Given that this only contains functions from the VideoBackendBase class,
it makes more sense to move these to the relevant cpp file to keep them
all together.
This enables shaders to be compiled while the game is starting, instead
of blocking startup. If a shader is needed before it is compiled,
emulation will block.
This will generate one shader per copy format. For now, it is the same
shader with the colmat hard coded. So it should already improve the GPU
performance a bit, but a rewrite of the shader generator is suggested.
Half of the patch is done by linkmauve1:
VideoCommon: Reorganise the shader writes.
The D3D backend was always forcing Anisotropic filtering when that is enabled regardless of how the game chose to configure the texture filtering registers; this causes the same issues as "Force Filtering" without Anisotropy, such as causing game UI elements to no longer line up adjacent correctly. Historically, OpenGL's Anisotropy support has always worked "better" than D3D's due to seeming to not have this problem; unfortunately, OpenGL's Anisotropy specification only gives GL_LINEAR based filtering modes defined behavior, with only the mipmap setting being required to be considered. Some OpenGL implementations were implicitly disabling Anisotropy when the min/mag filters were set to GL_NEAREST, but this behavior is not required by the spec so cannot be relied on.
This pulls all the duplicate code from TextureDecoder_Generic /
TextureDecoder_x64 out and puts it in a common file. Out custom font
used for debugging the texture cache is also pulled out and put in a
common "sfont.inc" file. At some point we should also combine this font
with the other six binary fonts we ship.
This class loads all the common PP shader configuration options and passes those options through to a inherited class that OpenGL or D3D will have.
Makes it so all the common code for PP shaders is in VideoCommon instead of duplicating the code across each backend.