The console appears to behave against standard IEEE754 specification
here, in particular around how NaNs are handled. NaNs appear to have no
effect on the result, and are treated the same as positive or negative
infinity, based on the sign bit.
However, when the result would be NaN (inf - inf, or (-inf) - (-inf)),
this results in a completely fogged color, or unfogged color
respectively. We handle this by returning a constant zero for the A
varaible, and positive or negative infinity for C depending on the sign
bits of the A and C registers. This ensures that no NaN value is passed
to the GPU in the first place, and that the result of the fog
calculation cannot be NaN.
Improve bookkeeping around formats. Hopefully make code less confusing.
- Rename TlutFormat -> TLUTFormat to follow conventions.
- Use enum classes to prevent using a Texture format where an EFB Copy format
is expected or vice-versa.
- Use common EFBCopyFormat names regardless of depth and YUV configurations.
It's a relatively big commit (less big with -w), but it's hard to test
any of this separately...
The basic problem is that in netplay or movies, the state of the CPU
must be deterministic, including when the game receives notification
that the GPU has processed FIFO data. Dual core mode notifies the game
whenever the GPU thread actually gets around to doing the work, so it
isn't deterministic. Single core mode is because it notifies the game
'instantly' (after processing the data synchronously), but it's too slow
for many systems and games.
My old dc-netplay branch worked as follows: everything worked as normal
except the state of the CP registers was a lie, and the CPU thread only
delivered results when idle detection triggered (waiting for the GPU if
they weren't ready at that point). Usually, a game is idle iff all the
work for the frame has been done, except for a small amount of work
depending on the GPU result, so neither the CPU or the GPU waiting on
the other affected performance much. However, it's possible that the
game could be waiting for some earlier interrupt, and any of several
games which, for whatever reason, never went into a detectable idle
(even when I tried to improve the detection) would never receive results
at all. (The current method should have better compatibility, but it
also has slightly higher overhead and breaks some other things, so I
want to reimplement this, hopefully with less impact on the code, in the
future.)
With this commit, the basic idea is that the CPU thread acts as if the
work has been done instantly, like single core mode, but actually hands
it off asynchronously to the GPU thread (after backing up some data that
the game might change in memory before it's actually done). Since the
work isn't done, any feedback from the GPU to the CPU, such as real
XFB/EFB copies (virtual are OK), EFB pokes, performance queries, etc. is
broken; but most games work with these options disabled, and there is no
need to try to detect what the CPU thread is doing.
Technically: when the flag g_use_deterministic_gpu_thread (currently
stuck on) is on, the CPU thread calls RunGpu like in single core mode.
This function synchronously copies the data from the FIFO to the
internal video buffer and updates the CP registers, interrupts, etc.
However, instead of the regular ReadDataFromFifo followed by running the
opcode decoder, it runs ReadDataFromFifoOnCPU ->
OpcodeDecoder_Preprocess, which relatively quickly scans through the
FIFO data, detects SetFinish calls etc., which are immediately fired,
and saves certain associated data from memory (e.g. display lists) in
AuxBuffers (a parallel stream to the main FIFO, which is a bit slow at
the moment), before handing the data off to the GPU thread to actually
render. That makes up the bulk of this commit.
In various circumstances, including the aforementioned EFB pokes and
performance queries as well as swap requests (i.e. the end of a frame -
we don't want the CPU potentially pumping out frames too quickly and the
GPU falling behind*), SyncGPU is called to wait for actual completion.
The overhead mainly comes from OpcodeDecoder_Preprocess (which is,
again, synchronous), as well as the actual copying.
Currently, display lists and such are escrowed from main memory even
though they usually won't change over the course of a frame, and
textures are not even though they might, resulting in a small chance of
graphical glitches. When the texture locking (i.e. fault on write) code
lands, I can make this all correct and maybe a little faster.
* This suggests an alternate determinism method of just delaying results
until a short time before the end of each frame. For all I know this
might mostly work - I haven't tried it - but if any significant work
hinges on the competion of render to texture etc., the frame will be
missed.
This is undefined behavior in C++, and a clang warning suggests it is
actually producing bad code as a result:
../Source/Core/VideoCommon/BPFunctions.cpp:164:45: warning: comparison of constant 4294967295 with expression of type 'PEControl::PixelFormat' is always false [-Wtautological-constant-out-of-range-compare]
if (new_format == old_format || old_format == (unsigned int)-1)
Let's talk a bit about this bug. 12nd oldest bug not fixed in Dolphin, it was a
lot of fun to debug and it kept me busy for a while :)
Shoutout to Nintendo for framework.map, without which this could have taken a
lot longer.
Basic debugging using apitrace shows that the heat effect is rendered in an
interesting way:
* An EFB copy texture is created, using the hardware scaler to divide the
texture resolution by two and that way create the blur effect.
* This texture is then warped using indirect texturing: a deformation map is
used to "move" the texture coordinates used to sample the framebuffer copy.
Pixel shader: http://pastie.org/private/25oe1pqn6s0h5yieks1jfw
Interestingly, when looking at apitrace, the deformation texture was only 4x4
pixels... weird. It also does not have any feature that you would expect from a
deformation map. Seeing how the heat effect glitches, this deformation texture
being wrong looks like a good candidate for the problem. Let's see how it's
loaded!
By NOPing random calls to GXSetTevIndirect, we find a call that when removed
breaks the effect completely. The parameters used for this call come from the
results of methods of JPAExTexShapeArc objects. 3 different objects go through
this code path, by breaking each one we can notice that the one "controlling"
the heat effect is the one at 0x81575b98.
Following the path of this object a bit more, we can see that it has a method
called "getIndTexId". When this is called, the returned texture ID is used to
index a map and get a JPATextureArc object stored at 0x81577bec.
Nice feature of JPATextureArc: they have a getName method. For this object, it
returns "AK_kagerouInd01". We can probably use that to see how this texture
should look like, by loading it "manually" from the Wind Waker DVD.
Unfortunately I don't know how to do that. Fortunately @Abahbob got me the
texture I wanted in less than 10min after I asked him on Twitter.
AK_kagerouInd01 is a 32x32 texture that really looks like a deformation map:
http://i.imgur.com/0TfZEVj.png . Fun fact: "kagerou" means "heat haze" in JP.
So apparently we're not using the right texture object when rendering! The
GXTexObj that maps to the JPATextureArc is at offset 0x81577bf0 and points to
data at 0x80ed0460, but we're loading texture data from 0x0039d860 instead.
I started to suspect the BP write that loads the texture parameters "did not
work" somehow. Logged that and yes: nothing gets loaded to texture stage 1! ...
but it turns out this is normal, the deformation map is loaded to texture stage
5 (hardcoded in the DOL). Wait, why is the TextureCache trying to load from
texture stage 1 then?!
Because someone sucked at hex.
Fixes issue 2338.