSCartData and GBACartData to adhere to the convention * Rename members on NDSCartData and GBACartData to adhere to the convention * Fix build errors on some platforms * Add NDSHeader::IsDSiWare * Add a ROMListEntry parameter to the cart constructors - To allow for looking up details of SRAM or expected ROM size * Add some new getters to CartCommon * Use the Header/Banner members instead of globals * Make CartCommon abstract - It's not supposed to be instantiated anyway * Change the signature of CartCommon::Checksum - It's neither overridden nor mutating * Add some clarifying comments to NDSHeader * Delete CartCommon::ROM in its destructor - ParseROM copies its input and gives that copy to the cart object, so it's okay * Add some getters to CartCommon * Refactor NDSCart - Get rid of NDSCartData - Get rid of cart-specific global state within NDSCart (so registers are untouched) - Refactor uses of removed global variables to use the Cart pointer instead - Refactor ROMInfoDialog's icon functions to accept const arguments * Return the cart pointer - So *that's* why it was crashing. Whoops - Why is this even allowed? * Refactor GBACart - Delete CartGame::ROM in the destructor - Get rid of GBACartData - Remove some global state * Mark NDSCart::CartCommon::Type as const * Slightly refactor GBACart::CartCommon - Mark Type as const - Use enum constants - Make CartCommon itself abstract * Mark CRC32's data parameter as const * Mark GBACart::CartCommon::Checksum as const * Use assert.h instead of cassert - As demanded by the style guide * Fix some includes to adhere to the style guide * Get the ARM9 entry address directly from the header object * Use more Header fields directly * Rename some parameters to match the style guide * Remove some unused includes * Slightly change NDS_Header::IsHomebrew for clarity
2023-06-30 11:28:52 +00:00
DecryptModcryptArea(header.DSiModcrypt1Offset,
header.DSiModcrypt1Size,
header.DSiARM9Hash);
DecryptModcryptArea(header.DSiModcrypt2Offset,
header.DSiModcrypt2Size,
header.DSiARM7Hash);
}
}
NDS::ARM7BIOSProt = 0x20;
SPI_Firmware::SetupDirectBoot(true);
2021-10-28 19:24:39 +00:00
NDS::ARM9->CP15Write(0x100, 0x00056078);
NDS::ARM9->CP15Write(0x200, 0x0000004A);
NDS::ARM9->CP15Write(0x201, 0x0000004A);
NDS::ARM9->CP15Write(0x300, 0x0000000A);
NDS::ARM9->CP15Write(0x502, 0x15111011);
NDS::ARM9->CP15Write(0x503, 0x05101011);
NDS::ARM9->CP15Write(0x600, 0x04000033);
NDS::ARM9->CP15Write(0x601, 0x04000033);
NDS::ARM9->CP15Write(0x610, 0x02000031);
NDS::ARM9->CP15Write(0x611, 0x02000031);
NDS::ARM9->CP15Write(0x620, 0x00000000);
NDS::ARM9->CP15Write(0x621, 0x00000000);
NDS::ARM9->CP15Write(0x630, 0x08000033);
NDS::ARM9->CP15Write(0x631, 0x08000033);
NDS::ARM9->CP15Write(0x640, 0x0E00001B);
NDS::ARM9->CP15Write(0x641, 0x0E00001B);
NDS::ARM9->CP15Write(0x650, 0x00000000);
NDS::ARM9->CP15Write(0x651, 0x00000000);
NDS::ARM9->CP15Write(0x660, 0xFFFF001D);
NDS::ARM9->CP15Write(0x661, 0xFFFF001D);
NDS::ARM9->CP15Write(0x670, 0x02FFC01B);
NDS::ARM9->CP15Write(0x671, 0x02FFC01B);
NDS::ARM9->CP15Write(0x910, 0x0E00000A);
NDS::ARM9->CP15Write(0x911, 0x00000020);
}
2019-10-20 16:35:16 +00:00
void SoftReset()
{
// TODO: check exactly what is reset
// presumably, main RAM isn't reset, since the DSi can be told
// to boot a specific title this way
// BPTWL state wouldn't be reset either since BPTWL[0x70] is
// the warmboot flag
// also, BPTWL[0x70] could be abused to quickly boot specific titles
2020-07-31 20:39:27 +00:00
#ifdef JIT_ENABLED
ARMJIT_Memory::Reset();
ARMJIT::CheckAndInvalidateITCM();
#endif
2019-10-20 16:35:16 +00:00
NDS::ARM9->Reset();
NDS::ARM7->Reset();
NDS::ARM9->CP15Reset();
NDS::MapSharedWRAM(3);
2020-05-30 11:52:51 +00:00
// TODO: does the DSP get reset? NWRAM doesn't, so I'm assuming no
// *HOWEVER*, the bootrom (which does get rerun) does remap NWRAM, and thus
// the DSP most likely gets reset
DSi_DSP::Reset();
SDMMC->CloseHandles();
SDIO->CloseHandles();
2019-10-20 16:35:16 +00:00
LoadNAND();
SDMMC->Reset();
SDIO->Reset();
DSi_AES::Reset();
2020-05-30 11:52:51 +00:00
if (Platform::GetConfigBool(Platform::DSi_FullBIOSBoot))
{
SCFG_BIOS = 0x0000;
}
else
{
SCFG_BIOS = 0x0101;
}
2020-05-30 11:52:51 +00:00
SCFG_Clock9 = 0x0187; // CHECKME
SCFG_Clock7 = 0x0187;
SCFG_EXT[0] = 0x8307F100;
SCFG_EXT[1] = 0x93FFFB06;
SCFG_MC = 0x0010;//0x0011;
// TODO: is this actually reset?
SCFG_RST = 0;
DSi_DSP::SetRstLine(false);
2020-05-30 11:52:51 +00:00
// LCD init flag
GPU::DispStat[0] |= (1<<6);
GPU::DispStat[1] |= (1<<6);
2019-10-20 16:35:16 +00:00
}
2019-06-13 12:41:54 +00:00
bool LoadNAND()
{
if (!NANDImage)
{
Log(LogLevel::Error, "No NAND image loaded\n");
return false;
}
Log(LogLevel::Info, "Loading DSi NAND\n");
2019-06-15 11:09:11 +00:00
DSi_NAND::NANDMount nandmount(*NANDImage);
if (!nandmount)
{
Log(LogLevel::Error, "Failed to load DSi NAND\n");
return false;
}
FileHandle* nand = NANDImage->GetFile();
// Make sure NWRAM is accessible.
// The Bits are set to the startup values in Reset() and we might
// still have them on default (0) or some bits cleared by the previous
// run.
SCFG_EXT[0] |= (1 << 25);
SCFG_EXT[1] |= (1 << 25);
memset(NWRAM_A, 0, NWRAMSize);
memset(NWRAM_B, 0, NWRAMSize);
memset(NWRAM_C, 0, NWRAMSize);
2019-06-15 11:46:20 +00:00
memset(MBK, 0, sizeof(MBK));
memset(NWRAMMap_A, 0, sizeof(NWRAMMap_A));
memset(NWRAMMap_B, 0, sizeof(NWRAMMap_B));
memset(NWRAMMap_C, 0, sizeof(NWRAMMap_C));
memset(NWRAMStart, 0, sizeof(NWRAMStart));
memset(NWRAMEnd, 0, sizeof(NWRAMEnd));
memset(NWRAMMask, 0, sizeof(NWRAMMask));
u32 bootparams[8];
if (Platform::GetConfigBool(Platform::DSi_FullBIOSBoot))
{
// TODO: figure out default MBK mapping
// MBK1..5: disable mappings
for (int i = 0; i < 8; ++i)
{
if (i < 4)
MapNWRAM_A(i, 0);
MapNWRAM_B(i, 0);
MapNWRAM_C(i, 0);
}
// MBK6..8: address mappings: nothing mapped
for (int i = 0; i < 6; ++i)
{
MapNWRAMRange(i & 1, i >> 1, 0);
}
// MBK9: ARM9 allowed to write
MBK[0][8] = 0;
MBK[1][8] = 0;
}
else
{
Assorted portability enhancements (#1800) * Introduce some Platform calls for managing dynamic libraries * Add Platform::WriteFATSectors * Introduce some Platform calls for managing dynamic libraries * Add Platform::WriteFATSectors * Change includes of "../types.h" to "types.h" - Makes it easier to directly include these headers in downstream projects * Change an include of "../Wifi.h" to "Wifi.h" * Allow CommonFuncs.cpp to compile on Android * Tidy up some logging calls - Use Platform::Log in LAN_Socket.cpp - Soften some warnings to Debug logs (since they don't necessarily represent problems) * Add Platform::EnterGBAMode - Gracefully stop the emulator if trying to enter GBA mode * Soften some logs that most players won't care about * Soften some more logs * Introduce Platform wrappers for file operations * Fix pointer spacing * Fix more style nits * Log the errno when ftruncate fails * Fix FileSeek offset argument - With an s32 offset, we couldn't access files larger than 2GB * Revise Platform::StopEmu to address feedback - Remove Platform::EnterGBAMode in favor of adding a reason to Platform::StopEmu - Also rename Platform::StopEmu to Platform::SignalStop - Add an optional argument to NDS::Stop - Use the new argument everywhere that the console stops itself * Rename FileGetString to FileReadLine - It conveys the meaning better * Rename FileSeekOrigin::Set to Start - It conveys the meaning better * Change definition of FileGetString to FileReadLine - Oops, almost forgot it * Rename FlushFile to FileFlush - To remain consistent with the other File functions * Add a FileType usage * Fix line break in FileSeekOrigin * Document Platform::DeInit * Clarify that StopReason::Unknown doesn't always mean an error * Move and document FileType::HostFile * Remove Platform::OpenDataFile - Nothing currently uses it * Refactor Platform::OpenFile and Platform::OpenLocalFile to accept a FileMode enum instead of a string - The enum is converted to fopen flags under the hood - The file type is used to decide whether to add the "b" flag - Some helper functions are exposed for the benefit of consistent behavior among frontends - Equivalent behavior is maintained * Fix a tab that should be spaces * Use Windows' 64-bit implementations of fseek/ftell * Move Platform::IsBinaryFile to Platform.cpp - It could vary by frontend * Remove an unused FileType * Rename an enum constant * Document various Platform items * Use Platform::DynamicLibrary to load libandroid - And clean it up at the end * Fix a typo * Pass the correct filetype to FATStorage - Since it can be used for DSI NAND images or for SD cards * Remove Platform::FileType
2023-08-18 20:50:57 +00:00
FileSeek(nand, 0x220, FileSeekOrigin::Start);
FileRead(bootparams, 4, 8, nand);
Log(LogLevel::Debug, "ARM9: offset=%08X size=%08X RAM=%08X size_aligned=%08X\n",
bootparams[0], bootparams[1], bootparams[2], bootparams[3]);
Log(LogLevel::Debug, "ARM7: offset=%08X size=%08X RAM=%08X size_aligned=%08X\n",
bootparams[4], bootparams[5], bootparams[6], bootparams[7]);
// read and apply new-WRAM settings
2019-06-15 11:09:11 +00:00
MBK[0][8] = 0;
MBK[1][8] = 0;
u32 mbk[12];
Assorted portability enhancements (#1800) * Introduce some Platform calls for managing dynamic libraries * Add Platform::WriteFATSectors * Introduce some Platform calls for managing dynamic libraries * Add Platform::WriteFATSectors * Change includes of "../types.h" to "types.h" - Makes it easier to directly include these headers in downstream projects * Change an include of "../Wifi.h" to "Wifi.h" * Allow CommonFuncs.cpp to compile on Android * Tidy up some logging calls - Use Platform::Log in LAN_Socket.cpp - Soften some warnings to Debug logs (since they don't necessarily represent problems) * Add Platform::EnterGBAMode - Gracefully stop the emulator if trying to enter GBA mode * Soften some logs that most players won't care about * Soften some more logs * Introduce Platform wrappers for file operations * Fix pointer spacing * Fix more style nits * Log the errno when ftruncate fails * Fix FileSeek offset argument - With an s32 offset, we couldn't access files larger than 2GB * Revise Platform::StopEmu to address feedback - Remove Platform::EnterGBAMode in favor of adding a reason to Platform::StopEmu - Also rename Platform::StopEmu to Platform::SignalStop - Add an optional argument to NDS::Stop - Use the new argument everywhere that the console stops itself * Rename FileGetString to FileReadLine - It conveys the meaning better * Rename FileSeekOrigin::Set to Start - It conveys the meaning better * Change definition of FileGetString to FileReadLine - Oops, almost forgot it * Rename FlushFile to FileFlush - To remain consistent with the other File functions * Add a FileType usage * Fix line break in FileSeekOrigin * Document Platform::DeInit * Clarify that StopReason::Unknown doesn't always mean an error * Move and document FileType::HostFile * Remove Platform::OpenDataFile - Nothing currently uses it * Refactor Platform::OpenFile and Platform::OpenLocalFile to accept a FileMode enum instead of a string - The enum is converted to fopen flags under the hood - The file type is used to decide whether to add the "b" flag - Some helper functions are exposed for the benefit of consistent behavior among frontends - Equivalent behavior is maintained * Fix a tab that should be spaces * Use Windows' 64-bit implementations of fseek/ftell * Move Platform::IsBinaryFile to Platform.cpp - It could vary by frontend * Remove an unused FileType * Rename an enum constant * Document various Platform items * Use Platform::DynamicLibrary to load libandroid - And clean it up at the end * Fix a typo * Pass the correct filetype to FATStorage - Since it can be used for DSI NAND images or for SD cards * Remove Platform::FileType
2023-08-18 20:50:57 +00:00
FileSeek(nand, 0x380, FileSeekOrigin::Start);
FileRead(mbk, 4, 12, nand);
MapNWRAM_A(0, mbk[0] & 0xFF);
MapNWRAM_A(1, (mbk[0] >> 8) & 0xFF);
MapNWRAM_A(2, (mbk[0] >> 16) & 0xFF);
MapNWRAM_A(3, mbk[0] >> 24);
MapNWRAM_B(0, mbk[1] & 0xFF);
MapNWRAM_B(1, (mbk[1] >> 8) & 0xFF);
MapNWRAM_B(2, (mbk[1] >> 16) & 0xFF);
MapNWRAM_B(3, mbk[1] >> 24);
MapNWRAM_B(4, mbk[2] & 0xFF);
MapNWRAM_B(5, (mbk[2] >> 8) & 0xFF);
MapNWRAM_B(6, (mbk[2] >> 16) & 0xFF);
MapNWRAM_B(7, mbk[2] >> 24);
MapNWRAM_C(0, mbk[3] & 0xFF);
MapNWRAM_C(1, (mbk[3] >> 8) & 0xFF);
MapNWRAM_C(2, (mbk[3] >> 16) & 0xFF);
MapNWRAM_C(3, mbk[3] >> 24);
MapNWRAM_C(4, mbk[4] & 0xFF);
MapNWRAM_C(5, (mbk[4] >> 8) & 0xFF);
MapNWRAM_C(6, (mbk[4] >> 16) & 0xFF);
MapNWRAM_C(7, mbk[4] >> 24);
2019-06-15 11:09:11 +00:00
MapNWRAMRange(0, 0, mbk[5]);
MapNWRAMRange(0, 1, mbk[6]);
MapNWRAMRange(0, 2, mbk[7]);
MapNWRAMRange(1, 0, mbk[8]);
MapNWRAMRange(1, 1, mbk[9]);
MapNWRAMRange(1, 2, mbk[10]);
// TODO: find out why it is 0xFF000000
mbk[11] &= 0x00FFFF0F;
MBK[0][8] = mbk[11];
MBK[1][8] = mbk[11];
// load boot2 binaries
AES_ctx ctx;
const u8 boot2key[16] = {0xAD, 0x34, 0xEC, 0xF9, 0x62, 0x6E, 0xC2, 0x3A, 0xF6, 0xB4, 0x6C, 0x00, 0x80, 0x80, 0xEE, 0x98};
u8 boot2iv[16];
u8 tmp[16];
u32 dstaddr;
*(u32*)&tmp[0] = bootparams[3];
*(u32*)&tmp[4] = -bootparams[3];
*(u32*)&tmp[8] = ~bootparams[3];
*(u32*)&tmp[12] = 0;
Bswap128(boot2iv, tmp);
AES_init_ctx_iv(&ctx, boot2key, boot2iv);
Assorted portability enhancements (#1800) * Introduce some Platform calls for managing dynamic libraries * Add Platform::WriteFATSectors * Introduce some Platform calls for managing dynamic libraries * Add Platform::WriteFATSectors * Change includes of "../types.h" to "types.h" - Makes it easier to directly include these headers in downstream projects * Change an include of "../Wifi.h" to "Wifi.h" * Allow CommonFuncs.cpp to compile on Android * Tidy up some logging calls - Use Platform::Log in LAN_Socket.cpp - Soften some warnings to Debug logs (since they don't necessarily represent problems) * Add Platform::EnterGBAMode - Gracefully stop the emulator if trying to enter GBA mode * Soften some logs that most players won't care about * Soften some more logs * Introduce Platform wrappers for file operations * Fix pointer spacing * Fix more style nits * Log the errno when ftruncate fails * Fix FileSeek offset argument - With an s32 offset, we couldn't access files larger than 2GB * Revise Platform::StopEmu to address feedback - Remove Platform::EnterGBAMode in favor of adding a reason to Platform::StopEmu - Also rename Platform::StopEmu to Platform::SignalStop - Add an optional argument to NDS::Stop - Use the new argument everywhere that the console stops itself * Rename FileGetString to FileReadLine - It conveys the meaning better * Rename FileSeekOrigin::Set to Start - It conveys the meaning better * Change definition of FileGetString to FileReadLine - Oops, almost forgot it * Rename FlushFile to FileFlush - To remain consistent with the other File functions * Add a FileType usage * Fix line break in FileSeekOrigin * Document Platform::DeInit * Clarify that StopReason::Unknown doesn't always mean an error * Move and document FileType::HostFile * Remove Platform::OpenDataFile - Nothing currently uses it * Refactor Platform::OpenFile and Platform::OpenLocalFile to accept a FileMode enum instead of a string - The enum is converted to fopen flags under the hood - The file type is used to decide whether to add the "b" flag - Some helper functions are exposed for the benefit of consistent behavior among frontends - Equivalent behavior is maintained * Fix a tab that should be spaces * Use Windows' 64-bit implementations of fseek/ftell * Move Platform::IsBinaryFile to Platform.cpp - It could vary by frontend * Remove an unused FileType * Rename an enum constant * Document various Platform items * Use Platform::DynamicLibrary to load libandroid - And clean it up at the end * Fix a typo * Pass the correct filetype to FATStorage - Since it can be used for DSI NAND images or for SD cards * Remove Platform::FileType
2023-08-18 20:50:57 +00:00
FileSeek(nand, bootparams[0], FileSeekOrigin::Start);
dstaddr = bootparams[2];
for (u32 i = 0; i < bootparams[3]; i += 16)
{
u32 data[4];
Assorted portability enhancements (#1800) * Introduce some Platform calls for managing dynamic libraries * Add Platform::WriteFATSectors * Introduce some Platform calls for managing dynamic libraries * Add Platform::WriteFATSectors * Change includes of "../types.h" to "types.h" - Makes it easier to directly include these headers in downstream projects * Change an include of "../Wifi.h" to "Wifi.h" * Allow CommonFuncs.cpp to compile on Android * Tidy up some logging calls - Use Platform::Log in LAN_Socket.cpp - Soften some warnings to Debug logs (since they don't necessarily represent problems) * Add Platform::EnterGBAMode - Gracefully stop the emulator if trying to enter GBA mode * Soften some logs that most players won't care about * Soften some more logs * Introduce Platform wrappers for file operations * Fix pointer spacing * Fix more style nits * Log the errno when ftruncate fails * Fix FileSeek offset argument - With an s32 offset, we couldn't access files larger than 2GB * Revise Platform::StopEmu to address feedback - Remove Platform::EnterGBAMode in favor of adding a reason to Platform::StopEmu - Also rename Platform::StopEmu to Platform::SignalStop - Add an optional argument to NDS::Stop - Use the new argument everywhere that the console stops itself * Rename FileGetString to FileReadLine - It conveys the meaning better * Rename FileSeekOrigin::Set to Start - It conveys the meaning better * Change definition of FileGetString to FileReadLine - Oops, almost forgot it * Rename FlushFile to FileFlush - To remain consistent with the other File functions * Add a FileType usage * Fix line break in FileSeekOrigin * Document Platform::DeInit * Clarify that StopReason::Unknown doesn't always mean an error * Move and document FileType::HostFile * Remove Platform::OpenDataFile - Nothing currently uses it * Refactor Platform::OpenFile and Platform::OpenLocalFile to accept a FileMode enum instead of a string - The enum is converted to fopen flags under the hood - The file type is used to decide whether to add the "b" flag - Some helper functions are exposed for the benefit of consistent behavior among frontends - Equivalent behavior is maintained * Fix a tab that should be spaces * Use Windows' 64-bit implementations of fseek/ftell * Move Platform::IsBinaryFile to Platform.cpp - It could vary by frontend * Remove an unused FileType * Rename an enum constant * Document various Platform items * Use Platform::DynamicLibrary to load libandroid - And clean it up at the end * Fix a typo * Pass the correct filetype to FATStorage - Since it can be used for DSI NAND images or for SD cards * Remove Platform::FileType
2023-08-18 20:50:57 +00:00
FileRead(data, 16, 1, nand);
Bswap128(tmp, data);
AES_CTR_xcrypt_buffer(&ctx, tmp, 16);
Bswap128(data, tmp);
ARM9Write32(dstaddr, data[0]); dstaddr += 4;
ARM9Write32(dstaddr, data[1]); dstaddr += 4;
ARM9Write32(dstaddr, data[2]); dstaddr += 4;
ARM9Write32(dstaddr, data[3]); dstaddr += 4;
}
*(u32*)&tmp[0] = bootparams[7];
*(u32*)&tmp[4] = -bootparams[7];
*(u32*)&tmp[8] = ~bootparams[7];
*(u32*)&tmp[12] = 0;
Bswap128(boot2iv, tmp);
AES_init_ctx_iv(&ctx, boot2key, boot2iv);
Assorted portability enhancements (#1800) * Introduce some Platform calls for managing dynamic libraries * Add Platform::WriteFATSectors * Introduce some Platform calls for managing dynamic libraries * Add Platform::WriteFATSectors * Change includes of "../types.h" to "types.h" - Makes it easier to directly include these headers in downstream projects * Change an include of "../Wifi.h" to "Wifi.h" * Allow CommonFuncs.cpp to compile on Android * Tidy up some logging calls - Use Platform::Log in LAN_Socket.cpp - Soften some warnings to Debug logs (since they don't necessarily represent problems) * Add Platform::EnterGBAMode - Gracefully stop the emulator if trying to enter GBA mode * Soften some logs that most players won't care about * Soften some more logs * Introduce Platform wrappers for file operations * Fix pointer spacing * Fix more style nits * Log the errno when ftruncate fails * Fix FileSeek offset argument - With an s32 offset, we couldn't access files larger than 2GB * Revise Platform::StopEmu to address feedback - Remove Platform::EnterGBAMode in favor of adding a reason to Platform::StopEmu - Also rename Platform::StopEmu to Platform::SignalStop - Add an optional argument to NDS::Stop - Use the new argument everywhere that the console stops itself * Rename FileGetString to FileReadLine - It conveys the meaning better * Rename FileSeekOrigin::Set to Start - It conveys the meaning better * Change definition of FileGetString to FileReadLine - Oops, almost forgot it * Rename FlushFile to FileFlush - To remain consistent with the other File functions * Add a FileType usage * Fix line break in FileSeekOrigin * Document Platform::DeInit * Clarify that StopReason::Unknown doesn't always mean an error * Move and document FileType::HostFile * Remove Platform::OpenDataFile - Nothing currently uses it * Refactor Platform::OpenFile and Platform::OpenLocalFile to accept a FileMode enum instead of a string - The enum is converted to fopen flags under the hood - The file type is used to decide whether to add the "b" flag - Some helper functions are exposed for the benefit of consistent behavior among frontends - Equivalent behavior is maintained * Fix a tab that should be spaces * Use Windows' 64-bit implementations of fseek/ftell * Move Platform::IsBinaryFile to Platform.cpp - It could vary by frontend * Remove an unused FileType * Rename an enum constant * Document various Platform items * Use Platform::DynamicLibrary to load libandroid - And clean it up at the end * Fix a typo * Pass the correct filetype to FATStorage - Since it can be used for DSI NAND images or for SD cards * Remove Platform::FileType
2023-08-18 20:50:57 +00:00
FileSeek(nand, bootparams[4], FileSeekOrigin::Start);
dstaddr = bootparams[6];
for (u32 i = 0; i < bootparams[7]; i += 16)
{
u32 data[4];
Assorted portability enhancements (#1800) * Introduce some Platform calls for managing dynamic libraries * Add Platform::WriteFATSectors * Introduce some Platform calls for managing dynamic libraries * Add Platform::WriteFATSectors * Change includes of "../types.h" to "types.h" - Makes it easier to directly include these headers in downstream projects * Change an include of "../Wifi.h" to "Wifi.h" * Allow CommonFuncs.cpp to compile on Android * Tidy up some logging calls - Use Platform::Log in LAN_Socket.cpp - Soften some warnings to Debug logs (since they don't necessarily represent problems) * Add Platform::EnterGBAMode - Gracefully stop the emulator if trying to enter GBA mode * Soften some logs that most players won't care about * Soften some more logs * Introduce Platform wrappers for file operations * Fix pointer spacing * Fix more style nits * Log the errno when ftruncate fails * Fix FileSeek offset argument - With an s32 offset, we couldn't access files larger than 2GB * Revise Platform::StopEmu to address feedback - Remove Platform::EnterGBAMode in favor of adding a reason to Platform::StopEmu - Also rename Platform::StopEmu to Platform::SignalStop - Add an optional argument to NDS::Stop - Use the new argument everywhere that the console stops itself * Rename FileGetString to FileReadLine - It conveys the meaning better * Rename FileSeekOrigin::Set to Start - It conveys the meaning better * Change definition of FileGetString to FileReadLine - Oops, almost forgot it * Rename FlushFile to FileFlush - To remain consistent with the other File functions * Add a FileType usage * Fix line break in FileSeekOrigin * Document Platform::DeInit * Clarify that StopReason::Unknown doesn't always mean an error * Move and document FileType::HostFile * Remove Platform::OpenDataFile - Nothing currently uses it * Refactor Platform::OpenFile and Platform::OpenLocalFile to accept a FileMode enum instead of a string - The enum is converted to fopen flags under the hood - The file type is used to decide whether to add the "b" flag - Some helper functions are exposed for the benefit of consistent behavior among frontends - Equivalent behavior is maintained * Fix a tab that should be spaces * Use Windows' 64-bit implementations of fseek/ftell * Move Platform::IsBinaryFile to Platform.cpp - It could vary by frontend * Remove an unused FileType * Rename an enum constant * Document various Platform items * Use Platform::DynamicLibrary to load libandroid - And clean it up at the end * Fix a typo * Pass the correct filetype to FATStorage - Since it can be used for DSI NAND images or for SD cards * Remove Platform::FileType
2023-08-18 20:50:57 +00:00
FileRead(data, 16, 1, nand);
Bswap128(tmp, data);
AES_CTR_xcrypt_buffer(&ctx, tmp, 16);
Bswap128(data, tmp);
ARM7Write32(dstaddr, data[0]); dstaddr += 4;
ARM7Write32(dstaddr, data[1]); dstaddr += 4;
ARM7Write32(dstaddr, data[2]); dstaddr += 4;
ARM7Write32(dstaddr, data[3]); dstaddr += 4;
}
2019-06-15 11:09:11 +00:00
}
2019-06-13 12:41:54 +00:00
const DSi_NAND::DSiKey& emmccid = NANDImage->GetEMMCID();
Log(LogLevel::Debug, "eMMC CID: %08llX%08llX\n", *(const u64*)&emmccid[0], *(const u64*)&emmccid[8]);
Log(LogLevel::Debug, "Console ID: %" PRIx64 "\n", NANDImage->GetConsoleID());
if (Platform::GetConfigBool(Platform::DSi_FullBIOSBoot))
{
// point CPUs to boot ROM reset vectors
NDS::ARM9->JumpTo(0xFFFF0000);
NDS::ARM7->JumpTo(0x00000000);
}
else
{
u32 eaddr = 0x03FFE6E4;
ARM7Write32(eaddr+0x00, *(const u32*)&emmccid[0]);
ARM7Write32(eaddr+0x04, *(const u32*)&emmccid[4]);
ARM7Write32(eaddr+0x08, *(const u32*)&emmccid[8]);
ARM7Write32(eaddr+0x0C, *(const u32*)&emmccid[12]);
ARM7Write16(eaddr+0x2C, 0x0001);
ARM7Write16(eaddr+0x2E, 0x0001);
ARM7Write16(eaddr+0x3C, 0x0100);
ARM7Write16(eaddr+0x3E, 0x40E0);
ARM7Write16(eaddr+0x42, 0x0001);
memcpy(&NDS::ARM9->ITCM[0x4400], &ARM9iBIOS[0x87F4], 0x400);
memcpy(&NDS::ARM9->ITCM[0x4800], &ARM9iBIOS[0x9920], 0x80);
memcpy(&NDS::ARM9->ITCM[0x4894], &ARM9iBIOS[0x99A0], 0x1048);
memcpy(&NDS::ARM9->ITCM[0x58DC], &ARM9iBIOS[0xA9E8], 0x1048);
u8 ARM7Init[0x3C00];
memset(ARM7Init, 0, 0x3C00);
memcpy(&ARM7Init[0x0000], &ARM7iBIOS[0x8188], 0x200);
memcpy(&ARM7Init[0x0200], &ARM7iBIOS[0xB5D8], 0x40);
memcpy(&ARM7Init[0x0254], &ARM7iBIOS[0xC6D0], 0x1048);
memcpy(&ARM7Init[0x129C], &ARM7iBIOS[0xD718], 0x1048);
for (u32 i = 0; i < 0x3C00; i+=4)
ARM7Write32(0x03FFC400+i, *(u32*)&ARM7Init[i]);
// repoint the CPUs to the boot2 binaries
NDS::ARM9->JumpTo(bootparams[2]);
NDS::ARM7->JumpTo(bootparams[6]);
}
// user data is now expected to be patched by the frontend
2019-06-13 12:41:54 +00:00
return true;
}
2019-06-15 11:09:11 +00:00
void RunNDMAs(u32 cpu)
{
// TODO: round-robin mode (requires DMA channels to have a subblock delay set)
if (cpu == 0)
{
if (NDS::ARM9Timestamp >= NDS::ARM9Target) return;
if (!(NDS::CPUStop & NDS::CPUStop_GXStall)) NDMAs[0]->Run();
if (!(NDS::CPUStop & NDS::CPUStop_GXStall)) NDMAs[1]->Run();
if (!(NDS::CPUStop & NDS::CPUStop_GXStall)) NDMAs[2]->Run();
if (!(NDS::CPUStop & NDS::CPUStop_GXStall)) NDMAs[3]->Run();
}
else
{
if (NDS::ARM7Timestamp >= NDS::ARM7Target) return;
NDMAs[4]->Run();
NDMAs[5]->Run();
NDMAs[6]->Run();
NDMAs[7]->Run();
}
}
void StallNDMAs()
{
// TODO
}
bool NDMAsInMode(u32 cpu, u32 mode)
{
cpu <<= 2;
if (NDMAs[cpu+0]->IsInMode(mode)) return true;
if (NDMAs[cpu+1]->IsInMode(mode)) return true;
if (NDMAs[cpu+2]->IsInMode(mode)) return true;
if (NDMAs[cpu+3]->IsInMode(mode)) return true;
return false;
}
bool NDMAsRunning(u32 cpu)
{
cpu <<= 2;
if (NDMAs[cpu+0]->IsRunning()) return true;
if (NDMAs[cpu+1]->IsRunning()) return true;
if (NDMAs[cpu+2]->IsRunning()) return true;
if (NDMAs[cpu+3]->IsRunning()) return true;
return false;
}
void CheckNDMAs(u32 cpu, u32 mode)
{
cpu <<= 2;
NDMAs[cpu+0]->StartIfNeeded(mode);
NDMAs[cpu+1]->StartIfNeeded(mode);
NDMAs[cpu+2]->StartIfNeeded(mode);
NDMAs[cpu+3]->StartIfNeeded(mode);
}
void StopNDMAs(u32 cpu, u32 mode)
{
cpu <<= 2;
NDMAs[cpu+0]->StopIfNeeded(mode);
NDMAs[cpu+1]->StopIfNeeded(mode);
NDMAs[cpu+2]->StopIfNeeded(mode);
NDMAs[cpu+3]->StopIfNeeded(mode);
}
2019-06-15 11:46:20 +00:00
// new WRAM mapping
// TODO: find out what happens upon overlapping slots!!
void MapNWRAM_A(u32 num, u8 val)
{
// NWRAM Bank A does not allow all bits to be set
// possible non working combinations are caught by later code, but these are not set-able at all
val &= ~0x72;
2019-06-19 15:16:44 +00:00
if (MBK[0][8] & (1 << num))
{
Log(LogLevel::Warn, "trying to map NWRAM_A %d to %02X, but it is write-protected (%08X)\n", num, val, MBK[0][8]);
2019-06-19 15:16:44 +00:00
return;
}
2019-06-15 11:46:20 +00:00
int mbkn = 0, mbks = 8*num;
u8 oldval = (MBK[0][mbkn] >> mbks) & 0xFF;
if (oldval == val) return;
2020-11-13 14:20:53 +00:00
#ifdef JIT_ENABLED
ARMJIT_Memory::RemapNWRAM(0);
#endif
2019-06-15 11:46:20 +00:00
MBK[0][mbkn] &= ~(0xFF << mbks);
MBK[0][mbkn] |= (val << mbks);
MBK[1][mbkn] = MBK[0][mbkn];
// When we only update the mapping on the written MBK, we will
// have priority of the last written MBK over the others
// However the hardware has a fixed order. Therefore
// we need to iterate through them all in a fixed order and update
// the mapping, so the result is independent on the MBK write order
for (int part = 0; part < 4; part++)
2019-06-15 11:46:20 +00:00
{
NWRAMMap_A[0][part] = nullptr;
NWRAMMap_A[1][part] = nullptr;
2019-06-15 11:46:20 +00:00
}
for (int part = 3; part >= 0; part--)
2019-06-15 11:46:20 +00:00
{
u8* ptr = &NWRAM_A[part << 16];
u8 mVal = (MBK[0][0 + (part >> 2)] >> ((part & 3) * 8)) & 0xFD;
if (mVal & 0x80)
{
NWRAMMap_A[mVal & 0x03][(mVal >> 2) & 0x3] = ptr;
}
2019-06-15 11:46:20 +00:00
}
}
void MapNWRAM_B(u32 num, u8 val)
{
// NWRAM Bank B does not allow all bits to be set
// possible non working combinations are caught by later code, but these are not set-able at all
val &= ~0x60;
2019-06-19 15:16:44 +00:00
if (MBK[0][8] & (1 << (8+num)))
{
Log(LogLevel::Warn, "trying to map NWRAM_B %d to %02X, but it is write-protected (%08X)\n", num, val, MBK[0][8]);
2019-06-19 15:16:44 +00:00
return;
}
2019-06-15 11:46:20 +00:00
int mbkn = 1+(num>>2), mbks = 8*(num&3);
u8 oldval = (MBK[0][mbkn] >> mbks) & 0xFF;
if (oldval == val) return;
2020-11-13 14:20:53 +00:00
#ifdef JIT_ENABLED
ARMJIT_Memory::RemapNWRAM(1);
#endif
2019-06-15 11:46:20 +00:00
MBK[0][mbkn] &= ~(0xFF << mbks);
MBK[0][mbkn] |= (val << mbks);
MBK[1][mbkn] = MBK[0][mbkn];
// When we only update the mapping on the written MBK, we will
// have priority of the last written MBK over the others
// However the hardware has a fixed order. Therefore
// we need to iterate through them all in a fixed order and update
// the mapping, so the result is independent on the MBK write order
for (int part = 0; part < 8; part++)
2019-06-15 11:46:20 +00:00
{
NWRAMMap_B[0][part] = nullptr;
NWRAMMap_B[1][part] = nullptr;
NWRAMMap_B[2][part] = nullptr;
2019-06-15 11:46:20 +00:00
}
for (int part = 7; part >= 0; part--)
2019-06-15 11:46:20 +00:00
{
u8* ptr = &NWRAM_B[part << 15];
u8 mVal = (MBK[0][1 + (part >> 2)] >> ((part & 3) * 8)) & 0xFF;
if (mVal & 0x80)
{
if (mVal & 0x02) mVal &= 0xFE;
NWRAMMap_B[mVal & 0x03][(mVal >> 2) & 0x7] = ptr;
}
2019-06-15 11:46:20 +00:00
}
}
void MapNWRAM_C(u32 num, u8 val)
{
// NWRAM Bank C does not allow all bits to be set
// possible non working combinations are caught by later code, but these are not set-able at all
val &= ~0x60;
2019-06-19 15:16:44 +00:00
if (MBK[0][8] & (1 << (16+num)))
{
Log(LogLevel::Warn, "trying to map NWRAM_C %d to %02X, but it is write-protected (%08X)\n", num, val, MBK[0][8]);
2019-06-19 15:16:44 +00:00
return;
}
2019-06-15 11:46:20 +00:00
int mbkn = 3+(num>>2), mbks = 8*(num&3);
u8 oldval = (MBK[0][mbkn] >> mbks) & 0xFF;
if (oldval == val) return;
2020-11-13 14:20:53 +00:00
#ifdef JIT_ENABLED
ARMJIT_Memory::RemapNWRAM(2);
#endif
2019-06-15 11:46:20 +00:00
MBK[0][mbkn] &= ~(0xFF << mbks);
MBK[0][mbkn] |= (val << mbks);
MBK[1][mbkn] = MBK[0][mbkn];
// When we only update the mapping on the written MBK, we will
// have priority of the last written MBK over the others
// However the hardware has a fixed order. Therefore
// we need to iterate through them all in a fixed order and update
// the mapping, so the result is independent on the MBK write order
for (int part = 0; part < 8; part++)
2019-06-15 11:46:20 +00:00
{
NWRAMMap_C[0][part] = nullptr;
NWRAMMap_C[1][part] = nullptr;
NWRAMMap_C[2][part] = nullptr;
2019-06-15 11:46:20 +00:00
}
for (int part = 7; part >= 0; part--)
2019-06-15 11:46:20 +00:00
{
u8* ptr = &NWRAM_C[part << 15];
u8 mVal = MBK[0][3 + (part >> 2)] >> ((part & 3) * 8) & 0xFF;
if (mVal & 0x80)
{
if (mVal & 0x02) mVal &= 0xFE;
NWRAMMap_C[mVal & 0x03][(mVal >> 2) & 0x7] = ptr;
}
2019-06-15 11:46:20 +00:00
}
}
void MapNWRAMRange(u32 cpu, u32 num, u32 val)
{
// The windowing registers are not writeable in all bits
// We need to do this before the change test, so we do not
// get false "was changed" fall throughs
switch (num)
{
case 0:
val &= ~0xE00FC00F;
break;
case 1:
case 2:
val &= ~0xE007C007;
break;
}
2019-06-15 11:46:20 +00:00
u32 oldval = MBK[cpu][5+num];
if (oldval == val) return;
#ifdef JIT_ENABLED
ARMJIT_Memory::RemapNWRAM(num);
#endif
2019-06-15 11:46:20 +00:00
MBK[cpu][5+num] = val;
// Was TODO: What happens when the ranges are 'out of range'????
// Answer: The actual range is limited to 0x03000000 to 0x03ffffff
// The NWRAM can not map into the HW Register ranges and is never
// mapped there. However the end indizes are allowed to have a value
// exceeding that range, in which the accessed area is just cut
// at the end of the region
// since melonDS does this cut by the case switch in the read/write
// functions, we do not need to care here.
2019-06-15 11:46:20 +00:00
if (num == 0)
{
u32 start = 0x03000000 + (((val >> 4) & 0xFF) << 16);
u32 end = 0x03000000 + (((val >> 20) & 0x1FF) << 16);
u32 size = (val >> 12) & 0x3;
Log(LogLevel::Debug, "NWRAM-A: ARM%d range %08X-%08X, size %d\n", cpu?7:9, start, end, size);
2019-06-15 11:46:20 +00:00
NWRAMStart[cpu][num] = start;
NWRAMEnd[cpu][num] = end;
switch (size)
{
case 0:
case 1: NWRAMMask[cpu][num] = 0x0; break;
case 2: NWRAMMask[cpu][num] = 0x1; break; // CHECKME
case 3: NWRAMMask[cpu][num] = 0x3; break;
}
}
else
{
u32 start = 0x03000000 + (((val >> 3) & 0x1FF) << 15);
u32 end = 0x03000000 + (((val >> 19) & 0x3FF) << 15);
u32 size = (val >> 12) & 0x3;
Log(LogLevel::Debug, "NWRAM-%c: ARM%d range %08X-%08X, size %d\n", 'A'+num, cpu?7:9, start, end, size);
2019-06-15 11:46:20 +00:00
NWRAMStart[cpu][num] = start;
NWRAMEnd[cpu][num] = end;
switch (size)
{
case 0: NWRAMMask[cpu][num] = 0x0; break;
case 1: NWRAMMask[cpu][num] = 0x1; break;
case 2: NWRAMMask[cpu][num] = 0x3; break;
case 3: NWRAMMask[cpu][num] = 0x7; break;
}
}
}
void ApplyNewRAMSize(u32 size)
{
switch (size)
{
case 0:
case 1:
NDS::MainRAMMask = 0x3FFFFF;
Log(LogLevel::Debug, "RAM: 4MB\n");
break;
case 2:
case 3: // TODO: debug console w/ 32MB?
NDS::MainRAMMask = 0xFFFFFF;
Log(LogLevel::Debug, "RAM: 16MB\n");
break;
}
}
2019-06-15 11:46:20 +00:00
void Set_SCFG_Clock9(u16 val)
{
NDS::ARM9Timestamp >>= NDS::ARM9ClockShift;
NDS::ARM9Target >>= NDS::ARM9ClockShift;
Log(LogLevel::Debug, "CLOCK9=%04X\n", val);
SCFG_Clock9 = val & 0x0187;
if (SCFG_Clock9 & (1<<0)) NDS::ARM9ClockShift = 2;
else NDS::ARM9ClockShift = 1;
NDS::ARM9Timestamp <<= NDS::ARM9ClockShift;
NDS::ARM9Target <<= NDS::ARM9ClockShift;
NDS::ARM9->UpdateRegionTimings(0x00000, 0x100000);
}
void Set_SCFG_MC(u32 val)
{
u32 oldslotstatus = SCFG_MC & 0xC;
val &= 0xFFFF800C;
if ((val & 0xC) == 0xC) val &= ~0xC; // hax
if (val & 0x8000) Log(LogLevel::Warn, "SCFG_MC: weird NDS slot swap\n");
SCFG_MC = (SCFG_MC & ~0xFFFF800C) | val;
if ((oldslotstatus == 0x0) && ((SCFG_MC & 0xC) == 0x4))
{
NDSCart::ResetCart();
}
}
2019-06-15 11:09:11 +00:00
u8 ARM9Read8(u32 addr)
2020-06-01 22:36:07 +00:00
{
if ((addr >= 0xFFFF0000) && (!(SCFG_BIOS & (1<<1))))
{
if ((addr >= 0xFFFF8000) && (SCFG_BIOS & (1<<0)))
return 0xFF;
return *(u8*)&ARM9iBIOS[addr & 0xFFFF];
}
2019-06-15 11:09:11 +00:00
switch (addr & 0xFF000000)
{
case 0x03000000:
if (SCFG_EXT[0] & (1 << 25))
{
if (addr >= NWRAMStart[0][0] && addr < NWRAMEnd[0][0])
{
u8* ptr = NWRAMMap_A[0][(addr >> 16) & NWRAMMask[0][0]];
return ptr ? *(u8*)&ptr[addr & 0xFFFF] : 0;
}
if (addr >= NWRAMStart[0][1] && addr < NWRAMEnd[0][1])
{
u8* ptr = NWRAMMap_B[0][(addr >> 15) & NWRAMMask[0][1]];
return ptr ? *(u8*)&ptr[addr & 0x7FFF] : 0;
}
if (addr >= NWRAMStart[0][2] && addr < NWRAMEnd[0][2])
{
u8* ptr = NWRAMMap_C[0][(addr >> 15) & NWRAMMask[0][2]];
return ptr ? *(u8*)&ptr[addr & 0x7FFF] : 0;
}
}
return NDS::ARM9Read8(addr);
2019-06-15 11:09:11 +00:00
case 0x04000000:
return ARM9IORead8(addr);
case 0x08000000:
case 0x09000000:
case 0x0A000000:
return (NDS::ExMemCnt[0] & (1<<7)) ? 0 : 0xFF;
case 0x0C000000:
return *(u8*)&NDS::MainRAM[addr & NDS::MainRAMMask];
2019-06-15 11:09:11 +00:00
}
return NDS::ARM9Read8(addr);
}
u16 ARM9Read16(u32 addr)
2020-06-01 22:36:07 +00:00
{
addr &= ~0x1;
if ((addr >= 0xFFFF0000) && (!(SCFG_BIOS & (1<<1))))
{
if ((addr >= 0xFFFF8000) && (SCFG_BIOS & (1<<0)))
return 0xFFFF;
return *(u16*)&ARM9iBIOS[addr & 0xFFFF];
}
2019-06-15 11:09:11 +00:00
switch (addr & 0xFF000000)
{
case 0x03000000:
if (SCFG_EXT[0] & (1 << 25))
{
if (addr >= NWRAMStart[0][0] && addr < NWRAMEnd[0][0])
{
u8* ptr = NWRAMMap_A[0][(addr >> 16) & NWRAMMask[0][0]];
return ptr ? *(u16*)&ptr[addr & 0xFFFF] : 0;
}
if (addr >= NWRAMStart[0][1] && addr < NWRAMEnd[0][1])
{
u8* ptr = NWRAMMap_B[0][(addr >> 15) & NWRAMMask[0][1]];
return ptr ? *(u16*)&ptr[addr & 0x7FFF] : 0;
}
if (addr >= NWRAMStart[0][2] && addr < NWRAMEnd[0][2])
{
u8* ptr = NWRAMMap_C[0][(addr >> 15) & NWRAMMask[0][2]];
return ptr ? *(u16*)&ptr[addr & 0x7FFF] : 0;
}
}
return NDS::ARM9Read16(addr);
2019-06-15 11:09:11 +00:00
case 0x04000000:
return ARM9IORead16(addr);
case 0x08000000:
case 0x09000000:
case 0x0A000000:
return (NDS::ExMemCnt[0] & (1<<7)) ? 0 : 0xFFFF;
case 0x0C000000:
return *(u16*)&NDS::MainRAM[addr & NDS::MainRAMMask];
2019-06-15 11:09:11 +00:00
}
return NDS::ARM9Read16(addr);
}
u32 ARM9Read32(u32 addr)
2020-06-01 22:36:07 +00:00
{
addr &= ~0x3;
if ((addr >= 0xFFFF0000) && (!(SCFG_BIOS & (1<<1))))
{
if ((addr >= 0xFFFF8000) && (SCFG_BIOS & (1<<0)))
return 0xFFFFFFFF;
return *(u32*)&ARM9iBIOS[addr & 0xFFFF];
}
2019-06-15 11:09:11 +00:00
switch (addr & 0xFF000000)
{
2020-06-01 22:36:07 +00:00
case 0x02000000:
// HACK to bypass region locking
// TODO: make optional
if (addr == 0x02FE71B0) return 0xFFFFFFFF;
break;
case 0x03000000:
if (SCFG_EXT[0] & (1 << 25))
{
if (addr >= NWRAMStart[0][0] && addr < NWRAMEnd[0][0])
{
u8* ptr = NWRAMMap_A[0][(addr >> 16) & NWRAMMask[0][0]];
return ptr ? *(u32*)&ptr[addr & 0xFFFF] : 0;
}
if (addr >= NWRAMStart[0][1] && addr < NWRAMEnd[0][1])
{
u8* ptr = NWRAMMap_B[0][(addr >> 15) & NWRAMMask[0][1]];
return ptr ? *(u32*)&ptr[addr & 0x7FFF] : 0;
}
if (addr >= NWRAMStart[0][2] && addr < NWRAMEnd[0][2])
{
u8* ptr = NWRAMMap_C[0][(addr >> 15) & NWRAMMask[0][2]];
return ptr ? *(u32*)&ptr[addr & 0x7FFF] : 0;
}
}
return NDS::ARM9Read32(addr);
2019-06-15 11:09:11 +00:00
case 0x04000000:
return ARM9IORead32(addr);
case 0x08000000:
case 0x09000000:
case 0x0A000000:
return (NDS::ExMemCnt[0] & (1<<7)) ? 0 : 0xFFFFFFFF;
case 0x0C000000:
return *(u32*)&NDS::MainRAM[addr & NDS::MainRAMMask];
2019-06-15 11:09:11 +00:00
}
return NDS::ARM9Read32(addr);
}
void ARM9Write8(u32 addr, u8 val)
{
switch (addr & 0xFF000000)
{
case 0x03000000:
if (SCFG_EXT[0] & (1 << 25))
{
if (addr >= NWRAMStart[0][0] && addr < NWRAMEnd[0][0])
{
// Write to a bank is special, as it writes to all
// parts that are mapped and not just the highest priority
// See http://melonds.kuribo64.net/board/thread.php?pid=3974#3974
// so we need to iterate through all parts and write to all mapped here
unsigned int destPartSetting = ((addr >> 14) & (NWRAMMask[0][0] << 2)) | 0x80;
for (int page = 0; page < 4; page++)
{
unsigned int bankInfo = (MBK[0][0 + (page / 4)] >> ((page % 4) * 8)) & 0xff;
if (bankInfo != destPartSetting)
continue;
u8* ptr = &NWRAM_A[page * 0x10000];
*(u8*)&ptr[addr & 0xFFFF] = val;
#ifdef JIT_ENABLED
ARMJIT::CheckAndInvalidate<0, ARMJIT_Memory::memregion_NewSharedWRAM_A>(addr);
#endif
}
return;
}
if (addr >= NWRAMStart[0][1] && addr < NWRAMEnd[0][1])
{
// Write to a bank is special, as it writes to all
// parts that are mapped and not just the highest priority
// See http://melonds.kuribo64.net/board/thread.php?pid=3974#3974
// so we need to iterate through all parts and write to all mapped here
unsigned int destPartSetting = ((addr >> 13) & (NWRAMMask[0][1] << 2)) | 0x80;
for (int page = 0; page < 8; page++)
{
unsigned int bankInfo = (MBK[0][1 + (page / 4)] >> ((page % 4) * 8)) & 0xff;
if (bankInfo != destPartSetting)
continue;
u8* ptr = &NWRAM_B[page * 0x8000];
*(u8*)&ptr[addr & 0x7FFF] = val;
#ifdef JIT_ENABLED
ARMJIT::CheckAndInvalidate<0, ARMJIT_Memory::memregion_NewSharedWRAM_B>(addr);
#endif
}
return;
}
if (addr >= NWRAMStart[0][2] && addr < NWRAMEnd[0][2])
{
// Write to a bank is special, as it writes to all
// parts that are mapped and not just the highest priority
// See http://melonds.kuribo64.net/board/thread.php?pid=3974#3974
// so we need to iterate through all parts and write to all mapped here
unsigned int destPartSetting = ((addr >> 13) & (NWRAMMask[0][2] << 2)) | 0x80;
for (int page = 0; page < 8; page++)
{
unsigned int bankInfo = (MBK[0][3 + (page / 4)] >> ((page % 4) * 8)) & 0xff;
if (bankInfo != destPartSetting)
continue;
u8* ptr = &NWRAM_C[page * 0x8000];
*(u8*)&ptr[addr & 0x7FFF] = val;
#ifdef JIT_ENABLED
ARMJIT::CheckAndInvalidate<0, ARMJIT_Memory::memregion_NewSharedWRAM_C>(addr);
#endif
}
return;
}
}
return NDS::ARM9Write8(addr, val);
2019-06-15 11:09:11 +00:00
case 0x04000000:
ARM9IOWrite8(addr, val);
return;
case 0x06000000:
if (!(SCFG_EXT[0] & (1<<13))) return;
#ifdef JIT_ENABLED
ARMJIT::CheckAndInvalidate<0, ARMJIT_Memory::memregion_VRAM>(addr);
#endif
switch (addr & 0x00E00000)
{
case 0x00000000: GPU::WriteVRAM_ABG<u8>(addr, val); return;
case 0x00200000: GPU::WriteVRAM_BBG<u8>(addr, val); return;
case 0x00400000: GPU::WriteVRAM_AOBJ<u8>(addr, val); return;
case 0x00600000: GPU::WriteVRAM_BOBJ<u8>(addr, val); return;
default: GPU::WriteVRAM_LCDC<u8>(addr, val); return;
}
case 0x08000000:
case 0x09000000:
case 0x0A000000:
return;
case 0x0C000000:
#ifdef JIT_ENABLED
ARMJIT::CheckAndInvalidate<0, ARMJIT_Memory::memregion_MainRAM>(addr);
#endif
*(u8*)&NDS::MainRAM[addr & NDS::MainRAMMask] = val;
return;
2019-06-15 11:09:11 +00:00
}
return NDS::ARM9Write8(addr, val);
}
void ARM9Write16(u32 addr, u16 val)
{
addr &= ~0x1;
2019-06-15 11:09:11 +00:00
switch (addr & 0xFF000000)
{
case 0x03000000:
if (SCFG_EXT[0] & (1 << 25))
{
if (addr >= NWRAMStart[0][0] && addr < NWRAMEnd[0][0])
{
// Write to a bank is special, as it writes to all
// parts that are mapped and not just the highest priority
// See http://melonds.kuribo64.net/board/thread.php?pid=3974#3974
// so we need to iterate through all parts and write to all mapped here
unsigned int destPartSetting = ((addr >> 14) & (NWRAMMask[0][0] << 2)) | 0x80;
for (int page = 0; page < 4; page++)
{
unsigned int bankInfo = (MBK[0][0 + (page / 4)] >> ((page % 4) * 8)) & 0xff;
if (bankInfo != destPartSetting)
continue;
u8* ptr = &NWRAM_A[page * 0x10000];
*(u16*)&ptr[addr & 0xFFFF] = val;
#ifdef JIT_ENABLED
ARMJIT::CheckAndInvalidate<0, ARMJIT_Memory::memregion_NewSharedWRAM_A>(addr);
#endif
}
return;
}
if (addr >= NWRAMStart[0][1] && addr < NWRAMEnd[0][1])
{
// Write to a bank is special, as it writes to all
// parts that are mapped and not just the highest priority
// See http://melonds.kuribo64.net/board/thread.php?pid=3974#3974
// so we need to iterate through all parts and write to all mapped here
unsigned int destPartSetting = ((addr >> 13) & (NWRAMMask[0][1] << 2)) | 0x80;
for (int page = 0; page < 8; page++)
{
unsigned int bankInfo = (MBK[0][1 + (page / 4)] >> ((page % 4) * 8)) & 0xff;
if (bankInfo != destPartSetting)
continue;
u8* ptr = &NWRAM_B[page * 0x8000];
*(u16*)&ptr[addr & 0x7FFF] = val;
#ifdef JIT_ENABLED
ARMJIT::CheckAndInvalidate<0, ARMJIT_Memory::memregion_NewSharedWRAM_B>(addr);
#endif
}
return;
}
if (addr >= NWRAMStart[0][2] && addr < NWRAMEnd[0][2])
{
// Write to a bank is special, as it writes to all
// parts that are mapped and not just the highest priority
// See http://melonds.kuribo64.net/board/thread.php?pid=3974#3974
// so we need to iterate through all parts and write to all mapped here
unsigned int destPartSetting = ((addr >> 13) & (NWRAMMask[0][2] << 2)) | 0x80;
for (int page = 0; page < 8; page++)
{
unsigned int bankInfo = (MBK[0][3 + (page / 4)] >> ((page % 4) * 8)) & 0xff;
if (bankInfo != destPartSetting)
continue;
u8* ptr = &NWRAM_C[page * 0x8000];
*(u16*)&ptr[addr & 0x7FFF] = val;
#ifdef JIT_ENABLED
ARMJIT::CheckAndInvalidate<0, ARMJIT_Memory::memregion_NewSharedWRAM_C>(addr);
#endif
}
return;
}
}
return NDS::ARM9Write16(addr, val);
2019-06-15 11:09:11 +00:00
case 0x04000000:
ARM9IOWrite16(addr, val);
return;
case 0x08000000:
case 0x09000000:
case 0x0A000000:
return;
case 0x0C000000:
#ifdef JIT_ENABLED
ARMJIT::CheckAndInvalidate<0, ARMJIT_Memory::memregion_MainRAM>(addr);
#endif
*(u16*)&NDS::MainRAM[addr & NDS::MainRAMMask] = val;
return;
2019-06-15 11:09:11 +00:00
}
return NDS::ARM9Write16(addr, val);
}
void ARM9Write32(u32 addr, u32 val)
{
addr &= ~0x3;
2019-06-15 11:09:11 +00:00
switch (addr & 0xFF000000)
{
case 0x03000000:
if (SCFG_EXT[0] & (1 << 25))
{
if (addr >= NWRAMStart[0][0] && addr < NWRAMEnd[0][0])
{
// Write to a bank is special, as it writes to all
// parts that are mapped and not just the highest priority
// See http://melonds.kuribo64.net/board/thread.php?pid=3974#3974
// so we need to iterate through all parts and write to all mapped here
unsigned int destPartSetting = ((addr >> 14) & (NWRAMMask[0][0] << 2)) | 0x80;
for (int page = 0; page < 4; page++)
{
unsigned int bankInfo = (MBK[0][0 + (page / 4)] >> ((page % 4) * 8)) & 0xff;
if (bankInfo != destPartSetting)
continue;
u8* ptr = &NWRAM_A[page * 0x10000];
*(u32*)&ptr[addr & 0xFFFF] = val;
#ifdef JIT_ENABLED
ARMJIT::CheckAndInvalidate<0, ARMJIT_Memory::memregion_NewSharedWRAM_A>(addr);
#endif
}
return;
}
if (addr >= NWRAMStart[0][1] && addr < NWRAMEnd[0][1])
{
// Write to a bank is special, as it writes to all
// parts that are mapped and not just the highest priority
// See http://melonds.kuribo64.net/board/thread.php?pid=3974#3974
// so we need to iterate through all parts and write to all mapped here
unsigned int destPartSetting = ((addr >> 13) & (NWRAMMask[0][1] << 2)) | 0x80;
for (int page = 0; page < 8; page++)
{
unsigned int bankInfo = (MBK[0][1 + (page / 4)] >> ((page % 4) * 8)) & 0xff;
if (bankInfo != destPartSetting)
continue;
u8* ptr = &NWRAM_B[page * 0x8000];
*(u32*)&ptr[addr & 0x7FFF] = val;
#ifdef JIT_ENABLED
ARMJIT::CheckAndInvalidate<0, ARMJIT_Memory::memregion_NewSharedWRAM_B>(addr);
#endif
}
return;
}
if (addr >= NWRAMStart[0][2] && addr < NWRAMEnd[0][2])
{
// Write to a bank is special, as it writes to all
// parts that are mapped and not just the highest priority
// See http://melonds.kuribo64.net/board/thread.php?pid=3974#3974
// so we need to iterate through all parts and write to all mapped here
unsigned int destPartSetting = ((addr >> 13) & (NWRAMMask[0][2] << 2)) | 0x80;
for (int page = 0; page < 8; page++)
{
unsigned int bankInfo = (MBK[0][3 + (page / 4)] >> ((page % 4) * 8)) & 0xff;
if (bankInfo != destPartSetting)
continue;
u8* ptr = &NWRAM_C[page * 0x8000];
*(u32*)&ptr[addr & 0x7FFF] = val;
#ifdef JIT_ENABLED
ARMJIT::CheckAndInvalidate<0, ARMJIT_Memory::memregion_NewSharedWRAM_C>(addr);
#endif
}
return;
}
}
return NDS::ARM9Write32(addr, val);
2019-06-15 11:09:11 +00:00
case 0x04000000:
ARM9IOWrite32(addr, val);
return;
case 0x08000000:
case 0x09000000:
case 0x0A000000:
return;
case 0x0C000000:
#ifdef JIT_ENABLED
ARMJIT::CheckAndInvalidate<0, ARMJIT_Memory::memregion_MainRAM>(addr);
#endif
*(u32*)&NDS::MainRAM[addr & NDS::MainRAMMask] = val;
return;
2019-06-15 11:09:11 +00:00
}
return NDS::ARM9Write32(addr, val);
}
bool ARM9GetMemRegion(u32 addr, bool write, NDS::MemRegion* region)
{
switch (addr & 0xFF000000)
{
case 0x02000000:
case 0x0C000000:
2019-06-15 11:09:11 +00:00
region->Mem = NDS::MainRAM;
region->Mask = NDS::MainRAMMask;
2019-06-15 11:09:11 +00:00
return true;
}
if ((addr & 0xFFFF0000) == 0xFFFF0000 && !write)
{
if (SCFG_BIOS & (1<<1))
{
if (addr >= 0xFFFF1000)
{
region->Mem = NULL;
return false;
}
region->Mem = NDS::ARM9BIOS;
region->Mask = 0xFFF;
}
else
{
region->Mem = ARM9iBIOS;
region->Mask = 0xFFFF;
}
2019-06-15 11:09:11 +00:00
return true;
}
region->Mem = NULL;
return false;
}
u8 ARM7Read8(u32 addr)
2020-06-01 22:36:07 +00:00
{
if ((addr < 0x00010000) && (!(SCFG_BIOS & (1<<9))))
{
if ((addr >= 0x00008000) && (SCFG_BIOS & (1<<8)))
return 0xFF;
if (NDS::ARM7->R[15] >= 0x00010000)
return 0xFF;
if (addr < NDS::ARM7BIOSProt && NDS::ARM7->R[15] >= NDS::ARM7BIOSProt)
return 0xFF;
return *(u8*)&ARM7iBIOS[addr & 0xFFFF];
}
2019-06-15 11:09:11 +00:00
switch (addr & 0xFF800000)
{
case 0x03000000:
case 0x03800000:
if (SCFG_EXT[1] & (1 << 25))
{
if (addr >= NWRAMStart[1][0] && addr < NWRAMEnd[1][0])
{
u8* ptr = NWRAMMap_A[1][(addr >> 16) & NWRAMMask[1][0]];
return ptr ? *(u8*)&ptr[addr & 0xFFFF] : 0;
}
if (addr >= NWRAMStart[1][1] && addr < NWRAMEnd[1][1])
{
u8* ptr = NWRAMMap_B[1][(addr >> 15) & NWRAMMask[1][1]];
return ptr ? *(u8*)&ptr[addr & 0x7FFF] : 0;
}
if (addr >= NWRAMStart[1][2] && addr < NWRAMEnd[1][2])
{
u8* ptr = NWRAMMap_C[1][(addr >> 15) & NWRAMMask[1][2]];
return ptr ? *(u8*)&ptr[addr & 0x7FFF] : 0;
}
}
return NDS::ARM7Read8(addr);
2019-06-15 11:09:11 +00:00
case 0x04000000:
return ARM7IORead8(addr);
case 0x08000000:
case 0x08800000:
case 0x09000000:
case 0x09800000:
case 0x0A000000:
case 0x0A800000:
return (NDS::ExMemCnt[0] & (1<<7)) ? 0xFF : 0;
case 0x0C000000:
case 0x0C800000:
return *(u8*)&NDS::MainRAM[addr & NDS::MainRAMMask];
2019-06-15 11:09:11 +00:00
}
return NDS::ARM7Read8(addr);
}
u16 ARM7Read16(u32 addr)
2020-06-01 22:36:07 +00:00
{
addr &= ~0x1;
if ((addr < 0x00010000) && (!(SCFG_BIOS & (1<<9))))
{
if ((addr >= 0x00008000) && (SCFG_BIOS & (1<<8)))
return 0xFFFF;
if (NDS::ARM7->R[15] >= 0x00010000)
return 0xFFFF;
if (addr < NDS::ARM7BIOSProt && NDS::ARM7->R[15] >= NDS::ARM7BIOSProt)
return 0xFFFF;
return *(u16*)&ARM7iBIOS[addr & 0xFFFF];
}
2019-06-15 11:09:11 +00:00
switch (addr & 0xFF800000)
{
case 0x03000000:
case 0x03800000:
if (SCFG_EXT[1] & (1 << 25))
{
if (addr >= NWRAMStart[1][0] && addr < NWRAMEnd[1][0])
{
u8* ptr = NWRAMMap_A[1][(addr >> 16) & NWRAMMask[1][0]];
return ptr ? *(u16*)&ptr[addr & 0xFFFF] : 0;
}
if (addr >= NWRAMStart[1][1] && addr < NWRAMEnd[1][1])
{
u8* ptr = NWRAMMap_B[1][(addr >> 15) & NWRAMMask[1][1]];
return ptr ? *(u16*)&ptr[addr & 0x7FFF] : 0;
}
if (addr >= NWRAMStart[1][2] && addr < NWRAMEnd[1][2])
{
u8* ptr = NWRAMMap_C[1][(addr >> 15) & NWRAMMask[1][2]];
return ptr ? *(u16*)&ptr[addr & 0x7FFF] : 0;
}
}
return NDS::ARM7Read16(addr);
2019-06-15 11:09:11 +00:00
case 0x04000000:
return ARM7IORead16(addr);
case 0x08000000:
case 0x08800000:
case 0x09000000:
case 0x09800000:
case 0x0A000000:
case 0x0A800000:
return (NDS::ExMemCnt[0] & (1<<7)) ? 0xFFFF : 0;
case 0x0C000000:
case 0x0C800000:
return *(u16*)&NDS::MainRAM[addr & NDS::MainRAMMask];
2019-06-15 11:09:11 +00:00
}
return NDS::ARM7Read16(addr);
}
u32 ARM7Read32(u32 addr)
2020-06-01 22:36:07 +00:00
{
addr &= ~0x3;
if ((addr < 0x00010000) && (!(SCFG_BIOS & (1<<9))))
{
if ((addr >= 0x00008000) && (SCFG_BIOS & (1<<8)))
return 0xFFFFFFFF;
if (NDS::ARM7->R[15] >= 0x00010000)
return 0xFFFFFFFF;
if (addr < NDS::ARM7BIOSProt && NDS::ARM7->R[15] >= NDS::ARM7BIOSProt)
return 0xFFFFFFFF;
return *(u32*)&ARM7iBIOS[addr & 0xFFFF];
}
2019-06-15 11:09:11 +00:00
switch (addr & 0xFF800000)
{
case 0x03000000:
case 0x03800000:
if (SCFG_EXT[1] & (1 << 25))
{
if (addr >= NWRAMStart[1][0] && addr < NWRAMEnd[1][0])
{
u8* ptr = NWRAMMap_A[1][(addr >> 16) & NWRAMMask[1][0]];
return ptr ? *(u32*)&ptr[addr & 0xFFFF] : 0;
}
if (addr >= NWRAMStart[1][1] && addr < NWRAMEnd[1][1])
{
u8* ptr = NWRAMMap_B[1][(addr >> 15) & NWRAMMask[1][1]];
return ptr ? *(u32*)&ptr[addr & 0x7FFF] : 0;
}
if (addr >= NWRAMStart[1][2] && addr < NWRAMEnd[1][2])
{
u8* ptr = NWRAMMap_C[1][(addr >> 15) & NWRAMMask[1][2]];
return ptr ? *(u32*)&ptr[addr & 0x7FFF] : 0;
}
}
return NDS::ARM7Read32(addr);
2019-06-15 11:09:11 +00:00
case 0x04000000:
return ARM7IORead32(addr);
case 0x08000000:
case 0x08800000:
case 0x09000000:
case 0x09800000:
case 0x0A000000:
case 0x0A800000:
return (NDS::ExMemCnt[0] & (1<<7)) ? 0xFFFFFFFF : 0;
case 0x0C000000:
case 0x0C800000:
return *(u32*)&NDS::MainRAM[addr & NDS::MainRAMMask];
2019-06-15 11:09:11 +00:00
}
return NDS::ARM7Read32(addr);
}
void ARM7Write8(u32 addr, u8 val)
{
2019-06-15 11:09:11 +00:00
switch (addr & 0xFF800000)
{
case 0x03000000:
case 0x03800000:
if (SCFG_EXT[1] & (1 << 25))
{
if (addr >= NWRAMStart[1][0] && addr < NWRAMEnd[1][0])
{
// Write to a bank is special, as it writes to all
// parts that are mapped and not just the highest priority
// See http://melonds.kuribo64.net/board/thread.php?pid=3974#3974
// so we need to iterate through all parts and write to all mapped here
unsigned int destPartSetting = ((addr >> 14) & (NWRAMMask[1][0] << 2)) | 0x81;
for (int page = 0; page < 4; page++)
{
unsigned int bankInfo = (MBK[1][0 + (page / 4)] >> ((page % 4) * 8)) & 0xff;
if (bankInfo != destPartSetting)
continue;
u8* ptr = &NWRAM_A[page * 0x10000];
*(u8*)&ptr[addr & 0xFFFF] = val;
#ifdef JIT_ENABLED
ARMJIT::CheckAndInvalidate<1, ARMJIT_Memory::memregion_NewSharedWRAM_A>(addr);
#endif
}
return;
}
if (addr >= NWRAMStart[1][1] && addr < NWRAMEnd[1][1])
{
// Write to a bank is special, as it writes to all
// parts that are mapped and not just the highest priority
// See http://melonds.kuribo64.net/board/thread.php?pid=3974#3974
// so we need to iterate through all parts and write to all mapped here
unsigned int destPartSetting = ((addr >> 13) & (NWRAMMask[1][1] << 2)) | 0x81;
for (int page = 0; page < 8; page++)
{
unsigned int bankInfo = (MBK[1][1 + (page / 4)] >> ((page % 4) * 8)) & 0xff;
if (bankInfo != destPartSetting)
continue;
u8* ptr = &NWRAM_B[page * 0x8000];
*(u8*)&ptr[addr & 0x7FFF] = val;
#ifdef JIT_ENABLED
ARMJIT::CheckAndInvalidate<1, ARMJIT_Memory::memregion_NewSharedWRAM_B>(addr);
#endif
}
return;
}
if (addr >= NWRAMStart[1][2] && addr < NWRAMEnd[1][2])
{
// Write to a bank is special, as it writes to all
// parts that are mapped and not just the highest priority
// See http://melonds.kuribo64.net/board/thread.php?pid=3974#3974
// so we need to iterate through all parts and write to all mapped here
unsigned int destPartSetting = ((addr >> 13) & (NWRAMMask[1][2] << 2)) | 0x81;
for (int page = 0; page < 8; page++)
{
unsigned int bankInfo = (MBK[1][3 + (page / 4)] >> ((page % 4) * 8)) & 0xff;
if (bankInfo != destPartSetting)
continue;
u8* ptr = &NWRAM_C[page * 0x8000];
*(u8*)&ptr[addr & 0x7FFF] = val;
#ifdef JIT_ENABLED
ARMJIT::CheckAndInvalidate<1, ARMJIT_Memory::memregion_NewSharedWRAM_C>(addr);
#endif
}
return;
}
}
return NDS::ARM7Write8(addr, val);
2019-06-15 11:09:11 +00:00
case 0x04000000:
ARM7IOWrite8(addr, val);
return;
case 0x08000000:
case 0x08800000:
case 0x09000000:
case 0x09800000:
case 0x0A000000:
case 0x0A800000:
return;
case 0x0C000000:
case 0x0C800000:
#ifdef JIT_ENABLED
ARMJIT::CheckAndInvalidate<1, ARMJIT_Memory::memregion_MainRAM>(addr);
#endif
*(u8*)&NDS::MainRAM[addr & NDS::MainRAMMask] = val;
return;
2019-06-15 11:09:11 +00:00
}
return NDS::ARM7Write8(addr, val);
}
void ARM7Write16(u32 addr, u16 val)
{
addr &= ~0x1;
2019-06-15 11:09:11 +00:00
switch (addr & 0xFF800000)
{
case 0x03000000:
case 0x03800000:
if (SCFG_EXT[1] & (1 << 25))
{
if (addr >= NWRAMStart[1][0] && addr < NWRAMEnd[1][0])
{
// Write to a bank is special, as it writes to all
// parts that are mapped and not just the highest priority
// See http://melonds.kuribo64.net/board/thread.php?pid=3974#3974
// so we need to iterate through all parts and write to all mapped here
unsigned int destPartSetting = ((addr >> 14) & (NWRAMMask[1][0] << 2)) | 0x81;
for (int page = 0; page < 4; page++)
{
unsigned int bankInfo = (MBK[1][0 + (page / 4)] >> ((page % 4) * 8)) & 0xff;
if (bankInfo != destPartSetting)
continue;
u8* ptr = &NWRAM_A[page * 0x10000];
*(u16*)&ptr[addr & 0xFFFF] = val;
#ifdef JIT_ENABLED
ARMJIT::CheckAndInvalidate<1, ARMJIT_Memory::memregion_NewSharedWRAM_A>(addr);
#endif
}
return;
}
if (addr >= NWRAMStart[1][1] && addr < NWRAMEnd[1][1])
{
// Write to a bank is special, as it writes to all
// parts that are mapped and not just the highest priority
// See http://melonds.kuribo64.net/board/thread.php?pid=3974#3974
// so we need to iterate through all parts and write to all mapped here
unsigned int destPartSetting = ((addr >> 13) & (NWRAMMask[1][1] << 2)) | 0x81;
for (int page = 0; page < 8; page++)
{
unsigned int bankInfo = (MBK[1][1 + (page / 4)] >> ((page % 4) * 8)) & 0xff;
if (bankInfo != destPartSetting)
continue;
u8* ptr = &NWRAM_B[page * 0x8000];
*(u16*)&ptr[addr & 0x7FFF] = val;
#ifdef JIT_ENABLED
ARMJIT::CheckAndInvalidate<1, ARMJIT_Memory::memregion_NewSharedWRAM_B>(addr);
#endif
}
return;
}
if (addr >= NWRAMStart[1][2] && addr < NWRAMEnd[1][2])
{
// Write to a bank is special, as it writes to all
// parts that are mapped and not just the highest priority
// See http://melonds.kuribo64.net/board/thread.php?pid=3974#3974
// so we need to iterate through all parts and write to all mapped here
unsigned int destPartSetting = ((addr >> 13) & (NWRAMMask[1][2] << 2)) | 0x81;
for (int page = 0; page < 8; page++)
{
unsigned int bankInfo = (MBK[1][3 + (page / 4)] >> ((page % 4) * 8)) & 0xff;
if (bankInfo != destPartSetting)
continue;
u8* ptr = &NWRAM_C[page * 0x8000];
*(u16*)&ptr[addr & 0x7FFF] = val;
#ifdef JIT_ENABLED
ARMJIT::CheckAndInvalidate<1, ARMJIT_Memory::memregion_NewSharedWRAM_C>(addr);
#endif
}
return;
}
}
return NDS::ARM7Write16(addr, val);
2019-06-15 11:09:11 +00:00
case 0x04000000:
ARM7IOWrite16(addr, val);
return;
case 0x08000000:
case 0x08800000:
case 0x09000000:
case 0x09800000:
case 0x0A000000:
case 0x0A800000:
return;
case 0x0C000000:
case 0x0C800000:
#ifdef JIT_ENABLED
ARMJIT::CheckAndInvalidate<1, ARMJIT_Memory::memregion_MainRAM>(addr);
#endif
*(u16*)&NDS::MainRAM[addr & NDS::MainRAMMask] = val;
return;
2019-06-15 11:09:11 +00:00
}
return NDS::ARM7Write16(addr, val);
}
void ARM7Write32(u32 addr, u32 val)
{
addr &= ~0x3;
2019-06-15 11:09:11 +00:00
switch (addr & 0xFF800000)
{
case 0x03000000:
case 0x03800000:
if (SCFG_EXT[1] & (1 << 25))
{
if (addr >= NWRAMStart[1][0] && addr < NWRAMEnd[1][0])
{
// Write to a bank is special, as it writes to all
// parts that are mapped and not just the highest priority
// See http://melonds.kuribo64.net/board/thread.php?pid=3974#3974
// so we need to iterate through all parts and write to all mapped here
unsigned int destPartSetting = ((addr >> 14) & (NWRAMMask[1][0] << 2)) | 0x81;
for (int page = 0; page < 4; page++)
{
unsigned int bankInfo = (MBK[1][0 + (page / 4)] >> ((page % 4) * 8)) & 0xff;
if (bankInfo != destPartSetting)
continue;
u8* ptr = &NWRAM_A[page * 0x10000];
*(u32*)&ptr[addr & 0xFFFF] = val;
#ifdef JIT_ENABLED
ARMJIT::CheckAndInvalidate<1, ARMJIT_Memory::memregion_NewSharedWRAM_A>(addr);
#endif
}
return;
}
if (addr >= NWRAMStart[1][1] && addr < NWRAMEnd[1][1])
{
// Write to a bank is special, as it writes to all
// parts that are mapped and not just the highest priority
// See http://melonds.kuribo64.net/board/thread.php?pid=3974#3974
// so we need to iterate through all parts and write to all mapped here
unsigned int destPartSetting = ((addr >> 13) & (NWRAMMask[1][1] << 2)) | 0x81;
for (int page = 0; page < 8; page++)
{
unsigned int bankInfo = (MBK[1][1 + (page / 4)] >> ((page % 4) * 8)) & 0xff;
if (bankInfo != destPartSetting)
continue;
u8* ptr = &NWRAM_B[page * 0x8000];
*(u32*)&ptr[addr & 0x7FFF] = val;
#ifdef JIT_ENABLED
ARMJIT::CheckAndInvalidate<1, ARMJIT_Memory::memregion_NewSharedWRAM_B>(addr);
#endif
}
return;
}
if (addr >= NWRAMStart[1][2] && addr < NWRAMEnd[1][2])
{
// Write to a bank is special, as it writes to all
// parts that are mapped and not just the highest priority
// See http://melonds.kuribo64.net/board/thread.php?pid=3974#3974
// so we need to iterate through all parts and write to all mapped here
unsigned int destPartSetting = ((addr >> 13) & (NWRAMMask[1][2] << 2)) | 0x81;
for (int page = 0; page < 8; page++)
{
unsigned int bankInfo = (MBK[1][3 + (page / 4)] >> ((page % 4) * 8)) & 0xff;
if (bankInfo != destPartSetting)
continue;
u8* ptr = &NWRAM_C[page * 0x8000];
*(u32*)&ptr[addr & 0x7FFF] = val;
#ifdef JIT_ENABLED
ARMJIT::CheckAndInvalidate<1, ARMJIT_Memory::memregion_NewSharedWRAM_C>(addr);
#endif
}
return;
}
}
return NDS::ARM7Write32(addr, val);
2019-06-15 11:09:11 +00:00
case 0x04000000:
ARM7IOWrite32(addr, val);
return;
case 0x08000000:
case 0x08800000:
case 0x09000000:
case 0x09800000:
case 0x0A000000:
case 0x0A800000:
return;
case 0x0C000000:
case 0x0C800000:
#ifdef JIT_ENABLED
ARMJIT::CheckAndInvalidate<1, ARMJIT_Memory::memregion_MainRAM>(addr);
#endif
*(u32*)&NDS::MainRAM[addr & NDS::MainRAMMask] = val;
return;
2019-06-15 11:09:11 +00:00
}
return NDS::ARM7Write32(addr, val);
}
bool ARM7GetMemRegion(u32 addr, bool write, NDS::MemRegion* region)
{
switch (addr & 0xFF800000)
{
case 0x02000000:
case 0x02800000:
case 0x0C000000:
case 0x0C800000:
2019-06-15 11:09:11 +00:00
region->Mem = NDS::MainRAM;
region->Mask = NDS::MainRAMMask;
2019-06-15 11:09:11 +00:00
return true;
}
// BIOS. ARM7 PC has to be within range.
/*if (addr < 0x00010000 && !write)
{
if (NDS::ARM7->R[15] < 0x00010000 && (addr >= NDS::ARM7BIOSProt || NDS::ARM7->R[15] < NDS::ARM7BIOSProt))
{
region->Mem = NDS::ARM7BIOS;
region->Mask = 0xFFFF;
return true;
}
}*/
region->Mem = NULL;
return false;
}
#define CASE_READ8_16BIT(addr, val) \
case (addr): return (val) & 0xFF; \
case (addr+1): return (val) >> 8;
#define CASE_READ8_32BIT(addr, val) \
case (addr): return (val) & 0xFF; \
case (addr+1): return ((val) >> 8) & 0xFF; \
case (addr+2): return ((val) >> 16) & 0xFF; \
case (addr+3): return (val) >> 24;
2019-06-19 15:16:44 +00:00
#define CASE_READ16_32BIT(addr, val) \
case (addr): return (val) & 0xFFFF; \
case (addr+2): return (val) >> 16;
2019-06-15 11:09:11 +00:00
u8 ARM9IORead8(u32 addr)
{
switch (addr)
{
case 0x04004000: return SCFG_BIOS & 0xFF;
case 0x04004006: return SCFG_RST & 0xFF;
2019-06-19 15:16:44 +00:00
CASE_READ8_32BIT(0x04004040, MBK[0][0])
CASE_READ8_32BIT(0x04004044, MBK[0][1])
CASE_READ8_32BIT(0x04004048, MBK[0][2])
CASE_READ8_32BIT(0x0400404C, MBK[0][3])
CASE_READ8_32BIT(0x04004050, MBK[0][4])
CASE_READ8_32BIT(0x04004054, MBK[0][5])
CASE_READ8_32BIT(0x04004058, MBK[0][6])
CASE_READ8_32BIT(0x0400405C, MBK[0][7])
CASE_READ8_32BIT(0x04004060, MBK[0][8])
2019-06-15 11:09:11 +00:00
}
2020-09-08 18:19:37 +00:00
if ((addr & 0xFFFFFF00) == 0x04004200)
{
if (!(SCFG_EXT[0] & (1<<17))) return 0;
return DSi_CamModule::Read8(addr);
2020-09-08 18:19:37 +00:00
}
if ((addr & 0xFFFFFF00) == 0x04004300)
{
if (!(SCFG_EXT[0] & (1<<18))) return 0;
return DSi_DSP::Read8(addr);
}
2019-06-15 11:09:11 +00:00
return NDS::ARM9IORead8(addr);
}
2020-06-01 22:36:07 +00:00
2019-06-15 11:09:11 +00:00
u16 ARM9IORead16(u32 addr)
{
switch (addr)
{
case 0x04004000: return SCFG_BIOS & 0xFF;
case 0x04004004: return SCFG_Clock9;
case 0x04004006: return SCFG_RST;
2019-06-20 21:34:32 +00:00
case 0x04004010: return SCFG_MC & 0xFFFF;
2019-06-19 15:16:44 +00:00
CASE_READ16_32BIT(0x04004040, MBK[0][0])
CASE_READ16_32BIT(0x04004044, MBK[0][1])
CASE_READ16_32BIT(0x04004048, MBK[0][2])
CASE_READ16_32BIT(0x0400404C, MBK[0][3])
CASE_READ16_32BIT(0x04004050, MBK[0][4])
CASE_READ16_32BIT(0x04004054, MBK[0][5])
CASE_READ16_32BIT(0x04004058, MBK[0][6])
CASE_READ16_32BIT(0x0400405C, MBK[0][7])
CASE_READ16_32BIT(0x04004060, MBK[0][8])
2019-06-15 11:09:11 +00:00
}
2020-09-08 18:19:37 +00:00
if ((addr & 0xFFFFFF00) == 0x04004200)
{
if (!(SCFG_EXT[0] & (1<<17))) return 0;
return DSi_CamModule::Read16(addr);
2020-09-08 18:19:37 +00:00
}
if ((addr & 0xFFFFFF00) == 0x04004300)
{
if (!(SCFG_EXT[0] & (1<<18))) return 0;
return DSi_DSP::Read16(addr);
}
2019-06-15 11:09:11 +00:00
return NDS::ARM9IORead16(addr);
}
u32 ARM9IORead32(u32 addr)
{
switch (addr)
{
case 0x04004000: return SCFG_BIOS & 0xFF;
case 0x04004004: return SCFG_Clock9 | ((u32)SCFG_RST << 16);
case 0x04004008: return SCFG_EXT[0];
2019-06-20 21:34:32 +00:00
case 0x04004010: return SCFG_MC & 0xFFFF;
2019-06-19 15:16:44 +00:00
case 0x04004040: return MBK[0][0];
case 0x04004044: return MBK[0][1];
case 0x04004048: return MBK[0][2];
case 0x0400404C: return MBK[0][3];
case 0x04004050: return MBK[0][4];
case 0x04004054: return MBK[0][5];
case 0x04004058: return MBK[0][6];
case 0x0400405C: return MBK[0][7];
case 0x04004060: return MBK[0][8];
case 0x04004100: return NDMACnt[0];
case 0x04004104: return NDMAs[0]->SrcAddr;
case 0x04004108: return NDMAs[0]->DstAddr;
case 0x0400410C: return NDMAs[0]->TotalLength;
case 0x04004110: return NDMAs[0]->BlockLength;
case 0x04004114: return NDMAs[0]->SubblockTimer;
case 0x04004118: return NDMAs[0]->FillData;
case 0x0400411C: return NDMAs[0]->Cnt;
case 0x04004120: return NDMAs[1]->SrcAddr;
case 0x04004124: return NDMAs[1]->DstAddr;
case 0x04004128: return NDMAs[1]->TotalLength;
case 0x0400412C: return NDMAs[1]->BlockLength;
case 0x04004130: return NDMAs[1]->SubblockTimer;
case 0x04004134: return NDMAs[1]->FillData;
case 0x04004138: return NDMAs[1]->Cnt;
case 0x0400413C: return NDMAs[2]->SrcAddr;
case 0x04004140: return NDMAs[2]->DstAddr;
case 0x04004144: return NDMAs[2]->TotalLength;
case 0x04004148: return NDMAs[2]->BlockLength;
case 0x0400414C: return NDMAs[2]->SubblockTimer;
case 0x04004150: return NDMAs[2]->FillData;
case 0x04004154: return NDMAs[2]->Cnt;
case 0x04004158: return NDMAs[3]->SrcAddr;
case 0x0400415C: return NDMAs[3]->DstAddr;
case 0x04004160: return NDMAs[3]->TotalLength;
case 0x04004164: return NDMAs[3]->BlockLength;
case 0x04004168: return NDMAs[3]->SubblockTimer;
case 0x0400416C: return NDMAs[3]->FillData;
case 0x04004170: return NDMAs[3]->Cnt;
2019-06-15 11:09:11 +00:00
}
2020-09-08 18:19:37 +00:00
if ((addr & 0xFFFFFF00) == 0x04004200)
{
if (!(SCFG_EXT[0] & (1<<17))) return 0;
return DSi_CamModule::Read32(addr);
2020-09-08 18:19:37 +00:00
}
if ((addr & 0xFFFFFF00) == 0x04004300)
{
if (!(SCFG_EXT[0] & (1<<18))) return 0;
return DSi_DSP::Read32(addr);
}
2019-06-15 11:09:11 +00:00
return NDS::ARM9IORead32(addr);
}
void ARM9IOWrite8(u32 addr, u8 val)
{
switch (addr)
{
case 0x04000301:
// TODO: OPTIONAL PERFORMANCE HACK
// the DSi ARM9 BIOS has a bug where the IRQ wait function attempts to use (ARM7-only) HALTCNT
// effectively causing it to wait in a busy loop.
// for better DSi performance, we can implement an actual IRQ wait here.
// in practice this would only matter when running DS software in DSi mode (ie already a hack).
// DSi software does not use the BIOS IRQ wait function.
//if (val == 0x80 && NDS::ARM9->R[15] == 0xFFFF0268) NDS::ARM9->Halt(1);
return;
case 0x04004006:
if (!(SCFG_EXT[0] & (1 << 31))) /* no access to SCFG Registers if disabled*/
return;
SCFG_RST = (SCFG_RST & 0xFF00) | val;
DSi_DSP::SetRstLine(val & 1);
return;
case 0x04004040:
case 0x04004041:
case 0x04004042:
case 0x04004043:
if (!(SCFG_EXT[0] & (1 << 31))) /* no access to SCFG Registers if disabled*/
return;
MapNWRAM_A(addr & 3, val);
return;
case 0x04004044:
case 0x04004045:
case 0x04004046:
case 0x04004047:
case 0x04004048:
case 0x04004049:
case 0x0400404A:
case 0x0400404B:
if (!(SCFG_EXT[0] & (1 << 31))) /* no access to SCFG Registers if disabled*/
return;
MapNWRAM_B((addr - 0x04) & 7, val);
return;
case 0x0400404C:
case 0x0400404D:
case 0x0400404E:
case 0x0400404F:
case 0x04004050:
case 0x04004051:
case 0x04004052:
case 0x04004053:
if (!(SCFG_EXT[0] & (1 << 31))) /* no access to SCFG Registers if disabled*/
return;
MapNWRAM_C((addr-0x0C) & 7, val);
return;
2019-06-15 11:09:11 +00:00
}
2020-09-08 18:19:37 +00:00
if ((addr & 0xFFFFFF00) == 0x04004200)
{
if (!(SCFG_EXT[0] & (1<<17))) return;
return DSi_CamModule::Write8(addr, val);
2020-09-08 18:19:37 +00:00
}
if ((addr & 0xFFFFFF00) == 0x04004300)
{
if (!(SCFG_EXT[0] & (1<<18))) return;
return DSi_DSP::Write8(addr, val);
}
2019-06-15 11:09:11 +00:00
return NDS::ARM9IOWrite8(addr, val);
}
void ARM9IOWrite16(u32 addr, u16 val)
{
switch (addr)
{
case 0x04004004:
if (!(SCFG_EXT[0] & (1 << 31))) /* no access to SCFG Registers if disabled*/
return;
Set_SCFG_Clock9(val);
return;
case 0x04004006:
if (!(SCFG_EXT[0] & (1 << 31))) /* no access to SCFG Registers if disabled*/
return;
SCFG_RST = val;
DSi_DSP::SetRstLine(val & 1);
return;
case 0x04004040:
case 0x04004042:
if (!(SCFG_EXT[0] & (1 << 31))) /* no access to SCFG Registers if disabled*/
return;
MapNWRAM_A((addr & 2), val & 0xFF);
MapNWRAM_A((addr & 2) + 1, val >> 8);
return;
case 0x04004044:
case 0x04004046:
case 0x04004048:
case 0x0400404A:
if (!(SCFG_EXT[0] & (1 << 31))) /* no access to SCFG Registers if disabled*/
return;
MapNWRAM_B(((addr - 0x04) & 6), val & 0xFF);
MapNWRAM_B(((addr - 0x04) & 6) + 1, val >> 8);
return;
case 0x0400404C:
case 0x0400404E:
case 0x04004050:
case 0x04004052:
if (!(SCFG_EXT[0] & (1 << 31))) /* no access to SCFG Registers if disabled*/
return;
MapNWRAM_C(((addr - 0x0C) & 6), val & 0xFF);
MapNWRAM_C(((addr - 0x0C) & 6) + 1, val >> 8);
return;
2019-06-15 11:09:11 +00:00
}
2020-09-08 18:19:37 +00:00
if ((addr & 0xFFFFFF00) == 0x04004200)
{
if (!(SCFG_EXT[0] & (1<<17))) return;
return DSi_CamModule::Write16(addr, val);
2020-09-08 18:19:37 +00:00
}
if ((addr & 0xFFFFFF00) == 0x04004300)
{
if (!(SCFG_EXT[0] & (1<<18))) return;
return DSi_DSP::Write16(addr, val);
}
2019-06-15 11:09:11 +00:00
return NDS::ARM9IOWrite16(addr, val);
}
void ARM9IOWrite32(u32 addr, u32 val)
{
switch (addr)
{
case 0x04004004:
if (!(SCFG_EXT[0] & (1 << 31))) /* no access to SCFG Registers if disabled*/
return;
Set_SCFG_Clock9(val & 0xFFFF);
SCFG_RST = val >> 16;
DSi_DSP::SetRstLine((val >> 16) & 1);
break;
case 0x04004008:
{
if (!(SCFG_EXT[0] & (1 << 31))) /* no access to SCFG Registers if disabled*/
return;
u32 oldram = (SCFG_EXT[0] >> 14) & 0x3;
u32 newram = (val >> 14) & 0x3;
SCFG_EXT[0] &= ~0x8007F19F;
SCFG_EXT[0] |= (val & 0x8007F19F);
SCFG_EXT[1] &= ~0x0000F080;
SCFG_EXT[1] |= (val & 0x0000F080);
Log(LogLevel::Debug, "SCFG_EXT = %08X / %08X (val9 %08X)\n", SCFG_EXT[0], SCFG_EXT[1], val);
/*switch ((SCFG_EXT[0] >> 14) & 0x3)
{
case 0:
case 1:
NDS::MainRAMMask = 0x3FFFFF;
printf("RAM: 4MB\n");
//baziderp=true;
break;
case 2:
case 3: // TODO: debug console w/ 32MB?
NDS::MainRAMMask = 0xFFFFFF;
printf("RAM: 16MB\n");
break;
}*/
// HAX!!
// a change to the RAM size setting is supposed to apply immediately (it does so on hardware)
// however, doing so will cause DS-mode app startup to break, because the change happens while the ARM7
// is still busy clearing/relocating shit
//if (newram != oldram)
// NDS::ScheduleEvent(NDS::Event_DSi_RAMSizeChange, false, 512*512*512, ApplyNewRAMSize, newram);
Log(LogLevel::Debug, "from %08X, ARM7 %08X, %08X\n", NDS::GetPC(0), NDS::GetPC(1), NDS::ARM7->R[1]);
}
return;
case 0x04004040:
if (!(SCFG_EXT[0] & (1 << 31))) /* no access to SCFG Registers if disabled*/
return;
MapNWRAM_A(0, val & 0xFF);
MapNWRAM_A(1, (val >> 8) & 0xFF);
MapNWRAM_A(2, (val >> 16) & 0xFF);
MapNWRAM_A(3, val >> 24);
return;
case 0x04004044:
if (!(SCFG_EXT[0] & (1 << 31))) /* no access to SCFG Registers if disabled*/
return;
MapNWRAM_B(0, val & 0xFF);
MapNWRAM_B(1, (val >> 8) & 0xFF);
MapNWRAM_B(2, (val >> 16) & 0xFF);
MapNWRAM_B(3, val >> 24);
return;
case 0x04004048:
if (!(SCFG_EXT[0] & (1 << 31))) /* no access to SCFG Registers if disabled*/
return;
MapNWRAM_B(4, val & 0xFF);
MapNWRAM_B(5, (val >> 8) & 0xFF);
MapNWRAM_B(6, (val >> 16) & 0xFF);
MapNWRAM_B(7, val >> 24);
return;
case 0x0400404C:
if (!(SCFG_EXT[0] & (1 << 31))) /* no access to SCFG Registers if disabled*/
return;
MapNWRAM_C(0, val & 0xFF);
MapNWRAM_C(1, (val >> 8) & 0xFF);
MapNWRAM_C(2, (val >> 16) & 0xFF);
MapNWRAM_C(3, val >> 24);
return;
case 0x04004050:
if (!(SCFG_EXT[0] & (1 << 31))) /* no access to SCFG Registers if disabled*/
return;
MapNWRAM_C(4, val & 0xFF);
MapNWRAM_C(5, (val >> 8) & 0xFF);
MapNWRAM_C(6, (val >> 16) & 0xFF);
MapNWRAM_C(7, val >> 24);
return;
case 0x04004054:
if (!(SCFG_EXT[0] & (1 << 31))) /* no access to SCFG Registers if disabled*/
return;
MapNWRAMRange(0, 0, val);
return;
case 0x04004058:
if (!(SCFG_EXT[0] & (1 << 31))) /* no access to SCFG Registers if disabled*/
return;
MapNWRAMRange(0, 1, val);
return;
case 0x0400405C:
if (!(SCFG_EXT[0] & (1 << 31))) /* no access to SCFG Registers if disabled*/
return;
MapNWRAMRange(0, 2, val);
return;
2019-06-19 15:16:44 +00:00
case 0x04004100: NDMACnt[0] = val & 0x800F0000; return;
case 0x04004104: NDMAs[0]->SrcAddr = val & 0xFFFFFFFC; return;
case 0x04004108: NDMAs[0]->DstAddr = val & 0xFFFFFFFC; return;
case 0x0400410C: NDMAs[0]->TotalLength = val & 0x0FFFFFFF; return;
case 0x04004110: NDMAs[0]->BlockLength = val & 0x00FFFFFF; return;
case 0x04004114: NDMAs[0]->SubblockTimer = val & 0x0003FFFF; return;
case 0x04004118: NDMAs[0]->FillData = val; return;
case 0x0400411C: NDMAs[0]->WriteCnt(val); return;
case 0x04004120: NDMAs[1]->SrcAddr = val & 0xFFFFFFFC; return;
case 0x04004124: NDMAs[1]->DstAddr = val & 0xFFFFFFFC; return;
case 0x04004128: NDMAs[1]->TotalLength = val & 0x0FFFFFFF; return;
case 0x0400412C: NDMAs[1]->BlockLength = val & 0x00FFFFFF; return;
case 0x04004130: NDMAs[1]->SubblockTimer = val & 0x0003FFFF; return;
case 0x04004134: NDMAs[1]->FillData = val; return;
case 0x04004138: NDMAs[1]->WriteCnt(val); return;
case 0x0400413C: NDMAs[2]->SrcAddr = val & 0xFFFFFFFC; return;
case 0x04004140: NDMAs[2]->DstAddr = val & 0xFFFFFFFC; return;
case 0x04004144: NDMAs[2]->TotalLength = val & 0x0FFFFFFF; return;
case 0x04004148: NDMAs[2]->BlockLength = val & 0x00FFFFFF; return;
case 0x0400414C: NDMAs[2]->SubblockTimer = val & 0x0003FFFF; return;
case 0x04004150: NDMAs[2]->FillData = val; return;
case 0x04004154: NDMAs[2]->WriteCnt(val); return;
case 0x04004158: NDMAs[3]->SrcAddr = val & 0xFFFFFFFC; return;
case 0x0400415C: NDMAs[3]->DstAddr = val & 0xFFFFFFFC; return;
case 0x04004160: NDMAs[3]->TotalLength = val & 0x0FFFFFFF; return;
case 0x04004164: NDMAs[3]->BlockLength = val & 0x00FFFFFF; return;
case 0x04004168: NDMAs[3]->SubblockTimer = val & 0x0003FFFF; return;
case 0x0400416C: NDMAs[3]->FillData = val; return;
case 0x04004170: NDMAs[3]->WriteCnt(val); return;
2019-06-15 11:09:11 +00:00
}
2020-09-08 18:19:37 +00:00
if ((addr & 0xFFFFFF00) == 0x04004200)
{
if (!(SCFG_EXT[0] & (1<<17))) return;
return DSi_CamModule::Write32(addr, val);
2020-09-08 18:19:37 +00:00
}
if ((addr & 0xFFFFFF00) == 0x04004300)
{
if (!(SCFG_EXT[0] & (1<<18))) return;
return DSi_DSP::Write32(addr, val);
}
2019-06-15 11:09:11 +00:00
return NDS::ARM9IOWrite32(addr, val);
}
u8 ARM7IORead8(u32 addr)
{
2019-06-15 11:09:11 +00:00
switch (addr)
{
case 0x04004000:
return SCFG_BIOS & 0xFF;
case 0x04004001: return SCFG_BIOS >> 8;
case 0x04004002: return 0; // SCFG_ROMWE, always 0
2019-06-19 15:16:44 +00:00
CASE_READ8_32BIT(0x04004040, MBK[1][0])
CASE_READ8_32BIT(0x04004044, MBK[1][1])
CASE_READ8_32BIT(0x04004048, MBK[1][2])
CASE_READ8_32BIT(0x0400404C, MBK[1][3])
CASE_READ8_32BIT(0x04004050, MBK[1][4])
CASE_READ8_32BIT(0x04004054, MBK[1][5])
CASE_READ8_32BIT(0x04004058, MBK[1][6])
CASE_READ8_32BIT(0x0400405C, MBK[1][7])
CASE_READ8_32BIT(0x04004060, MBK[1][8])
2019-06-15 14:58:02 +00:00
case 0x04004500: return DSi_I2C::ReadData();
2019-06-20 01:19:51 +00:00
case 0x04004501: return DSi_I2C::Cnt;
2019-06-19 14:56:58 +00:00
case 0x04004D00: if (SCFG_BIOS & (1<<10)) return 0; return NANDImage->GetConsoleID() & 0xFF;
case 0x04004D01: if (SCFG_BIOS & (1<<10)) return 0; return (NANDImage->GetConsoleID() >> 8) & 0xFF;
case 0x04004D02: if (SCFG_BIOS & (1<<10)) return 0; return (NANDImage->GetConsoleID() >> 16) & 0xFF;
case 0x04004D03: if (SCFG_BIOS & (1<<10)) return 0; return (NANDImage->GetConsoleID() >> 24) & 0xFF;
case 0x04004D04: if (SCFG_BIOS & (1<<10)) return 0; return (NANDImage->GetConsoleID() >> 32) & 0xFF;
case 0x04004D05: if (SCFG_BIOS & (1<<10)) return 0; return (NANDImage->GetConsoleID() >> 40) & 0xFF;
case 0x04004D06: if (SCFG_BIOS & (1<<10)) return 0; return (NANDImage->GetConsoleID() >> 48) & 0xFF;
case 0x04004D07: if (SCFG_BIOS & (1<<10)) return 0; return NANDImage->GetConsoleID() >> 56;
2019-06-19 14:56:58 +00:00
case 0x04004D08: return 0;
case 0x4004700: return DSi_DSP::SNDExCnt;
case 0x4004701: return DSi_DSP::SNDExCnt >> 8;
case 0x04004C00: return GPIO_Data;
case 0x04004C01: return GPIO_Dir;
case 0x04004C02: return GPIO_IEdgeSel;
case 0x04004C03: return GPIO_IE;
case 0x04004C04: return GPIO_WiFi & 0xff;
case 0x04004C05: return GPIO_WiFi >> 8;
2019-06-15 11:09:11 +00:00
}
return NDS::ARM7IORead8(addr);
}
u16 ARM7IORead16(u32 addr)
{
switch (addr)
{
2019-06-16 13:05:18 +00:00
case 0x04000218: return NDS::IE2;
case 0x0400021C: return NDS::IF2;
case 0x04004000: return SCFG_BIOS;
case 0x04004002: return 0; // SCFG_ROMWE, always 0
case 0x04004004: return SCFG_Clock7;
case 0x04004006: return 0; // JTAG register
2019-06-20 21:34:32 +00:00
case 0x04004010: return SCFG_MC & 0xFFFF;
2019-06-19 14:56:58 +00:00
2019-06-19 15:16:44 +00:00
CASE_READ16_32BIT(0x04004040, MBK[1][0])
CASE_READ16_32BIT(0x04004044, MBK[1][1])
CASE_READ16_32BIT(0x04004048, MBK[1][2])
CASE_READ16_32BIT(0x0400404C, MBK[1][3])
CASE_READ16_32BIT(0x04004050, MBK[1][4])
CASE_READ16_32BIT(0x04004054, MBK[1][5])
CASE_READ16_32BIT(0x04004058, MBK[1][6])
CASE_READ16_32BIT(0x0400405C, MBK[1][7])
CASE_READ16_32BIT(0x04004060, MBK[1][8])
case 0x04004D00: if (SCFG_BIOS & (1<<10)) return 0; return NANDImage->GetConsoleID() & 0xFFFF;
case 0x04004D02: if (SCFG_BIOS & (1<<10)) return 0; return (NANDImage->GetConsoleID() >> 16) & 0xFFFF;
case 0x04004D04: if (SCFG_BIOS & (1<<10)) return 0; return (NANDImage->GetConsoleID() >> 32) & 0xFFFF;
case 0x04004D06: if (SCFG_BIOS & (1<<10)) return 0; return NANDImage->GetConsoleID() >> 48;
2019-06-19 14:56:58 +00:00
case 0x04004D08: return 0;
case 0x4004700: return DSi_DSP::SNDExCnt;
case 0x04004C00: return GPIO_Data | ((u16)GPIO_Dir << 8);
case 0x04004C02: return GPIO_IEdgeSel | ((u16)GPIO_IE << 8);
case 0x04004C04: return GPIO_WiFi;
2019-06-15 11:09:11 +00:00
}
2019-06-16 15:01:49 +00:00
if (addr >= 0x04004800 && addr < 0x04004A00)
{
return SDMMC->Read(addr);
}
if (addr >= 0x04004A00 && addr < 0x04004C00)
{
return SDIO->Read(addr);
}
2019-06-15 11:09:11 +00:00
return NDS::ARM7IORead16(addr);
}
u32 ARM7IORead32(u32 addr)
{
switch (addr)
{
2019-06-16 13:05:18 +00:00
case 0x04000218: return NDS::IE2;
case 0x0400021C: return NDS::IF2;
case 0x04004000: return SCFG_BIOS;
case 0x04004008: return SCFG_EXT[1];
2019-06-20 21:34:32 +00:00
case 0x04004010: return SCFG_MC;
2019-06-19 15:16:44 +00:00
case 0x04004040: return MBK[1][0];
case 0x04004044: return MBK[1][1];
case 0x04004048: return MBK[1][2];
case 0x0400404C: return MBK[1][3];
case 0x04004050: return MBK[1][4];
case 0x04004054: return MBK[1][5];
case 0x04004058: return MBK[1][6];
case 0x0400405C: return MBK[1][7];
case 0x04004060: return MBK[1][8];
case 0x04004100: return NDMACnt[1];
case 0x04004104: return NDMAs[4]->SrcAddr;
case 0x04004108: return NDMAs[4]->DstAddr;
case 0x0400410C: return NDMAs[4]->TotalLength;
case 0x04004110: return NDMAs[4]->BlockLength;
case 0x04004114: return NDMAs[4]->SubblockTimer;
case 0x04004118: return NDMAs[4]->FillData;
case 0x0400411C: return NDMAs[4]->Cnt;
case 0x04004120: return NDMAs[5]->SrcAddr;
case 0x04004124: return NDMAs[5]->DstAddr;
case 0x04004128: return NDMAs[5]->TotalLength;
case 0x0400412C: return NDMAs[5]->BlockLength;
case 0x04004130: return NDMAs[5]->SubblockTimer;
case 0x04004134: return NDMAs[5]->FillData;
case 0x04004138: return NDMAs[5]->Cnt;
case 0x0400413C: return NDMAs[6]->SrcAddr;
case 0x04004140: return NDMAs[6]->DstAddr;
case 0x04004144: return NDMAs[6]->TotalLength;
case 0x04004148: return NDMAs[6]->BlockLength;
case 0x0400414C: return NDMAs[6]->SubblockTimer;
case 0x04004150: return NDMAs[6]->FillData;
case 0x04004154: return NDMAs[6]->Cnt;
case 0x04004158: return NDMAs[7]->SrcAddr;
case 0x0400415C: return NDMAs[7]->DstAddr;
case 0x04004160: return NDMAs[7]->TotalLength;
case 0x04004164: return NDMAs[7]->BlockLength;
case 0x04004168: return NDMAs[7]->SubblockTimer;
case 0x0400416C: return NDMAs[7]->FillData;
case 0x04004170: return NDMAs[7]->Cnt;
case 0x04004400: return DSi_AES::ReadCnt();
case 0x0400440C: return DSi_AES::ReadOutputFIFO();
2019-06-19 14:56:58 +00:00
case 0x04004D00: if (SCFG_BIOS & (1<<10)) return 0; return NANDImage->GetConsoleID() & 0xFFFFFFFF;
case 0x04004D04: if (SCFG_BIOS & (1<<10)) return 0; return NANDImage->GetConsoleID() >> 32;
2019-06-19 14:56:58 +00:00
case 0x04004D08: return 0;
case 0x4004700:
Log(LogLevel::Debug, "32-Bit SNDExCnt read? %08X\n", NDS::ARM7->R[15]);
return DSi_DSP::SNDExCnt;
2019-06-15 11:09:11 +00:00
}
2019-06-16 15:01:49 +00:00
if (addr >= 0x04004800 && addr < 0x04004A00)
{
if (addr == 0x0400490C) return SDMMC->ReadFIFO32();
2019-06-16 15:01:49 +00:00
return SDMMC->Read(addr) | (SDMMC->Read(addr+2) << 16);
}
if (addr >= 0x04004A00 && addr < 0x04004C00)
{
if (addr == 0x04004B0C) return SDIO->ReadFIFO32();
2019-06-16 15:01:49 +00:00
return SDIO->Read(addr) | (SDIO->Read(addr+2) << 16);
}
2019-06-15 11:09:11 +00:00
return NDS::ARM7IORead32(addr);
}
void ARM7IOWrite8(u32 addr, u8 val)
{
switch (addr)
{
case 0x04004000:
if (!(SCFG_EXT[1] & (1 << 31))) /* no access to SCFG Registers if disabled*/
return;
SCFG_BIOS |= (val & 0x03);
return;
case 0x04004001:
if (!(SCFG_EXT[1] & (1 << 31))) /* no access to SCFG Registers if disabled*/
return;
SCFG_BIOS |= ((val & 0x07) << 8);
return;
case 0x04004002:
// SCFG_ROMWE. ignored, as it always reads as 0
return;
case 0x04004060:
case 0x04004061:
case 0x04004062:
case 0x04004063:
{
if (!(SCFG_EXT[1] & (1 << 31))) /* no access to SCFG Registers if disabled*/
return;
u32 tmp = MBK[0][8];
tmp &= ~(0xff << ((addr % 4) * 8));
tmp |= (val << ((addr % 4) * 8));
MBK[0][8] = tmp & 0x00FFFF0F;
MBK[1][8] = MBK[0][8];
return;
}
2019-06-15 14:58:02 +00:00
case 0x04004500: DSi_I2C::WriteData(val); return;
case 0x04004501: DSi_I2C::WriteCnt(val); return;
case 0x4004700:
DSi_DSP::WriteSNDExCnt((u16)val | (DSi_DSP::SNDExCnt & 0xFF00));
return;
case 0x4004701:
DSi_DSP::WriteSNDExCnt(((u16)val << 8) | (DSi_DSP::SNDExCnt & 0x00FF));
return;
case 0x04004C00:
GPIO_Data = val;
return;
case 0x04004C01:
GPIO_Dir = val;
return;
case 0x04004C02:
GPIO_IEdgeSel = val;
return;
case 0x04004C03:
GPIO_IE = val;
return;
case 0x04004C04:
GPIO_WiFi = val | (GPIO_WiFi & 0xff00);
return;
2019-06-15 11:09:11 +00:00
}
if (addr >= 0x04004420 && addr < 0x04004430)
{
u32 shift = (addr&3)*8;
addr -= 0x04004420;
addr &= ~3;
DSi_AES::WriteIV(addr, (u32)val << shift, 0xFF << shift);
return;
}
if (addr >= 0x04004430 && addr < 0x04004440)
{
u32 shift = (addr&3)*8;
addr -= 0x04004430;
addr &= ~3;
DSi_AES::WriteMAC(addr, (u32)val << shift, 0xFF << shift);
return;
}
if (addr >= 0x04004440 && addr < 0x04004500)
{
u32 shift = (addr&3)*8;
addr -= 0x04004440;
addr &= ~3;
int n = 0;
while (addr >= 0x30) { addr -= 0x30; n++; }
switch (addr >> 4)
{
case 0: DSi_AES::WriteKeyNormal(n, addr&0xF, (u32)val << shift, 0xFF << shift); return;
case 1: DSi_AES::WriteKeyX(n, addr&0xF, (u32)val << shift, 0xFF << shift); return;
case 2: DSi_AES::WriteKeyY(n, addr&0xF, (u32)val << shift, 0xFF << shift); return;
}
}
2019-06-15 11:09:11 +00:00
return NDS::ARM7IOWrite8(addr, val);
}
void ARM7IOWrite16(u32 addr, u16 val)
{
switch (addr)
{
case 0x04000218: NDS::IE2 = (val & 0x7FF7); NDS::UpdateIRQ(1); return;
case 0x0400021C: NDS::IF2 &= ~(val & 0x7FF7); NDS::UpdateIRQ(1); return;
2019-06-20 21:34:32 +00:00
case 0x04004000:
if (!(SCFG_EXT[1] & (1 << 31))) /* no access to SCFG Registers if disabled*/
return;
SCFG_BIOS |= (val & 0x0703);
return;
case 0x04004002:
// SCFG_ROMWE. ignored, as it always reads as 0
return;
case 0x04004004:
if (!(SCFG_EXT[1] & (1 << 31))) /* no access to SCFG Registers if disabled*/
return;
SCFG_Clock7 = val & 0x0187;
return;
case 0x04004010:
if (!(SCFG_EXT[1] & (1 << 31))) /* no access to SCFG Registers if disabled*/
return;
Set_SCFG_MC((SCFG_MC & 0xFFFF0000) | val);
return;
case 0x04004060:
case 0x04004062:
if (!(SCFG_EXT[1] & (1 << 31))) /* no access to SCFG Registers if disabled*/
return;
{
u32 tmp = MBK[0][8];
tmp &= ~(0xffff << ((addr % 4) * 8));
tmp |= (val << ((addr % 4) * 8));
MBK[0][8] = tmp & 0x00FFFF0F;
MBK[1][8] = MBK[0][8];
}
return;
case 0x04004406:
DSi_AES::WriteBlkCnt(val<<16);
return;
case 0x4004700:
DSi_DSP::WriteSNDExCnt(val);
return;
case 0x04004C00:
GPIO_Data = val & 0xff;
GPIO_Dir = val >> 8;
return;
case 0x04004C02:
GPIO_IEdgeSel = val & 0xff;
GPIO_IE = val >> 8;
return;
case 0x04004C04:
GPIO_WiFi = val;
return;
2019-06-15 11:09:11 +00:00
}
if (addr >= 0x04004420 && addr < 0x04004430)
{
u32 shift = (addr&1)*16;
addr -= 0x04004420;
addr &= ~1;
DSi_AES::WriteIV(addr, (u32)val << shift, 0xFFFF << shift);
return;
}
if (addr >= 0x04004430 && addr < 0x04004440)
{
u32 shift = (addr&1)*16;
addr -= 0x04004430;
addr &= ~1;
DSi_AES::WriteMAC(addr, (u32)val << shift, 0xFFFF << shift);
return;
}
if (addr >= 0x04004440 && addr < 0x04004500)
{
u32 shift = (addr&1)*16;
addr -= 0x04004440;
addr &= ~1;
int n = 0;
while (addr >= 0x30) { addr -= 0x30; n++; }
switch (addr >> 4)
{
case 0: DSi_AES::WriteKeyNormal(n, addr&0xF, (u32)val << shift, 0xFFFF << shift); return;
case 1: DSi_AES::WriteKeyX(n, addr&0xF, (u32)val << shift, 0xFFFF << shift); return;
case 2: DSi_AES::WriteKeyY(n, addr&0xF, (u32)val << shift, 0xFFFF << shift); return;
}
}
2019-06-16 15:01:49 +00:00
if (addr >= 0x04004800 && addr < 0x04004A00)
{
SDMMC->Write(addr, val);
return;
}
if (addr >= 0x04004A00 && addr < 0x04004C00)
{
SDIO->Write(addr, val);
return;
}
2019-06-15 11:09:11 +00:00
return NDS::ARM7IOWrite16(addr, val);
}
void ARM7IOWrite32(u32 addr, u32 val)
{
switch (addr)
{
2019-06-16 13:05:18 +00:00
case 0x04000218: NDS::IE2 = (val & 0x7FF7); NDS::UpdateIRQ(1); return;
case 0x0400021C: NDS::IF2 &= ~(val & 0x7FF7); NDS::UpdateIRQ(1); return;
case 0x04004000:
if (!(SCFG_EXT[1] & (1 << 31))) /* no access to SCFG Registers if disabled*/
return;
SCFG_BIOS |= (val & 0x0703);
return;
case 0x04004008:
if (!(SCFG_EXT[1] & (1 << 31))) /* no access to SCFG Registers if disabled*/
return;
SCFG_EXT[0] &= ~0x03000000;
SCFG_EXT[0] |= (val & 0x03000000);
SCFG_EXT[1] &= ~0x93FF0F07;
SCFG_EXT[1] |= (val & 0x93FF0F07);
Log(LogLevel::Debug, "SCFG_EXT = %08X / %08X (val7 %08X)\n", SCFG_EXT[0], SCFG_EXT[1], val);
return;
2019-06-20 21:34:32 +00:00
case 0x04004010:
if (!(SCFG_EXT[1] & (1 << 31))) /* no access to SCFG Registers if disabled*/
return;
Set_SCFG_MC(val);
2019-06-20 21:34:32 +00:00
return;
case 0x04004054:
if (!(SCFG_EXT[1] & (1 << 31))) /* no access to SCFG Registers if disabled*/
return;
MapNWRAMRange(1, 0, val);
return;
case 0x04004058:
if (!(SCFG_EXT[1] & (1 << 31))) /* no access to SCFG Registers if disabled*/
return;
MapNWRAMRange(1, 1, val);
return;
case 0x0400405C:
if (!(SCFG_EXT[1] & (1 << 31))) /* no access to SCFG Registers if disabled*/
return;
MapNWRAMRange(1, 2, val);
return;
case 0x04004060:
if (!(SCFG_EXT[1] & (1 << 31))) /* no access to SCFG Registers if disabled*/
return;
val &= 0x00FFFF0F;
MBK[0][8] = val;
MBK[1][8] = val;
return;
2019-06-19 15:16:44 +00:00
case 0x04004100: NDMACnt[1] = val & 0x800F0000; return;
case 0x04004104: NDMAs[4]->SrcAddr = val & 0xFFFFFFFC; return;
case 0x04004108: NDMAs[4]->DstAddr = val & 0xFFFFFFFC; return;
case 0x0400410C: NDMAs[4]->TotalLength = val & 0x0FFFFFFF; return;
case 0x04004110: NDMAs[4]->BlockLength = val & 0x00FFFFFF; return;
case 0x04004114: NDMAs[4]->SubblockTimer = val & 0x0003FFFF; return;
case 0x04004118: NDMAs[4]->FillData = val; return;
case 0x0400411C: NDMAs[4]->WriteCnt(val); return;
case 0x04004120: NDMAs[5]->SrcAddr = val & 0xFFFFFFFC; return;
case 0x04004124: NDMAs[5]->DstAddr = val & 0xFFFFFFFC; return;
case 0x04004128: NDMAs[5]->TotalLength = val & 0x0FFFFFFF; return;
case 0x0400412C: NDMAs[5]->BlockLength = val & 0x00FFFFFF; return;
case 0x04004130: NDMAs[5]->SubblockTimer = val & 0x0003FFFF; return;
case 0x04004134: NDMAs[5]->FillData = val; return;
case 0x04004138: NDMAs[5]->WriteCnt(val); return;
case 0x0400413C: NDMAs[6]->SrcAddr = val & 0xFFFFFFFC; return;
case 0x04004140: NDMAs[6]->DstAddr = val & 0xFFFFFFFC; return;
case 0x04004144: NDMAs[6]->TotalLength = val & 0x0FFFFFFF; return;
case 0x04004148: NDMAs[6]->BlockLength = val & 0x00FFFFFF; return;
case 0x0400414C: NDMAs[6]->SubblockTimer = val & 0x0003FFFF; return;
case 0x04004150: NDMAs[6]->FillData = val; return;
case 0x04004154: NDMAs[6]->WriteCnt(val); return;
case 0x04004158: NDMAs[7]->SrcAddr = val & 0xFFFFFFFC; return;
case 0x0400415C: NDMAs[7]->DstAddr = val & 0xFFFFFFFC; return;
case 0x04004160: NDMAs[7]->TotalLength = val & 0x0FFFFFFF; return;
case 0x04004164: NDMAs[7]->BlockLength = val & 0x00FFFFFF; return;
case 0x04004168: NDMAs[7]->SubblockTimer = val & 0x0003FFFF; return;
case 0x0400416C: NDMAs[7]->FillData = val; return;
case 0x04004170: NDMAs[7]->WriteCnt(val); return;
case 0x04004400: DSi_AES::WriteCnt(val); return;
case 0x04004404: DSi_AES::WriteBlkCnt(val); return;
case 0x04004408: DSi_AES::WriteInputFIFO(val); return;
case 0x4004700:
Log(LogLevel::Debug, "32-Bit SNDExCnt write? %08X %08X\n", val, NDS::ARM7->R[15]);
DSi_DSP::WriteSNDExCnt(val);
return;
}
if (addr >= 0x04004420 && addr < 0x04004430)
{
addr -= 0x04004420;
DSi_AES::WriteIV(addr, val, 0xFFFFFFFF);
return;
}
if (addr >= 0x04004430 && addr < 0x04004440)
{
addr -= 0x04004430;
DSi_AES::WriteMAC(addr, val, 0xFFFFFFFF);
return;
}
if (addr >= 0x04004440 && addr < 0x04004500)
{
addr -= 0x04004440;
int n = 0;
while (addr >= 0x30) { addr -= 0x30; n++; }
switch (addr >> 4)
{
case 0: DSi_AES::WriteKeyNormal(n, addr&0xF, val, 0xFFFFFFFF); return;
case 1: DSi_AES::WriteKeyX(n, addr&0xF, val, 0xFFFFFFFF); return;
case 2: DSi_AES::WriteKeyY(n, addr&0xF, val, 0xFFFFFFFF); return;
}
2019-06-15 11:09:11 +00:00
}
2019-06-16 15:01:49 +00:00
if (addr >= 0x04004800 && addr < 0x04004A00)
{
if (addr == 0x0400490C) { SDMMC->WriteFIFO32(val); return; }
2019-06-16 15:01:49 +00:00
SDMMC->Write(addr, val & 0xFFFF);
SDMMC->Write(addr+2, val >> 16);
return;
}
if (addr >= 0x04004A00 && addr < 0x04004C00)
{
if (addr == 0x04004B0C) { SDIO->WriteFIFO32(val); return; }
2019-06-16 15:01:49 +00:00
SDIO->Write(addr, val & 0xFFFF);
SDIO->Write(addr+2, val >> 16);
return;
}
if (addr >= 0x04004300 && addr <= 0x04004400)
{
DSi_DSP::Write32(addr, val);
return;
}
2019-06-15 11:09:11 +00:00
return NDS::ARM7IOWrite32(addr, val);
}
2019-06-13 12:41:54 +00:00
}