byuu says:
Merged Cydrak's r17c changes:
- BG affine mode added
- BG bitmap mode added
- OBJ affine mode added
- fixed IRQ bug in THUMB mode (fixed almost every game)
- timers added (broke almost every game, whee.)
Cydrak is absolutely amazingly awesome and patient. This really wouldn't
be happening without him.
Also fixed some things from my end, including greatly improved sprite
priorities, and a much better priority sorter. Mr. Driller looks a lot
better now.
byuu says:
Emulated GBC sound plus the new extensions to it.
I am kind of surprised by how little developers utilized the GBC audio
portion.
Mr. Driller now has sound effects, and Pinobee no Daibouken has BGM.
I still have yet to emulate the GBA extra sound channels and PWM. Need
to emulate timers and DMA 2 refresh mode before I can do that.
Also, I moved both GBC and GBA audio to use length = data; if(++length
== 0); rather than length = 64 - data; if(--length == 0); so that
I could return literal values for register reads.
I thought there was a good reason we used the latter version, but
I can't hear any audible difference even in GBC games, so oh well.
Lastly, I think the pattern[++offset] in the wave channel was a bug in
the DMG/GBC only. I really, really hope it doesn't apply to the GBA,
because that will make bank selection a serious pain in the ass.
byuu says:
Fixed the r15 mask per Cydrak.
Added DMA support (immediate + Vblank + Hblank + HDMA) with IRQ support.
Basically only missing FIFO reload mode for the APU on channel 2.
Added background linear renderer (tilemap mode.)
Added really inefficient pixel priority selector, so that all BGs+OBJ
could be visible onscreen at the same time.
As a result of the above:
* Mr. Driller is our first fully playable game
* Bakunetsu Dodge Ball Fighters is also fully playable
* Pinobee no Daibouken is also fully playable
Most games (15 of 16 tested) are now showing *something*, many things
look really really good in fact.
Absolutely essential missing components:
- APU
- CPU timers and their interrupts
- DMA FIFO mode
- OBJ affine mode
- BG affine mode
- BG bitmap mode
- PPU windows (BG and OBJ)
- PPU mosaic
- PPU blending modes
- SRAM / EEPROM (going to rely on a database, not heuristics. Homebrew
will require a manifest file.)
byuu says:
Added linear (eg non-affine) sprite rendering, 4bpp and 8bpp with hflip
and vflip. Nothing else.
You can now see the Nintendo logo and Gameboy text at the end of the BIOS.
It's a start =)
byuu says:
Fixed aforementioned issues.
[From a previous post:
- mul was using r(d) instead of r(n) for accumulate.
- mull didn't remove c/v clear.
- APU register mask was broken, so SOUNDBIAS was reading out wrong.
- APU was only mapping 0x088 and not 0x089 as well.
- Halfword reads in CPU+PPU+APU were all reading from the low address
each time.]
All CPU+PPU registers are now hooked up (not that they do anything.)
SOUNDBIAS for APU was hooked up, got tired of working on it for the rest :P
I recall from the GB APU that you can't just assign values for the APU
MMIO regs. They do odd reload things as well.
Also, was using MMIO read code like this:
return (
(flaga << 0)
|| (flagb << 1)
|| (flagc << 2)
);
Logical or doesn't work so well with building flags :P
Bad habit from how I split multiple conditionals across several lines.
So ... r14 is basically what r13 should have been yesterday, delaying my
schedule by yet another day :(
byuu says:
Contains all of Cydrak's fixes, sans PPU.
On the PPU front, I've hooked up 100% of read and write registers.
All three DISPSTAT IRQs (Vblank, Hblank, Vcoincidence) are connected now
as well.
Super Mario Advance now runs without *appearing* to crash, although it's
hard to tell since I have no video or sound :P
ARM Wrestler is known to run, as is the BIOS.
byuu says:
Enough to get through the BIOS and into cartridge ROM.
I am a bit annoyed that I was basically told that the GBA PPU wasn't
that bad. Sprites are a clusterfuck, easily worse than Mode7, docs don't
even begin to explain them in enough detail.
This is going to be fun.
byuu says:
Added all of the above fixes and changes. [A lot of individual fixes for
the ARM core from Cydrak - Ed.] Also new is pipeline_decode() to fetch
data, and IME/IE/IF support, and an ARM::processor.irqline flag that
triggers IRQs at 0x18. Only Vblank is hooked up, which is what SWI 4 was
waiting on previously.
I'm sure my interrupt support is horribly broken and wrong. I was never
able to really figure out IE/IF on the Game Boy, so there's no question
this is even worse.
It's now going crazy and writing 0 to IE forever now after the Vblank
IRQ triggers.
byuu says:
Changelog:
- fixed THUMB hi immediate reads (immediate * 4)
- cartridge is properly mirrored to 32MB (eg 12mbit repeats as
lo8+hi4+hi4+lo8+hi4+hi4) [so it's a bit slower than a standard memcpy
fill]
- added ARM - load/store halfword register offset
- added ARM - load/store halfword immediate offset
- added ARM - load signed halfword/byte register offset
- added ARM - load signed halfword/byte immediate offset
- added decode() function to make opcode bit testing a lot clearer
(didn't apply it to the debugger yet)
All ARMv4M and all THUMBv4 instructions should now be implemented.
Although I'm not sure if my implementations of the new instructions are
correct.
byuu says:
Split apart necdsp: core is now in processor/upd96050 (wish I had
a better name for it, but there's no family name that is maskable.)
I would like to support the uPD7720 in the core as well, just for
completeness' sake, but I'll have to modify the decoder to drop one bit
from each mode.
So ... I'll do that later. Worst part is even if I do, I won't be able
to test it :(
Added all of Cydrak's changes. I also simplified LDMIA/STMIA and
PUSH/POP by merging the outer loops.
Probably infinitesimally slower, but less code is nicer. Maybe GCC
optimization will expand it, who knows.
byuu says:
Added some more ARM opcodes, hooked up MMIO. Bind it with mmio[(addr
000-3ff)] = this; inside CPU/PPU/APU, goes to read(), write().
Also moved the Hitachi HG51B core to processor/, and split it apart from
the snes/chip/hitachidsp implementation.
This one actually worked really well. Very clean split between MMIO/DMA
and the processor core. I may move a more generic DMA function inside
the core, not sure yet.
I still believe the HG51B169 to be a variant of the HG51BS family, but
given they're meant to be incredibly flexible microcontrollers, it's
possible that each variant gets its own instruction set.
So, who knows. We'll worry about it if we ever find another HG51B DSP,
I guess.
GBA BIOS is constantly reading from 04000300, but it never writes. If
I return prng()&1, I can get it to proceed until it hits a bad opcode
(stc opcode, which the GBA lacks a coprocessor so ... bad codepath.)
Without it, it just reads that register forever and keeps resetting the
system, or something ...
I guess we're going to have to try and get ARMwrestler working, because
the BIOS seems to need too much emulation code to do anything at all.
There was a "v087r07pre" release that I unfortunately missed.
byuu says (about v087r07pre):
Creates the bsnes/processor folder. This has a shared ARM core there
which both the GBA and ST018 inherit.
There are going to be separate decoders, and revision-specific checks,
to support the differences between v3+.
In the future, I also want to move the other processor cores here:
- GBZ80 (GB, GBC)
- 65816 (SNES CPU, SA-1)
- NEC uPD (7725, 96050, maybe 7720 just for fun)
- Hitachi HG51B169
- SuperFX
- SPC700
- 65(C?)02
Basically, the GBA/ST018 forces my hand to start coding a bit more like
a multi-system emulator.
Right now, the ST018 is broken. Hence the pre. Apparently the GBA core
being used now has some bugs. So this'll be a nice way to stress-test
the GBA core a bit before we make it to ARMwrestler.
byuu says (about v087r07):
Both snes/chip/armdsp and gba/cpu use processor/arm now.
Fixed THUMB to execute the BL prefix and suffix separately. I can now
get the GBA BIOS stuck in some kind of infinite loop. Hooray ...
I guess?
byuu says:
I believe I've implemented every THUMB instruction now, although I'm
sure there are dozens of bugs in the implementation.
It seems that the last jump taken is ending up being off-by-two. It's
probably due to not masking/adjusting PC correctly at certain points.
I don't know if any other bugs are being hit prior to this or not.
I don't implement any I/O registers yet, and the BIOS seems to be poking
at a few of them along the way, so ... who knows.
I could also be reading the log wrong, but it looks to me like there's
some PSR setting the mode flag register to 0, which is supposed to be an
undefined behavior mode ... perhaps mrs has no effect on the m/t bits,
and it just affects the i/f bits?
byuu says:
Implemented all of the ARMv3 instructions, and the bx rm instruction as
well. Already hit THUMB mode right at the start of the BIOS, sigh.
Implemented the first THUMB instruction to get that rolling. Also tried
to support the S flag to LDM/STM, but not sure how successful I was.
byuu says:
GBA stuff re-added. Only thing missing that was there before is the ARM
branch opcode.
Since we're going to be staring at it for a very long time, I added
a more interesting test video pattern.
Went from 6fps to 912fps. Amazing what being able to divide can do for
a frame rate.
byuu says:
Fixing the PPU stepping increased FPS to 250. Promising, at least, since
the ARM core is still severely overclocked.
However, I reverted back to r02. This one patches gameboy/ and GameBoy::
to gb/ and GB:: and that's it.
Sorry, I just couldn't shake this bad feeling about the code. There were
some poorly hacked-together constructs. I'd rather just redo two days of
work than feel bad about the codebase for the next several years. Going
to attempt the GBA bridge again. Third time's a charm, I suppose (there
was a pre-r03 WIP I abandoned as well.)
This isn't unprecedented, GB core took a few attempts like this as well.
byuu says:
Changelog:
- gameboy/ -> gb/
- GameBoy -> GB
- basic memory map for GBA
- enough code to execute the first BIOS instruction (b 0x68)
I have the code resetting r(15) to 0 on an exception just as a test.
Since that flushes the pipeline, that means we're basically executing "b
0x68" at 8MHz, and nothing else.
... and I am getting __6 motherfucking FPS__ at 4.4GHz on an i7.
Something is seriously, horribly, unfuckingbelievably wrong here, and
I can't figure out what it is.
My *fully complete* ARM core on the ST018 is even less efficient and
runs at 21.47MHz, and yet I get 60fps even after emulating the SNES
CPU+PPU @ 10+MHz each as well.
... I'm stuck. I can't proceed until we figure out what in the holy fuck
is going on here. So ... if anyone can help, please do. If we can't fix
this, the GBA emulation is dead.
I was able to profile on Windows, and I've included that in this WIP
under out/log.txt.
But it looks normal to me. But yeah, there's NO. FUCKING. WAY. This code
should be running this slowly.
byuu says:
I wanted to keep this a secret, but unlike other recent additions, this
will easily take several weeks, maybe months, to show anything.
Assuming I can even pull it off. Nothing technically overwhelming here,
I'm more worried about the near-impossibility of debugging the CPU.
byuu says:
Changelog:
- extended USART with quit(), readable(), writable() [both emulation and
hardware]
- quit() returns true on hardware when Ctrl+C (SIGINT) is generated
(breaks main loop); no effect under emulation yet (hard to
simulate)
- readable() returns true when data is ready to be read
(non-blocking support for read())
- writable() returns true when data can be written (non-blocking
support for write()) [always true under emulation, since we have
no buffer size limit]
byuu says:
Changelog:
- fixes ARM core unaligned memory reads (fixes HNMS2 AI, hopefully completely,
we'll see though) [Cydrak]
- ARM 40000010 writes are now connected to d2 rather than the timer
- ARM bus_readbyte() removed (would love to do the same for writebyte if
we can ... then we can drop back to bus_read + bus_write only)
- USART with IObit set acts as a regular gamepad now (don't have this
hooked up with real hardware, but oh well, it's technically possible
so there's that)
- OpenGL/GLX will use 30-bit when you have a 30-bit display; no need for
config file video.depth anymore
byuu says:
This release adds ST018 emulation. As this was the final unsupported
SNES coprocessor, this means that bsnes v087 is the first SNES emulator
to be able to claim 100% known compatibility with all officially
released games. And it does this with absolutely no hacks.
Again, I really have to stress the word known. No emulator is perfect.
No emulator ever really can be perfect for a system of this complexity.
The concept doesn't even really exist, since every SNES behaves subtly
different. What I mean by this, is that every single game ever
officially sold has been tested, and zero bugs (of any severity level)
are currently known.
It is of course extremely likely that bugs will be found in this
release, as well as in future releases. But this will always be
a problem for every emulator ever made: there is no way to test every
possible codepath of every single game to guarantee perfection. I will,
of course, continue to do my best to fix newfound bugs so long as I'm
around.
I'd really like to thank Cydrak and LostTemplar for their assistance in
emulating the ST018. I could not have done it without their help.
The ST018 ROM, like the other coprocessor ROMs, is copyrighted. This
means I am unable to distribute the image.
Changelog (since v086):
- emulated the 21.47MHz ST018 (ARMv3) coprocessor used by Hayazashi
Nidan Morita Shougi 2
- fixed PPU TM/TS edge case; fixes bottom scanline of text boxes in
Moryo Senki Madara 2
- fixed saving and loading of Super Game Boy save RAM
- NEC uPD7725,96050 ROMs now stored in little-endian format for
consistency
- cartridge folder concept has been reworked to use fixed file names
- added emulation of serial USART interface (replaces asynchronous UART
support previously)
byuu says:
Cydrak, I moved the step from the opcode decoder and opcodes themselves
into bus_(read,write)(byte,word), to minimize code.
If that's not feasible for some reason, please let me know and I'll
change it back to your latest WIP.
This has your carry flag fix, the timer skeleton (doesn't really work
yet), the Booth two-bit steps, and the carry flag clear thing inside
multiply ops.
Also added the aforementioned reset delay and reset bit stuff, and fixed
the steps to 21MHz for instructions and 64KHz for reset pulse.
I wasn't sure about the shifter extra cycles. I only saw it inside one
of the four (or was it three?) opcodes that have shifter functions.
Shouldn't it be in all of them?
The game does indeed appear to be fully playable now, but the AI doesn't
exactly match my real cartridge.
This could be for any number of reasons: ARM CPU bug, timer behavior
bug, oscillator differences between my real hardware and the emulator,
etc.
However ... the AI is 100% predictable every time, both under emulation
and on real hardware.
- For the first step, move 九-1 to 八-1.
- The opponent moves 三-3 to 四-3.
- Now move 七-1 to 六-1.
- The opponent moves 二-2 to 八-8.
However, on my real SNES, the opponent moves 一-3 to 二-4.
byuu says:
Most importantly ... I'm now using "st018.rom" which is the program ROM
+ data ROM in one "firmware" file. Since all three Seta DSPs have the
ST01N stamp, unlike some of the arcade variants, I'm just going to go
with ST01N from now on instead of ST-001N. I was using the latter as
that's what Overload called them.
Moving on ...
The memory map should match real hardware now, and I even match the open
bus read results.
I also return the funky 0x40404001 for 60000000-7fffffff, for whatever
that's worth.
The CPU-side registers are also mirrored correctly, as they were in the
last WIP, so we should be good there.
I also simulate the reset pulse now, and a 0->!0 transition of $3804
will destroy the ARM CPU thread.
It will wait until the value is set back to zero to resume execution.
At startup, the ARM CPU will sleep for a while, thus simulating the
reset delay behavior.
Still need to figure out the exact cycle length, but that's really not
important for emulation.
Note in registers.hpp, the |4 in status() is basically what allows the
CPU program to keep going, and hit the checkmate condition.
If we remove that, the CPU deadlocks. Still need to figure out how and
when d4 is set on $3804 reads.
I can run any test program on both real hardware and in my emulator and
compare results, so by all means ... if you can come up with a test,
I'll run it.
byuu says:
Attempted to fix the bugs pointed out by Cydrak for the shifter carry
and subtraction flags. No way to know if I was successful.
The memory map should exactly match real hardware now.
Also simplified bus reading/writing: we can get fancy when it works,
I suppose.
Reduced some of the code repetition to try and minimize the chances for
bugs.
I hopefully fixed up register-based ror shifting to what the docs were
saying.
And lastly, the disassembler should handle every opcode in every mode
now.
ldr rn,[pc,n] adds (pc,n) [absolute address] after opcode. I didn't want
to actually read from ROM here (in case it ever touches I/O or
something), but I suppose we could try anyway.
At startup, it will write out "disassembly.txt" which is a disassembly
of the entire program ROM.
If anyone wants to look for disassembly errors, I'll go ahead and fix
them. Just note that I won't do common substitutions like mov pc,lr ==
ret.
At this point, we can make two moves and then the game tells us that
we've won.
So ... I'm back to thinking the problem is with bugs in the ARM core,
and that our bidirectional communication is strong enough to play the
game.
Although that's not perfect. The game definitely looks at d4 (and
possibly others later), but my hardware tests can't get anything but
d0/d3 set.
byuu says:
That's my best implementation of the shifter carry. It's horribly
inefficient and possibly wrong (especially on ROR by register, but that
doesn't ever appear to be used in this program), but oh well. It's the
best I can do.
Game is basically getting stuck after a board upload and issuing another
command. It's sitting in a loop waiting on $3804.d0 to be set, meaning
the ARM is never writing anything for the CPU to read. There's some
chance that my $3804/r40000000 flags are wrong. Short of guessing
though, I'm not sure how we can get more info on how those work.
... I really can't debug this any better than I have. If no one else
sees anything, then we're going to have to give up and wait for MESS to
create opcode logs for us to compare against.
byuu says:
More ARM work. Can get in-game, and upload the board (0xaa) successfully.
Bug in checkmate command makes the CPU really difficult to defeat :P
byuu says:
Contains the fledgling beginnings of an ARM CPU core, which can execute
the first three and a half instructions of the ST-0018.
It's a start, I guess.
byuu says:
USART improvements. The clock pulse from reading data() drives both
reading and writing.
Also added a usart_init() to bind the initializer functions, so all you
need now is:
extern "C" usartproc void usart_main() { ... }
And inside, you use usart_read(), usart_write(), etc.
So we can add all the new functions we want (eg I'd like to have
usart_readable() to check if data is available) without changing the
entry point signature.
blargg enhanced his Teensy driver to ignore frame error reads, as well.
byuu says:
It is done. bsnes can now emulate sending and receiving data via USART.
As such, the UART code has been removed.
The final UART code can be downloaded here: http://byuu.org/snes/uart/
I won't maintain it going forward, because nobody ever used it, and
USART is superior in every way.
I've also verified both sending and receiving on the real SNES now :D
It's so easy ... a caveman with electrical engineering and computer
programming experience can do it.
byuu says:
USART implements reading and writing, but I don't yet have code to test
SNES reading yet.
So ... obviously I need to do that next.
Went ahead and required nall::function, so the modules will have to be
C++11. I don't see anyone else making these, and it avoids the annoyance
of deducing the correct controller port based on dynamic casting the
active thread.
Apparently a library can have a main() function to no ill effect, so
there's no need for USART_HARDWARE. Same exact code with different flags
will make the binary and the library.
byuu says:
There will probably be a series of small WIPs as I experiment here.
snes/controller/serial is now snes/controller/uart. Asynchronous serial
communications, typically capped at 57,600 baud.
snes/controller/usart is new. It aims to emulate the SNES connected to
a Teensy++ board, and can easily handle 524,288 baud.
And much more importantly, it's synchronous, so there are no timing
issues anymore. Just bit-bang as fast as you can.
Right now, the USART code is just enough for SNES->PC to transfer data
to ... well, nothing yet.
Unless anyone is actually using the UART stuff, I'll be removing it once
the USART is totally up and running.
No sense maintaining code that is 10x slower, more error prone, and used
by nobody.
Note: this is all thanks to blargg being absolutely amazing.
byuu says:
Cart unload save path was using the new game rather than the old game.
Caused by trying to allow a failed cartridge load to not unload the
current game.
But that's so uncommon that it's not worth worrying about. It'll always
unload before trying to load a new game now.
Removed the TM/TS disable speedup, to fix Madara 2's text boxes.
This actually did cause a slight performance penalty on games that
disable layers via TM/TS. Zelda 3 inside Link's house is a good example.
It knocked the FPS from 98.5 to 94.5. So to counter that, I removed
conditionals from tiledata loading and decoding, and used fall through
switches.
This boosted us back to 97.0. The -march=native flag apparently works
better with SB now, so that was added, putting us up to 99.0fps.
So it should be the same speed in the worst case, and slightly faster in
the best case.
Bumped the pre-render time to 68 clocks from 60 clocks. Adjusted sprite
tile fetch time from 22 to 14 to compensate.
This should give us perfectly stable Dai Kaijuu Monogatari 2 battles.
byuu says:
Fixed Super Game Boy RAM saving and loading. It plainly wasn't hooked up
at all. Was apparently hard-coded before it became a multi-emulator.
I also fixed a crashing issue when loading Satellaview-slotted or
Satellaview games without specifying the sub-cart, wasn't setting
has_bsx_slot = true, so the raw memory wasn't being allocated internally
when it wasn't mapped in. Of course a better fix would be to just not
physically map the ranges if the things aren't present. Kind of a lazy
hack to map blank cartridges there, but oh well. Oh, fixed title
displays as well; and did the best I could for now with regards to
multi-file path saving.
byuu says:
The goals for v087 are to have a unified cartridge-folder concept, as
well as a more functional SNES debugger.
Starting with the cartridge folders. What I have so far:
Code:
NES:
- program.rom
- character.rom
- program.ram
- …
SNES:
- program.rom
- program.rtc
- data.rom (SPC7110)
- { dsp1.rom, dsp1b.rom, cx4.rom, … }
- msu1.rom
- track-#.pcm
Game Boy, Game Boy Color:
- program.rom
- program.ram
- program.rtc
Sub-cartridges (BS-X, Sufami Turbo, …) are stored as separate folders
Folder names must be UTF-8 based, with all-lowercase extensions
File names must be all-lowercase
SNES:
- "program.ram" (.srm, .sts)
- "msu1.rom" (name.msu)
- "track-#.pcm" (name-#.pcm)
- "upd96050.ram" -> "name.ram"
- "bsx.ram" (.bss)
- "bsx.psram" (.bsp)
- "serial.so" -> "libserial.so" (broken)
Need:
- Super Game Boy (not even sure how this loads and saves memory, it's
obviously broken)
And I need to think of some way of handling multi-cart loaded games.
Eg Satellaview-slotted and Sufami Turbo. It was { base + slot ( + slot
... } }, but this gets trickier with folders and fixed names.
Actual markup for the NES needs to change as well.
byuu says:
The main focus of this release is Laevateinn, which is the new bsnes
debugger. Unlike previous debuggers, Laevateinn is a standalone
application with its own GUI entirely focused on debugging.
Changelog:
- created ui-debugger target (Laevateinn)
- fixed multitap ports 2-4 [quequotion]
- fixed ui-libsnes target compilation
- fixed a crashing issue with NSS XML markup
- improved cartridge-folder loading support
- NES can now load .fc (headerless NES) or .prg+.chr (split NES) images
- fixed cursor being visible in fullscreen mode when using
Linux/Metacity window manager [ncbncb]
- show normal cursor when using Linux/SDL video driver [ncbncb]
- added menu accelerators
- fixed a bug in performance profile SMP incw/decw instructions
- SNES core can now optionally be built without Game Boy emulation core
- added 2012-02-04 cheats.xml database [mightymo]
byuu says:
Added VRAM viewer (mouse over to get tile# and VRAM address), CPU+SMP
register editors, settings.cfg to cache path+sync audio+mute audio
settings (Windows Vista+ ignore my request for the default folder
because they are fucking stupid, so they always default to your home
folder. I'm going to have to recommend using a batch file to start
laevateinn there. Sorry, blame Microsoft for being fuck-ups),
geometry.cfg to remember where you placed windows and what size you made
them (a bug in Qt prevents me from making some windows fixed-size for
now, but that'll change when I can work around the Qt issue), usage map
invalidation if the ROM was modified after the usage files, that empty
line insertion thing creaothceann wanted on emulation resume, all chips
now synchronize immediately rather than just-in-time, which is important
for a debugger.
Going to postpone the properties viewer until after v086.
So this is pretty much ready for release. Please bug-test. I don't care
so much about little frills like "oh the memory editor window should
default to a little bigger", you can work around that by resizing it.
I care about things like, "VRAM write breakpoints don't work at all."
If we miss any bugs and it gets released, not the end of the world, but
you'll be waiting a while for the next release to address any missed
bugs now.
byuu says:
Changelog:
- follow the Laevateinn topic to get most of it
- also added NMI, IRQ step buttons to CPU debugger
- also added trace masking + trace mask reset
- also added memory export
- cartridge loading is entirely folder-based now
FitzRoy, I'll go ahead and make a second compromise with you for v086:
I'll match the following:
/path/to/SNES.sfc/*.sfc
/path/to/NES.fc/*.prg, *.chr (split format)
/path/to/NES.fc/*.fc (merged format)
/path/to/GB.gb/*.gb
/path/to/GBC.gbc/*.gbc
Condition will be that there can only be one of each file. If there's
more than one, it'll abort. That lets me name my ROMs as
"Game.fc/Game.fc", and you can name yours as "Game.fc/cartridge.prg,
cartridge.chr". Or whatever you want.
We'll just go with that, see what fares out as the most popular, and
then restrict it back to that method.
The folder must have the .fc, etc extension though. That will be how we
avoid false-positive folder matches.
[Editor's note - the Laevateinn topic mentions these changes for
v085r08:
Added SMP/PPU breakpoints, SMP debugger, SMP stepping / tracing,
memory editing on APU-bus / VRAM / OAM / CGRAM, save state menu,
WRAM mirroring on breakpoints, protected MMIO memory regions
(otherwise, viewing $002100 could crash your game.)
Major missing components:
- trace mask
- trace mask clear / usage map clear
- window geometry caching / sizing improvements
- VRAM viewer
- properties viewer
- working memory export button
The rest will most likely appear after v086 is released.
]
byuu says:
Lots of debugger enhancements. Memory editor works for CPU-bus only,
breakpoint editor does nothing yet.
Tracing works, writes to 001-999 files sequentially. Stepping works,
too. But only on the CPU.
Added "privileged", which becomes "public" if DEBUGGER is defined,
"private" otherwise.
Meant so the debugger can stab deeply into the cores for state
manipulation. Interface is guaranteed to be unstable and dependent upon
the accuracy core.
The about screen logo adds 100KB onto the source download (won't affect
regular bsnes binaries), but too bad. I want some visual flair this
time.
byuu says:
Changelog:
- added base/ folder
- base/base.hpp defines the version number for all UI targets, all the
varint-types, and a hook() class for debugger functions (see below)
- fixed compatibility profile compilation
- removed within<> template from the SNES target
- the SNES core can be built without Game Boy support now, if you so
choose (my SNES debugger is not going to support debugging the GBZ80,
sorry.)
- added ui-debugger; not at all useful right now, will be a long while
to get something usable ready
So hook is a class wrapper around nall::function. It allows you to
invoke potentially empty functions (and as such, the return type must
have a trivial constructor.)
It also doesn't actually perform the test+invocation when DEBUGGER
(options=debugger) is not defined. So you should have no overhead in
regular builds.
The core classes now have a subclass with all the debugging hooks, so
you'll see eg:
void CPU::op_step() {
debugger.op_exec(regs.pc);
(this->*opcode_table[op_read()])();
}
Clear what it's doing, clear what it's for. A whole lot less work than
inheriting the whole CPU core and virtualizing the functions we want to
hook.
All the logic for what to do inside these callbacks will be handled by
individual debuggers, so they can have all the functionality they want.
byuu says:
Changelog:
- fixed cursor being visible under Metacity window manager (hopefully
doesn't cause regression with other WMs)
- show normal cursor when using SDL video driver
- added menu accelerators (meh, why not?)
- removed debugvirtual, ChipDebugger and chip/debugger functionality
entirely
- alt/smp disassembler moved up
- fixed alt/smp incw/decw instructions (unsigned->uint16 for internal
variables)
My plan going forward for a debugger is not to hardcode functionality
that causes the 10-15% slowdown right into the emulator itself.
Instead, I'm going to make a callback class, which will be a specialized
version of nall::function:
- can call function even if not assigned (results in no-op, return type
must have a trivial default constructor)
- if compiled without #define DEBUGGER, the entire thing turns into
a huge no-op; and will be eliminated entirely when compiled
- strategically place the functions: cb_step, cb_read, cb_write, etc.
From here, the ui-debugger GUI will bind the callbacks, implement
breakpoint checking, usage table generation, etc itself.
I'll probably have to add some breakout commands to exit the emulation
core prior to a frame event in some cases as well.
I didn't initially want any debugger-related stuff in the base cores,
but the #if debugger sCPUDebugger #else sCPU #endif stuff was already
more of a burden than this will be.
byuu says:
Fixed NSS XML crashing issue.
Improved folder-loading support.
NES can now load game.fc/game.fc, or game.fc/game.prg+game.chr.
Both types should have no iNES header at all.
And both types require an XML file (until we have a built-in database.)
byuu says:
Changelog:
- updated bsnes to use the newest versions of nall and phoenix
- fixed ui-libsnes compilation (testing would be a good idea, especially
the cheat codes. I just copy-pasted that from the regular UI.)
- fixed multitap controllers 2-4 [quequotion]
byuu says:
A new release for the new year.
Changelog:
fixed auto joypad polling edge case; fixes Ys 5 controls
fixed Justifier polling code; Lethal Enforcers should be fully
responsive once again
rewrote SNES S-SMP processor core (~20% code reduction)
fixed Game Boy 8x16 sprite mode; fixed some sprites in Zelda: Link's
Awakening
treat Game Boy HuC1 RAM enable flag as writable flag instead; fixes
Pokemon Card GB
created far faster XML parser; bsnes can now load XML files once again
updated to mightymo's most recent cheat code database
internal color calculations now performed at 30-bits per pixel
gamma slider now acts as fine-tuned gamma ramp option
Linux OpenGL driver will output at 30bpp on capable displays
Linux port defaults to GTK+ now instead of Qt (both are still available)
byuu says:
Okay, everything can now load XML again, including board layouts for all
three systems. New is the ability to load external Game Boy layouts (not
really that useful, but it's there.)
I'd like to aim for a v085 release soon. I've included a binary, so I'd
appreciate testing. I had to redo all of the XML mappings for every
system (I like consistency), so basically the following things need to
be tested:
* load one of every type of game for every system (every NES board type,
* every Game Boy MBC type, every SNES chip and layout type.)
* test cheat codes and the cheat database
* test pixel shaders for OpenGL and Direct3D (sepia for the win)
* test anything else for v085 release
byuu says:
Added the new super-fast XML parser. So far, the shaders, cheat files,
and cheat database have been updated to allow XML mode once again. Which
is sure to please Screwtape =)
So it's down to just the cartridge mapping files now, which are always
a major pain.
I still think BML is better for parsing simplicity, memory usage, disk
size, lack of red tape and speed (but horrendously bad for ease of
creating files manually), but since the base API is identical, there's
no reason not to support both. Especially since the pixel shaders have
kind of taken on a life of their own.
byuu says:
Changelog:
- fixed sprite tile masking for 8x16 mode (fixes Zelda: DX sprites)
- HuC1 flag sets RAM writable, not RAM enable (fixes Pokemon Card)
- removed within<> template, didn't turn out to be all that useful
I would be almost certain no games would break by allowing reads when it
is disabled, no game would rely on that behavior.
I prefer to be overly restrictive. Better to not allow valid behavior
than to allow invalid behavior. The latter is what gives us a dozen
broken SNES translations.