This is the same extension that we all know and love but under a different name with some different requirements.
In regular OpenGL fashion, you can't just move a desktop OpenGL extension to OpenGL ES without ratifying a new extension, which is why this falls
under a EXT extension, which in turn causes it to have suffixes attached to their function names.
This is the first step in our way towards conquering all mobile GPUs that don't support desktop OpenGL, hopefully we also can add support for
buffer_storage to OpenGL ES as well so we can make full use of this extension.
This wasn't too much of a concern since we normally don't care about this feature set, but it is nice when testing on new devices and they don't
support the higher feature sets but want to run under software renderer.
The Mesa softpipe and PowerVR 5xx drivers don't support higher GL versions, but they shouldn't exit out just because they couldn't get a GL3 function
pointer that isn't even going to be used at that point.
This is pretty much a step backwards in our code. We used to use attributes in our PP shader system a long time ago but we changed it to attributeless
for code simplicity and cleanliness. This reimplements the attribute code path as an optional path to take in the case your system doesn't work with
attributeless rendering. In this case the only shipping drivers that we can know for sure supports attributeless rendering is the Nexus 5's v95 driver
that is included in the Android 5.0 image.
I hadn't planned on implementing a work around to get post processing working in these cases, but due to us force enabling the PP shader system at all
times it sort of went up on the priority list. We can't be having a supported platform black screening at all times can we?
Due to changes in how we render to the final framebuffer we no longer encounter this bug.
With the change to post processing being enabled at all times and no longer using glBlitFramebuffer, Qualcomm no longer has the chance to rotate our
framebuffer underneath of us.
This is good hygiene, and also happens to be required to build Dolphin
using Clang modules.
(Under this setup, each header file becomes a module, and each #include
is automatically translated to a module import. Recursive includes
still leak through (by default), but modules are compiled independently,
and can't depend on defines or types having previously been set up. The
main reason to retrofit it onto Dolphin is compilation performance - no
more textual includes whatsoever, rather than putting a few blessed
common headers into a PCH. Unfortunately, I found multiple Clang bugs
while trying to build Dolphin this way, so it's not ready yet, but I can
start with this prerequisite.)