We were doing quite a bit of unnecessary work within CMake to handle and
make sure the necessary libraries were copied over. That approach has
several downsides:
1. It's not possible to handle multi-configuration generators (like
Visual Studio) in an easy manner. The existing script would fail to
copy over the necessary libraries if one configuration was built, and
then another one was built.
2. If you have Qt already installed (properly) by the official binary,
the existing script would copy *all* dlls even if they weren't
necessary. This is pretty bad, since it can waste quite a bit of
space.
Instead, we can just delegate off to the official deployment application
bundled with Qt's libraries that determines what the necessary libraries
are and copies them over as necessary. This also means we can properly
support both release and debug binaries in the same directory, like how
the old handcrafted Visual Studio project files allowed.
Its sufficient to simply specify a debug postfix instead of using an
separate variable. What's nice about this approach is that it will
actually work :p
Previously the code wouldn't work for multi-configuration generators
like Visual Studio.
When the bluetooth adapter device is opened/closed by dolphin, the
kernel driver is automatically detached/reattached.
This enables transparent sharing of the same bluetooth wiimotes and
bluetooth adapters between the hosts system and the emulated one using
the same.
ImGui::Text() assumes that the incoming text is intended to be
formatted, but we don't actually use it to format anything. We can be
explicit by using the relevant function.
This also has a plus of not needing to go through the formatter itself,
but the gains from that are probably minimal.
Previously these functions were declared without the static specifier,
giving them external linkage, which isn't really ideal.
Instead, we can place these functions up by the relevant file-scope
variables and place them inside an anonymous namespace with said variables,
giving them internal linkage.
Avoids the use of the null pointer to represent an empty string.
Instead, we can simply pass an empty string_view instance. Using
std::string_view enforces this invariant at the API level.
Due to the lack of cast here, this will actually print out the ascii
value, rather than the character itself, due to promoting to integral
values. Instead, we can eliminate the use of character operands and just
print the value itself directly, given it's equivalent behavior with
less code.
Allows these arrays to be placed within the read-only segment (and
enforces the immutability in the code itself). While we're at it, we can
make use of std::array here.
Now that the std::map less-than comparitor is capable of being used with
heterogenous lookup, we're able to convert many of the querying
functions that took std::string references over to std::string_view.
Now these functions may be used without potentially allocating a
std::string instance unnecessarily.
Previously, when performing find() operations or indexing operations on
the section map, it would need to operate on a std::string key.
This means cases like:
map.find(some_string_view)
aren't usable, which kind of sucks, especially given for most cases, we
use regular string literals to perform operations in calling code.
However, since C++14, it's possible to use heterogenous lookup to avoid
needing to construct exact key types. In otherwords, we can perform the
above or use string literals without constructing a std::string instance
around them implicitly.
We simply need to specify a member type within our comparison struct
named is_transparent, to allow std::map to perform automatic type
deduction.
We also slightly alter the algorithm to an equivalent compatible with
std::string_view (which need not be null-terminated), as strcasecmp
requires null-terminated strings.
While we're at it, we can also provide a helper function to the struct
for comparing string equality rather than only less than. This allows
removing other usages of strcasecmp in other functions, allowing for the
transition of them to std::string_view.
fmt diverges from printf in that '.' as a precision specifier may only
be used for floating-point values (makes sense, given it's indicating
precision after the decimal point).
This fixes the problem where OBS game capture only grabs the region
inside an ImGui window whenever one is open, when using the OpenGL
backend. Shouldn't have any negative effects, as the scissor would've
been something completely arbitrary anyways.
This may affect other capture software that uses the same hooking
method, but I've only tested OBS.
In a few cases we needed to alter... less than ideal parameter types.
While u8 may have been OK with printf-style formatting, which promotes
most smaller types back to int, this won't work with fmt. fmt preserves
the type of the passed in arguments, meaning that u8, being an alias of
uint8_t (itself being an alias of unsigned char on all the platforms we
support), will print out as a character, not a numeric value.
As such, we amend some functions to operate on u32 values for two
reasons:
1. We actually want it to print out as a value
2. Arithmetic on unsigned types smaller than unsigned int will actually promote to an int,
not unsigned int. This is very non-obvious to some and makes for
error-prone code. < sizeof(int) types are great for storage, not so
much for performing unsigned arithmetic, despite the signedness of
the type.