byuu says:
Changelog:
- nall/dsp returns with new iir/biquad.hpp and resampler/cubic.hpp files
- nall/queue.hpp added (simple ring buffer ... nall/vector wouldn't
cause too many moves with FIFO)
- audio streams now only buffer 20ms; so even if multiple audio streams
desync, latency can never exceed 20ms
- replaced blackman windwed sinc FIR hermite audio filter with transposed
direct form II biquadratic sixth-order IIR butterworth filter (better
attenuation of frequencies above 20KHz, faster, no need for decimation,
less code)
- put in experimental eight-tap echo filter (a lot better than what I
had before, but still rather weak)
- substantial cleanups to the SuperFX GSU processor core (slightly
faster, 479KB->100KB object file, 42.7KB->33.4KB source code size,
way less code duplication)
We'll definitely want to test the whole SuperFX library (not many games)
just to make sure there's no regressions caused by this one.
Not sure what I want to do with audio processing effects yet. I've always
really wanted lots of fun controls to customize audio, and now finally
with this new biquad filter, I can finally start implementing real
effects. For instance, an equalizer wouldn't be too complicated anymore.
The new reverb effect is still a poor man's version. I need to find human
readable source for implementing a comb-filter properly. I'm pretty sure
I can already treat nall::queue as an all-pass filter since all that
does is phase shift (fancy audio term for "delay audio"). What's really
going to be hard is figuring out how to expose user-friendly settings for
controlling it. It looks like you need a bunch of coprime coefficients,
and I don't think casual users are going to be able to hand-enter coprime
values to get the echo effect they want. I uh ... don't even know how
to calculate coprime values dynamically right now >_> But we're going
to have to, as they are correlated to the output sampling rate.
We'll definitely want to make some audio profiles so that users can
quickly select pre-configured themes that sound nice, but expose the
underlying coefficients so that they can tweak stuff to their liking. This
isn't just about higan, this is about me trying to learn digital signal
processing, so please don't be too upset about feature creep or anything
on this.
Anyway ... I'm having some difficulties with my audio right now. When
the reverb effect is enabled, there's a bunch of static on system
reset for just a moment. But this should not be possible. nall::queue
is initializing all previous reverb sample elements to 0.0. I don't
understand where static is coming in from. Further, we have the same
issue with both the windowed sinc and the biquad filters ... a bit of
a popping sound when starting a game. Any help tracking this down would
be appreciated.
There's also one really annoying issue ... I can't seem to do reverb
or volume adjustments with normalized samples. If I say "volume *= 0.5"
in higan/audio/audio.cpp line 68, it doesn't just halve the volume, it
adds a whole bunch of distortion. This makes absolutely zero sense to
me. The sample values are between 0.0 (mute) and 1.0 (full volume) here,
so multiplying a double by 0.5 shouldn't cause distortion. So right now,
I'm doing these adjustments with less precision after denormalizing back
to int16. Anyone ever see something like that? :/
byuu says:
Changelog:
- higan/video: added support for Emulator::Sprite
- higan/resource: a new system for accessing embedded binary files
inside the emulation cores; holds the sprites
- higan/sfc/superscope,justifier: re-enabled display of crosshairs
- higan/sfc/superscope: fixed turbo toggle (also shows different
crosshair color when in turbo mode)
- higan/sfc/ppu: always outputs at 512x480 resolution now
- causes a slight speed-hit from ~127fps to ~125fps;
- but allows high-resolution 32x32 cursors that look way better;
- also avoids the need to implement sprite scaling logic
Right now, the PPU code to always output at 480-height is a really gross
hack. Don't worry, I'll make that nicer before release.
Also, superscope.cpp and justifier.cpp are built around a 256x240
screen. But since we now have 512x480, we can make the cursor's movement
much smoother by doubling the resolution on both axes. The actual games
won't see any accuracy improvements when firing the light guns, but the
cursors will animate nicer so I think it's still worth it. I'll work on
that before the next release as well.
The current 32x32 cursors are nicer, but we can do better now with full
24-bit color. So feel free to submit alternatives. I'll probably reject
them, but you can always try :D
The sprites don't support alpha blending, just color keying (0x00000000
= transparent; anything else is 0xff......). We can revisit that later
if necessary.
The way I have it designed, the only files that do anything with
Emulator::Sprite at all are the superscope and justifier folders.
I didn't have to add any hooks anywhere else. Rendering the sprite is
a lot cleaner than the old code, too.
byuu says:
Changelog:
- fixed nall/path.hpp compilation issue
- fixed ruby/audio/xaudio header declaration compilation issue (again)
- cleaned up xaudio2.hpp file to match my coding syntax (12.5% of the
file was whitespace overkill)
- added null terminator entry to nall/windows/utf8.hpp argc[] array
- nall/windows/guid.hpp uses the Windows API for generating the GUID
- this should stop all the bug reports where two nall users were
generating GUIDs at the exact same second
- fixed hiro/cocoa compilation issue with uint# types
- fixed major higan/sfc Super Game Boy audio latency issue
- fixed higan/sfc CPU core bug with pei, [dp], [dp]+y instructions
- major cleanups to higan/processor/r65816 core
- merged emulation/native-mode opcodes
- use camel-case naming on memory.hpp functions
- simplify address masking code for memory.hpp functions
- simplify a few opcodes themselves (avoid redundant copies, etc)
- rename regs.* to r.* to match modern convention of other CPU cores
- removed device.order<> concept from Emulator::Interface
- cores will now do the translation to make the job of the UI easier
- fixed plurality naming of arrays in Emulator::Interface
- example: emulator.ports[p].devices[d].inputs[i]
- example: vector<Medium> media
- probably more surprises
Major show-stoppers to the next official release:
- we need to work on GB core improvements: LY=153/0 case, multiple STAT
IRQs case, GBC audio output regs, etc.
- we need to re-add software cursors for light guns (Super Scope,
Justifier)
- after the above, we need to fix the turbo button for the Super Scope
I really have no idea how I want to implement the light guns. Ideally,
we'd want it in higan/video, so we can support the NES Zapper with the
same code. But this isn't going to be easy, because only the SNES knows
when its output is interlaced, and its resolutions can vary as
{256,512}x{224,240,448,480} which requires pixel doubling that was
hard-coded to the SNES-specific behavior, but isn't appropriate to be
exposed in higan/video.
byuu says:
Changelog:
- fixed major nall/vector/prepend bug
- renamed hiro/ListView to hiro/TableView
- added new hiro/ListView control which is a simplified abstraction of
hiro/TableView
- updated higan's cheat database window and icarus' scan dialog to use
the new ListView control
- compilation works once again on all platforms (Windows, Cocoa, GTK,
Qt)
- the loki skeleton compiles once again (removed nall/DSP references;
updated port/device ID names)
Small catch: need to capture layout resize events internally in Windows
to call resizeColumns. For now, just resize the icarus window to get it
to use the full window width for list view items.
byuu says:
Changelog:
- nall/vector rewritten from scratch
- higan/audio uses nall/vector instead of raw pointers
- higan/sfc/coprocessor/sdd1 updated with new research information
- ruby/video/glx and ruby/video/glx2: fuck salt glXSwapIntervalEXT!
The big change here is definitely nall/vector. The Windows, OS X and Qt
ports won't compile until you change some first/last strings to
left/right, but GTK will compile.
I'd be really grateful if anyone could stress-test nall/vector. Pretty
much everything I do relies on this class. If we introduce a bug, the
worst case scenario is my entire SFC game dump database gets corrupted,
or the byuu.org server gets compromised. So it's really critical that we
test the hell out of this right now.
The S-DD1 changes mean you need to update your installation of icarus
again. Also, even though the Lunar FMV never really worked on the
accuracy core anyway (it didn't initialize the PPU properly), it really
won't work now that we emulate the hard-limit of 16MiB for S-DD1 games.
byuu says:
Changelog:
- GB: support modeSelect and RAM for MBC1M (Momotarou Collection)
- audio: implemented native resampling support into Emulator::Stream
- audio: removed nall::DSP completely
Unfortunately, the new resampler didn't turn out quite as fast as I had
hoped. The final hermite resampling added some overhead; and I had to
bump up the kernel count to 500 from 400 to get the buzzing to go away
on my main PC. I think that's due to it running at 48000hz output
instead of 44100hz output, maybe?
Compared to Ryphecha's:
(NES) Mega Man 2: 167fps -> 166fps
(GB) Mega Man II: 224fps -> 200fps
(WSC) Riviera: 143fps -> 151fps
Odd that the WS/WSC ends up faster while the DMG/CGB ends up slower.
But this knocks 922 lines down to 146 lines. The only files left in all
of higan not written (or rewritten) by me are ruby/xaudio2.h and
libco/ppc.c
byuu says:
Changelog:
- emulation cores now refresh video from host thread instead of
cothreads (fix AMD crash)
- SFC: fixed another bug with leap year months in SharpRTC emulation
- SFC: cleaned up camelCase on function names for
armdsp,epsonrtc,hitachidsp,mcc,nss,sharprtc classes
- GB: added MBC1M emulation (requires manually setting mapper=MBC1M in
manifest.bml for now, sorry)
- audio: implemented Emulator::Audio mixer and effects processor
- audio: implemented Emulator::Stream interface
- it is now possible to have more than two audio streams: eg SNES
+ SGB + MSU1 + Voicer-Kun (eventually)
- audio: added reverb delay + reverb level settings; exposed balance
configuration in UI
- video: reworked palette generation to re-enable saturation, gamma,
luminance adjustments
- higan/emulator.cpp is gone since there was nothing left in it
I know you guys are going to say the color adjust/balance/reverb stuff
is pointless. And indeed it mostly is. But I like the idea of allowing
some fun special effects and configurability that isn't system-wide.
Note: there seems to be some kind of added audio lag in the SGB
emulation now, and I don't really understand why. The code should be
effectively identical to what I had before. The only main thing is that
I'm sampling things to 48000hz instead of 32040hz before mixing. There's
no point where I'm intentionally introducing added latency though. I'm
kind of stumped, so if anyone wouldn't mind taking a look at it, it'd be
much appreciated :/
I don't have an MSU1 test ROM, but the latency issue may affect MSU1 as
well, and that would be very bad.
byuu says:
Changelog:
- WS/WSC: re-added support for screen rotation (code is inside WS core)
- ruby: changed sample(uint16_t left, uint16_t right) to sample(int16_t
left, int16_t right);
- requires casting to uint prior to shifting in each driver, but
I felt it was misleading to use uint16_t just to avoid that
- ruby: WASAPI is now built in by default; has wareya's improvements,
and now supports latency adjust
- tomoko: audio settings panel has new "Exclusive Mode" checkbox for
WASAPI driver only
- note: although the setting *does* take effect in real-time, I'd
suggest restarting the emulator after changing it
- tomoko: audio latency can now be set to 0ms (which in reality means
"the minimum supported by the driver")
- all: increased cothread size from 512KiB to 2MiB to see if it fixes
bullshit AMD driver crashes
- this appears to cause a slight speed penalty due to cache locality
going down between threads, though
byuu says:
Changelog:
- SFC: fixed behavior of 21fx $21fe register when no device is connected
(must return zero)
- SFC: reduced 21fx buffer size to 1024 bytes in both directions to
mirror the FT232H we are using
- SFC: eliminated dsp/modulo-array.hpp [1]
- higan: implemented higan/video interface and migrated all cores to it
[2]
[1] the echo history buffer was 8-bytes, so there was no need for it at
all here. Not sure what I was thinking. The BRR buffer was 12-bytes, and
has very weird behavior ... but there's only a single location in the
code where it actually writes to this buffer. It's much easier to just
write to the buffer three times there instead of implementing an entire
class just to abstract away two lines of code. This change actually
boosted the speed from ~124.5fps to around ~127.5fps, but that's within
the margin of error for GCC. I doubt it's actually faster this way.
The DSP core could really use a ton of work. It comes from a port of
blargg's spc_dsp to my coding style, but he was extremely fond of using
32-bit signed integers everywhere. There's a lot of opportunity to
remove red tape masking by resizing the variables to their actual state
sizes.
I really need to find where I put spc_dsp6.sfc from blargg. It's a great
test to verify if I've made any mistakes in my implementation that would
cause regressions. Don't suppose anyone has it?
[2] so again, the idea is that higan/audio and higan/video are going to
sit between the emulation cores and the user interfaces. The hope is to
output raw encoding data from the emulation cores without having to
worry about the video display format (generally 24-bit RGB) of the host
display. And also to avoid having to repeat myself with eg three
separate implementations of interframe blending, and so on.
Furthermore, the idea is that the user interface can configure its side
of the settings, and the emulation cores can configure their sides.
Thus, neither has to worry about the other end. And now we can spin off
new user interfaces much easier without having to mess with all of these
things.
Right now, I've implemented color emulation, interframe blending and
SNES horizontal color bleed. I did not implement scanlines (and
interlace effects for them) yet, but I probably will at some point.
Further, for right now, the WonderSwan/Color screen rotation is busted
and will only show games in the horizontal orientation. Obviously this
must be fixed before the next official release, but I'll want to think
about how to implement it.
Also, the SNES light gun pointers are missing for now.
Things are a bit messy right now as I've gone through several revisions
of how to handle these things, so a good house cleaning is in order once
everything is feature-complete again. I need to sit down and think
through how and where I want to handle things like light gun cursors,
LCD icons, and maybe even rasterized text messages.
And obviously ... higan/audio is still just nall::DSP's headers. I need
to revamp that whole interface. I want to make it quite powerful with
a true audio mixer so I can handle things like
SNES+SGB+MSU1+Voicer-Kun+SNES-CD (five separate audio streams at once.)
The video system has the concept of "effects" for things like color
bleed and interframe blending. I want to extend on this with useful
other effects, such as NTSC simulation, maybe bringing back my mini-HQ2x
filter, etc. I'd also like to restore the saturation/gamma/luma
adjustment sliders ... I always liked allowing people to compensate for
their displays without having to change settings system-wide. Lastly,
I've always wanted to see some audio effects. Although I doubt we'll
ever get my dream of CoreAudio-style profiles, I'd like to get some
basic equalizer settings and echo/reverb effects in there.
byuu says:
It took several hours, but I've rebuilt much of the SNES' bus memory
mapping architecture.
The new design unifies the cartridge string-based mapping
("00-3f,80-bf:8000-ffff") and internal bus.map calls. The map() function
now has an accompanying unmap() function, and instead of a fixed 256
callbacks, it'll scan to find the first available slot. unmap() will
free slots up when zero addresses reference a given slot.
The controllers and expansion port are now both entirely dynamic.
Instead of load/unload/power/reset, they only have the constructor
(power/reset/load) and destructor (unload). What this means is you can
now dynamically change even expansion port devices after the system is
loaded.
Note that this is incredibly dangerous and stupid, but ... oh well. The
whole point of this was for 21fx. There's no way to change the expansion
port device prior to loading a game, but if the 21fx isn't active, then
the reset vector hijack won't work. Now you can load a 21fx game, change
the expansion port device, and simply reset the system to active the
device.
The unification of design between controller port devices and expansion
port devices is nice, and overall this results in a reduction of code
(all of the Mapping stuff in Cartridge is gone, replaced with direct bus
mapping.) And there's always the potential to expand this system more in
the future now.
The big missing feature right now is the ability to push/pop mappings.
So if you look at how the 21fx does the reset vector, you might vomit
a little bit. But ... it works.
Also changed exit(0) to _exit(0) in the POSIX version of nall::execute.
[The _exit(0) thing is an attempt to make higan not crash when it tries
to launch icarus and it's not on $PATH. The theory is that higan forks,
then the child tries to exec icarus and fails, so it exits, all the
unique_ptrs clean up their resources and tell the X server to free
things the parent process is still using. Calling _exit() prevents
destructors from running, and seems to prevent the problem. -Ed.]
byuu says:
Changelog:
- SFC: fixed a regression on auto joypad polling due to missing
parentheses
- SFC: exported new PPU::vdisp() const -> uint; function [1]
- SFC: merged PPU MMIO functions into the read/write handles (as
I previously did for the CPU)
- higan: removed individual emulator core names (bnes, bsnes, bgb, bgba,
bws) [2] Forgot:
- to remove /tomoko from the about dialog
[1] note that technically I was relying on the cached, per-frame
overscan setting when the CPU and light guns were polling the number of
active display scanlines per frame. This was technically incorrect as
you can change this value mid-frame and it'll kick in. I've never seen
any game toggle overscan every frame, we only know about this because
anomie tested this a long time ago. So, nothing should break, but ...
you know how the SNES is. You can't even look at the code without
something breaking, so I figured I'd mention it >_>
[2] I'll probably keep referring to the SNES core as bsnes anyway.
I don't mind if you guys use the b<system> names as shorthand. The
simplification is mostly to make the branding easier.
byuu says:
Changelog:
- SFC: balanced profile removed
- SFC: performance profile removed
- SFC: code for handling non-threaded CPU, SMP, DSP, PPU removed
- SFC: Coprocessor, Controller (and expansion port) shared Thread code
merged to SFC::Cothread
- Cothread here just means "Thread with CPU affinity" (couldn't think
of a better name, sorry)
- SFC: CPU now has vector<Thread*> coprocessors, peripherals;
- this is the beginning of work to allow expansion port devices to be
dynamically changed at run-time
- ruby: all audio drivers default to 48000hz instead of 22050hz now if
no frequency is assigned
- note: the WASAPI driver can default to whatever the native frequency
is; doesn't have to be 48000hz
- tomoko: removed the ability to change the frequency from the UI (but
it will display the frequency used)
- tomoko: removed the timing settings panel
- the goal is to work toward smooth video via adaptive sync
- the model is broken by not being in control of the audio frequency
anyway
- it's further broken by PAL running at 50hz and WSC running at 75hz
- it was always broken anyway by SNES interlace timing varying from
progressive timing
- higan: audio/ stub created (for now, it's just nall/dsp/ moved here
and included as a header)
- higan: video/ stub created
- higan/GNUmakefile: now includes build rules for essential components
(libco, emulator, audio, video)
The audio changes are in preparation to merge wareya's awesome WASAPI
work without the need for the nall/dsp resampler.
byuu says:
This release most notably adds WonderSwan and WonderSwan Color
emulation.
It is also the final release that will include the balanced and
performance profiles for bsnes.
Changelog (since v097):
- higan: added WonderSwan and WonderSwan Color emulation
- higan: simplified the coooperative-thread schedulers for all emulation
cores
- higan: moved from native (u)int[8,16,32,64]_t types to
Natural<T>/Integer<T> classes
- higan: major cleanups to the Makefiles; including auto-selection of
processor cores
- loki: very barebones skeleton in place now; does absolutely nothing
- these allow the removal of huge amounts of manual bit-twiddling with
more readable alternatives
- FC: fixed PPU OAM reads (mask the correct bits when writing) [hex_usr]
- SFC: fixed expansion port device mapping on game load
- SFC: reworked the way SGB games were loaded -* SFC core can now be
compiled without GB core (and thus without SGB support)
- SFC: added Super Disc expansion port device (although it's just
a non-functional skeleton so far)
- SFC: bugfix to SharpRTC emulation regarding leap year extra day counts
(Dai Kaijuu Monogatari II)
- SFC: major code cleanups to the CPU core and the R65816 processor base
class
- SFC: added 21fx emulation (not the old 21fx that became MSu1; reusing
the name for a new idea)
- basic idea is to move the serial USART to the expansion port along
with a reset vector hijack
- SFC: emulate reset vector pushing PC onto the stack on system soft
reset
- GB: pass gekkio's if_ie_registers and boot_hwio-G test ROMs
- GBA: reworked all handling of MMIO functions: removed the get/set
class functions
- nall: improved edge case return values for
(basename,pathname,dirname,...)
- ruby: fixed ~AudioXAudio2() typo (now calls destructor on exit)
- ruby: if DirectSoundCreate fails (no sound device present), return
false from init instead of crashing
- tomoko: added "All" option to filetype dropdown for ROM loading
- allows loading GBC games in SGB mode
- tomoko: locate() updated to search multiple paths [2]
- tomoko: fixed some oddities when changing the audio frequency/latency
settings
- icarus: can now work with WonderSwan and WonderSwan Color games
Note 1: 90% of the changelog for this release was related to the
WonderSwan emulation being in development. Doesn't make a lot of sense
to post about fixes since the code didn't exist publicly prior to this
release.
byuu says:
Changelog:
- bsnes-accuracy emulates reset vector properly[1]
- bsnes-balanced compiles once more
- bsnes-performance compiles once more
The balanced and performance profiles are fixed for the last time. They
will be removed for v098r01.
Please test this WIP as much as you can. I intend to release v098 soon.
I know save states are a little unstable for the WS/WSC, but they work
well enough for a release. If I can't figure it out soon, I'm going to
post v098 anyway.
[1] this one's been a really long time coming, but ... one of the bugs
I found when I translated Tekkaman Blade was that my translation patch
would crash every now and again when you hit the reset button on a real
SNES, but it always worked upon power on.
Turns out that while power-on initializes the stack register to $01ff,
reset does things a little bit differently. Reset actually triggers the
reset interrupt vector after putting the CPU into emulation mode, but it
doesn't initialize the stack pointer. The net effect is that the stack
high byte is set to $01, and the low byte is left as it was. And then
the reset vector runs, which pushes the low 16-bits of the program
counter, plus the processor flags, onto the stack frame. So you can
actually tell where the game was at when the system was reset ... sort
of.
It's a really weird behavior to be sure. But here's the catch: say
you're hacking a game, and so you hook the reset vector with jsl
showMyTranslationCreditsSplashScreen, and inside this new subroutine,
you then perform whatever bytes you hijacked, and then initialize the
stack frame to go about your business drawing the screen, and when
you're done, you return via rtl.
Generally, this works fine. But if S={0100, 0101, or 0102}, then the
stack will wrap due to being in emulation mode at reset. So it will
write to {0100, 01ff, 01fe}. But now in your subroutine, you enable
native mode. So when you return from your subroutine hijack, it reads
the return address from {01ff, 0200, 0201} instead of the expected
{01ff, 0100, 0101}. Thus, you get an invalid address back, and you
"return" to the wrong location, and your program dies.
The odds of this happening depend on how the game handles S, but
generally speaking, it's a ~1:85 chance.
By emulating this behavior, I'll likely expose this bug in many ROM
hacks that do splash screen hooks like this, including my own Tekkaman
Blade translation. And it's also very possible that there are commercial
games that screw this up as well.
But, it's what the real system does. So if any crashes start happening
as of this WIP upon resetting the game, well ... it'd happen on real
hardware, too.
byuu says:
Changelog:
- WS: fixed sprite window clipping (again)
- WS: don't set IRQ status bits of IRQ enable bits are clear
- SFC: signed/unsigned -> int/uint for DSP core
- SFC: removed eBoot
- SFC: added 21fx (not the same as the old precursor to MSU1; just
reusing the name)
Note: XI Little doesn't seem to be fixed after all ... but the other
three are. So I guess we're at 13 bugs :( And holy shit that music when
you choose a menu option is one of the worst sounds I've ever heard in
my life >_<
byuu says:
Changelog:
- fixed DAS instruction (Judgment Silversword score)
- fixed [VH]TMR_FREQ writes (Judgement Silversword audio after area 20)
- fixed initialization of SP (fixes seven games that were hanging on
startup)
- added SER_STATUS and SER_DATA stubs (fixes four games that were
hanging on startup)
- initialized IEEP data (fixes Super Robot Taisen Compact 2 series)
- note: you'll need to delete your internal.com in WonderSwan
(Color).sys folders
- fixed CMPS and SCAS termination condition (fixes serious bugs in four
games)
- set read/writeCompleted flags for EEPROM status (fixes Tetsujin 28
Gou)
- major code cleanups to SFC/R65816 and SFC/CPU
- mostly refactored disassembler to output strings instead of using
char* buffer
- unrolled all the subfolders on sfc/cpu to a single directory
- corrected casing for all of sfc/cpu and a large portion of
processor/r65816
I kind of went overboard on the code cleanup with this WIP. Hopefully
nothing broke. Any testing one can do with the SFC accuracy core would
be greatly appreciated.
There's still an absolutely huge amount of work left to go, but I do
want to eventually refresh the entire codebase to my current coding
style, which is extremely different from stuff that's been in higan
mostly untouched since ~2006 or so. It's dangerous and fickle work, but
if I don't do it, then the code will be a jumbled mess of several
different styles.
byuu says:
Changelog: (all WSC unless otherwise noted)
- fixed LINECMP=0 interrupt case (fixes FF4 world map during airship
sequence)
- improved CPU timing (fixes Magical Drop flickering and FF1 battle
music)
- added per-frame OAM caching (fixes sprite glitchiness in Magical Drop,
Riviera, etc.)
- added RTC emulation (fixes Dicing Knight and Judgement Silversword)
- added save state support
- added cheat code support (untested because I don't know of any cheat
codes that exist for this system)
- icarus: can now detect games with RTC chips
- SFC: bugfix to SharpRTC emulation (Dai Kaijuu Monogatari II)
- ( I was adding the extra leap year day to all 12 months instead of
just February ... >_< )
Note that the RTC emulation is very incomplete. It's not really
documented at all, and the two games I've tried that use it never even
ask you to set the date/time (so they're probably just using it to count
seconds.) I'm not even sure if I've implement the level-sensitive
behavior correctly (actually, now that I think about it, I need to mask
the clear bit in INT_ACK for the level-sensitive interrupts ...)
A bit worried about the RTC alarm, because it seems like it'll fire
continuously for a full minute. Or even if you turn it off after it
fires, then that doesn't seem to be lowering the line until the next
second ticks on the RTC, so that likely needs to happen when changing
the alarm flag.
Also not sure on this RTC's weekday byte. On the SharpRTC, it actually
computes this for you. Because it's not at all an easy thing to
calculate yourself in 65816 or V30MZ assembler. About 40 lines of code
to do it in C. For now, I'm requiring the program to calculate the value
itself.
Also note that there's some gibberish tiles in Judgement Silversword,
sadly. Not sure what's up there, but the game's still fully playable at
least.
Finally, no surprise: Beat-Mania doesn't run :P
byuu says:
Absolutely major improvements to the WS/C emulation today.
Changelog: (all WS/C related)
- fixed channel 3 sweep pitch adjustment
- fixed channel 3 sweep value sign extension
- removed errant channel 5 speed setting (not what's really going on)
- fixed sign extension on channel 5 samples
- improved DAC mixing of all five audio channels
- fixed r26 regression with PPU timing loop
- fixed sprite windowing behavior (sprite attribute flag is window mode;
not window enable)
- added per-scanline register latching to the PPU
- IRQs should terminate HLT even when the IRQ enable register bits are
clear
- fixed PALMONO reads
- added blur emulation
- added color emulation (based on GBA, so it heavily desaturates colors;
not entirely correct, but it helps a lot)
- no longer decimating audio to 24KHz; running at full 3.072MHz through
the windowed sinc filter [1]
- cleaned up PPU portRead / portWrite functions significantly
- emulated a weird quirk as mentioned by trap15 regarding timer
frequency writes enabling said timers [2]
- emulated LCD_CTRL sleep bit; screen can now be disabled (always draws
black in this case for now)
- improved OAM caching; but it's still disabled because it causes huge
amounts of sprite glitches (unsure why)
- fixed rendering of sprites that wrap around the screen edges back to
the top/left of the display
- emulated keypad interrupts
- icarus: detect orientation bit in game header
- higan: use orientation setting in manifest to set default screen
rotation
[1] the 24KHz -> 3.072MHz sound change is huge. Sound is substantially
improved over the previous WIPs. It does come at a pretty major speed
penalty, though. This is the highest frequency of any system in higan
running through an incredibly (amazing, yet) demanding sinc resampler.
Frame rate dropped from around 240fps to 150fps with the sinc filter on.
If you choose a different audio filter, you'll get most of that speed
back, but audio will sound worse again.
[2] we aren't sure if this is correct hardware behavior or not. It seems
to very slightly help Magical Drop, but not much.
The blur emulation is brutal. It's absolutely required for Riviera's
translucency simulation of selected menu items, but it causes serious
headaches due to the WS's ~75hz refresh rate running on ~60hz monitors
without vsync. It's probably best to leave it off and just deal with the
awful flickering on Riviera's menu options.
Overall, WS/C emulation is starting to get quite usable indeed. Couple
of major bugs that I'd really like to get fixed before releasing it,
though. But they're getting harder and harder to fix ...
Major Bugs:
- Final Fantasy battle background music is absent. Sound effects still
work. Very weird.
- Final Fantasy IV scrolling during airship flight opening sequence is
horribly broken. Scrolls one screen at a time.
- Magical Drop flickers like crazy in-game. Basically unplayable like
this.
- Star Hearts character names don't appear in the smaller dialog box
that pops up.
Minor Bugs:
- Occasional flickering during Riviera opening scenes.
- One-frame flicker of Leda's sprite at the start of the first stage.
byuu says:
Changelog:
- WS: fixed 8-bit sign-extended imul (fixes Star Hearts completely,
Final Fantasy world map)
- WS: fixed rcl/rcr carry shifting (fixes Crazy Climber, others)
- WS: added sound DMA emulation (Star Hearts rain sound for one example)
- WS: added OAM caching, but it's forced every line for now because
otherwise there are too many sprite glitches
- WS: use headphoneEnable bit instead of speakerEnable bit (fixes muted
audio in games)
- WS: various code cleanups (I/O mapping, audio channel naming, etc)
The hypervoice channel doesn't sound all that great just yet. But I'm
not sure how it's supposed to sound. I need a better example of some
more complex music.
What's left are some unknown register status bits (especially in the
sound area), keypad interrupts, RTC emulation, CPU prefetch emulation.
And then it's all just bugs. Lots and lots of bugs that need to be
fixed.
EDIT: oops, bad typo in the code.
ws/ppu/ppu.cpp line 20: change range(256) to range(224).
Also, delete the r.speed stuff from channel5.cpp to make the rain sound
a lot better in Star Hearts. Apparently that's outdated and not what the
bits really do.
byuu says:
Changelog:
- WS: added HblankTimer and VblankTimer IRQs; although they don't appear
to have any effect on any games that use them :/
- WS: added sound emulation; works perfectly in some games (eg Riviera);
is completely silent in most games (eg GunPey)
The sound emulation only partially supports the hypervoice (headphone
only) channel. I need to implement the SDMA before it'll actually do
anything useful. I'm a bit confused about how exactly things work. It
looks like the speaker volume shift and clamp only applies to speaker
mode and not headphone mode, which is very weird. Then there's the
software possibility of muting the headphones and/or the speaker.
Preferably, I want to leave the emulator always in headphone mode for
the extra audio channel. If there are games that force-mute the
headphones, but not speakers, then I may need to force headphones back
on but with the hypervoice channel disabled. I guess we'll see how
things go.
Rough guess is probably that the channels default to enabled after the
IPLROM, and games aren't bothering to manually enable them or something.
byuu says:
Changelog:
- WS: fixed bug when IRQs triggered during a rep string instruction
- WS: added sprite attribute caching (per-scanline); absolutely massive
speed-up
- WS: emulated limit of 32 sprites per scanline
- WS: emulated the extended PPU register bit behavior based on the
DISP_CTRL tile bit-depth setting
- WS: added "Rotate" key binding; can be used to flip the WS display
between horizontal and vertical in real-time
The prefix emulation may not be 100% hardware-accurate, but the edge
cases should be extreme enough to not come up in the WS library. No way
to get the emulation 100% down without intensive hardware testing.
trap15 pointed me at a workflow diagram for it, but that diagram is
impossible without a magic internal stack frame that grows with every
IRQ, and can thus grow infinitely large.
The rotation thing isn't exactly the most friendly set-up, but oh well.
I'll see about adding a default rotation setting to manifests, so that
games like GunPey can start in the correct orientation. After that, if
the LCD orientation icon turns out to be reliable, then I'll start using
that. But if there are cases where it's not reliable, then I'll leave it
to manual button presses.
Speaking of icons, I'll need a set of icons to render on the screen.
Going to put them to the top right on vertical orientation, and on the
bottom left for horizontal orientation. Just outside of the video
output, of course.
Overall, WS is getting pretty far along, but still some major bugs in
various games. I really need sound emulation, though. Nobody's going to
use this at all without that.
byuu says:
Changelog:
- emulated SuperDisc $21e1 basic interface (NEC 4-bit MCU); all hardware
tests pass now (but they don't test much)
- WS/V30MZ: fixed inc/dec reg flag calculation
- WS/V30MZ: fixed lds/les instructions
WS/C compatibility should be way up now. SuperDisc BIOS passes all tests
now (but they only test for the presence of the interface, nothing
more.)
byuu says:
Changelog:
- WS: fixed lods, scas instructions
- WS: implemented missing GRP4 instructions
- WS: fixed transparency for screen one
- WSC: added color-mode PPU rendering
- WS+WSC: added packed pixel mode support
- WS+WSC: added dummy sound register reads/writes
- SFC: added threading to SuperDisc (it's hanging for right now; need to
clear IRQ on $21e2 writes)
SuperDisc Timer and Sound Check were failing before due to not turning
off IRQs on $21e4 clear, so I'm happy that's fixed now.
Riviera starts now, and displays the first intro screen before crashing.
Huge, huge amounts of corrupted graphics, though. This game's really
making me work for it :(
No color games seem fully playable yet, but a lot of monochrome and
color games are now at least showing more intro screen graphics before
dying.
This build defaults to horizontal orientation, but I left the inputs
bound to vertical orientation. Whoops. I still need to implement
a screen flip key binding.
byuu says:
Changelog:
- icarus: WS/C detects RAM type/size heuristically now
- icarus: WS/C uses ram type=$type instead of $type
- WS: use back color instead of white for backdrop
- WS: fixed sprite count limit; removes all the garbled sprites from
GunPey
- WS: hopefully fixed sprite priority with screen 2
- WS: implemented keypad polling; GunPey is now fully playable
- SNES: added Super Disc expansion port device (doesn't do anything,
just for testing)
Note: WS is hard-coded to vertical orientation right now. But there's
basic code in there for all the horizontal stuff.
byuu says:
Changelog:
- WS: fixed a major CPU bug where I was using the wrong bits for
ModR/M's memory mode
- WS: added grayscale PPU emulation (exceptionally buggy)
GunPey now runs, as long as you add:
eeprom name=save.ram size=0x800
to the manifest after importing with icarus.
Right now, you can't control the game due to missing keypad polling.
There's also a lot of glitchiness with the sprites. Seems like they're
not getting properly cleared sometimes or something.
Also, the PPU emulation is totally unrealistic bullshit. I decode and
evaluate every single tile and sprite on every single pixel of output.
No way in hell the hardware could ever come close to that. The speed's
around 500fps without the insane sprite evaluations, and around 90fps
with it. Obviously, I'll fix this in time.
Nothing else seems to run that I've tried. Not even far enough to
display any output whatsoever. Tried Langrisser Millenium, Rockman
& Forte and Riviera. I really need to update icarus to try and encode
eeprom/sram sizes, because that's going to break a lot of stuff if it's
missing.
byuu says:
Changelog:
- fixed nall/windows/guard.hpp
- fixed hiro/(windows,gtk)/header.hpp
- fixed Famicom PPU OAM reads (mask the correct bits when writing)
[hex_usr]
- removed the need for (system := system) lines from higan/GNUmakefile
- added "All" option to filetype dropdown for ROM loading
- allows loading GBC games in SGB mode (and technically non-GB(C)
games, which will obviously fail to do anything)
- loki can load and play game folders now (command-line only) (extremely
unimpressive; don't waste your time :P)
- the input is extremely hacked in as a quick placeholder; not sure
how I'm going to do mapping yet for it
byuu says:
Changelog:
- fixed SNES sprite priority regression from r17
- added nall/windows/guard.hpp to guard against global namespace
pollution (similar to nall/xorg/guard.hpp)
- almost fixed Windows compilation (still accuracy profile only, sorry)
- finished porting all of gba/ppu's registers over to the new .bit,.bits
format ... all GBA registers.cpp files gone now
- the "processors :=" line in the target-$(ui)/GNUmakefile is no longer
required
- processors += added to each emulator core
- duplicates are removed using the new nall/GNUmakefile's $(unique)
function
- SFC core can be compiled without the GB core now
- "-DSFC_SUPERGAMEBOY" is required to build in SGB support now (it's
set in target-tomoko/GNUmakefile)
- started once again on loki (higan/target-loki/) [as before, loki is
Linux/BSD only on account of needing hiro::Console]
loki shouldn't be too horrendous ... I hope. I just have the base
skeleton ready for now. But the code from v094r08 should be mostly
copyable over to it. It's just that it's about 50KiB of incredibly
tricky code that has to be just perfect, so it's not going to be quick.
But at least with the skeleton, it'll be a lot easier to pick away at it
as I want.
Windows compilation fix: move hiro/windows/header.hpp line 18 (header
guard) to line 16 instead.
byuu says:
Changelog:
- ruby: if DirectSoundCreate fails (no sound device present), return
false from init instead of crashing
- nall: improved edge case return values for
(basename,pathname,dirname,...)
- nall: renamed file_system_object class to inode
- nall: varuint_t replaced with VariadicNatural; which contains
.bit,.bits,.byte ala Natural/Integer
- nall: fixed boolean compilation error on Windows
- WS: popa should not restore SP
- GBA: rewrote the CPU/APU cores to use the .bit,.bits functions;
removed registers.cpp from each
Note that the GBA changes are extremely major. This is about five hours
worth of extremely delicate work. Any slight errors could break
emulation in extremely bad ways. Let's hold off on extensive testing
until the next WIP, after I do the same to the PPU.
So far ... endrift's SOUNDCNT_X I/O test is failing, although that code
didn't change, so clearly I messed up SOUNDCNT_H somehow ...
To compile on Windows:
1. change nall/string/platform.hpp line 47 to
return slice(result, 0, 3);
2. change ruby/video.wgl.cpp line 72 to
auto lock(uint32_t*& data, uint& pitch, uint width, uint height) -> bool {
3. add this line to the very top of hiro/windows/header.cpp:
#define boolean FuckYouMicrosoft
byuu says:
Changelog:
- sfc/ppu/sprite updated to use new .bit(s) functions; masked sizes
better; added valid flags instead of using magic numbers
- ws/ppu updates to use new .bit(s) functions
- ws/ppu: added line compare interrupt support
- added ws/eeprom; emulation of WS/WSC internal EEPROM and cartridge
EEPROM (1kbit - 16kbit supported)
- added basic read/write handlers for remaining WS/WSC PPU registers
WS EEPROM emulation is basically a direct copy of trap15's code. Still
some unknown areas in there, but hopefully it's enough to get further
into games that depend on EEPROM support. Note that you'll have to
manually add the eeprom line to the manifest for now, as icarus doesn't
know how to detect EEPROM/sizes yet.
I figured the changes to the SNES PPU sprites would slow it down a tad,
but it actually sped it up. Most of the impact from the integer classes
are gone now.
byuu says:
Changelog:
- higan now uses Natural<Size>/Integer<Size> for its internal types
- Super Famicom emulation now uses uint24 instead of uint for bus
addresses (it's a 24-bit bus)
- cleaned up gb/apu MMIO writes
- cleaned up sfc/coprocessor/msu1 MMIO writes
- ~3% speed penalty
I've wanted to do that 24-bit bus thing for so long, but have always
been afraid of the speed impact. It's probably going to hurt
balanced/performance once they compile again, but it wasn't significant
enough to harm the accuracy core's frame rate, thankfully. Only lost one
frame per second.
The GBA core handlers are clearly going to take a lot more work. The
bit-ranges will make it substantially easier to handle, though. Lots of
32-bit registers where certain values span multiple bytes, but we have
to be able to read/write at byte-granularity.
byuu says:
Got it. Wow, that didn't hurt nearly as much as I thought it was going
to.
Dropped from 127.5fps to 123.5fps to use Natural/Integer for
(u)int(8,16,32,64).
That's totally worth the cost.
byuu says:
This is a few days old, but oh well.
This WIP changes nall,hiro,ruby,icarus back to (u)int(8,16,32,64)_t.
I'm slowly pushing for (u)int(8,16,32,64) to use my custom
Integer<Size>/Natural<Size> classes instead. But it's going to be one
hell of a struggle to get that into higan.
byuu says:
I refactored my schedulers. Added about ten lines to each scheduler, and
removed about 100 lines of calling into internal state in the scheduler
for the FC,SFC cores and about 30-40 lines for the other cores. All of
its state is now private.
Also reworked all of the entry points to static auto Enter() and auto
main(). Where Enter() handles all the synchronization stuff, and main()
doesn't need the while(true); loop forcing another layer of indentation
everywhere.
Took a few hours to do, but totally worth it. I'm surprised I didn't do
this sooner.
Also updated icarus gmake install rule to copy over the database.
byuu says:
Nothing WS-related this time.
First, I fixed expansion port device mapping. On first load, it was
mapping the expansion port device too late, so it ended up not taking
effect. I had to spin out the logic for that into
Program::connectDevices(). This was proving to be quite annoying while
testing eBoot (SNES-Hook simulation.)
Second, I fixed the audio->set(Frequency, Latency) functions to take
(uint) parameters from the configuration file, so the weird behavior
around changing settings in the audio panel should hopefully be gone
now.
Third, I rewrote the interface->load,unload functions to call into the
(Emulator)::System::load,unload functions. And I have those call out to
Cartridge::load,unload. Before, this was inverted, and Cartridge::load()
was invoking System::load(), which I felt was kind of backward.
The Super Game Boy really didn't like this change, however. And it took
me a few hours to power through it. Before, I had the Game Boy core
dummying out all the interface->(load,save)Request calls, and having the
SNES core make them for it. This is because the folder paths and IDs
will be different between the two cores.
I've redesigned things so that ICD2's Emulator::Interface overloads
loadRequest and saveRequest, and translates the requests into new
requests for the SuperFamicom core. This allows the Game Boy code to do
its own loading for everything without a bunch of Super Game Boy special
casing, and without any awkwardness around powering on with no cartridge
inserted.
This also lets the SNES side of things simply call into higher-level
GameBoy::interface->load,save(id, stream) functions instead of stabbing
at the raw underlying state inside of various Game Boy core emulation
classes. So things are a lot better abstracted now.
byuu says:
Alright, well interrupts are in. At least Vblank is.
I also fixed a bug in vector() indexing, MoDRM mod!=3&®==6 using SS
instead of DS, opcodes a0-a3 allowing segment override, and added the
"irq_disable" stuff to the relevant opcodes to suppress IRQs after
certain instructions.
But unfortunately ... still no go on Riviera. It's not reading any
unmapped ports, and although it enables Vblank IRQs and they set port
$b4's status bit, the game never sets the IE flag, so no interrupts ever
actually fire. The game does indeed appear to be sitting in a rather
huge loop, which is probably dependent upon some RAM variable being set
from the Vblank IRQ, but I don't know how I'm supposed to be triggering
it.
... I'm really quite stumped here >_>
byuu says:
All 256 instructions implemented fully. Fixed a major bug with
instructions that both read and write to ModRM with displacement.
Riviera now runs into an infinite loop ... possibly crashed, possibly
waiting on interrupts or in to return something. Added a bunch of PPU
settings registers, but nothing's actually rendering with them yet.
244 of 256 opcodes implemented now, although the interrupt triggering
portions are missing from them still. Much better handling of prefixes
now.
I definitely have a newfound hatepreciation for x86 now >_>
byuu says:
Up to 211 opcodes implemented, with the caveat that the four opcodes
that make up group 3 and group 4 don't do anything yet. Both groups seem
to have some "illegal" instructions in them, so that'll be "fun".
I have a new mechanic in place for opcode prefixes, but it could use
some work still. I also only have it working to override ModRM mem
addressing, but of course it does it in a lot of other places like the
string operations.
Making it about 5.5 million instructions into Gunpey now, but of course
that doesn't mean much. Could be going off the rails at any point due to
CPU bugs or unimplemented ports. Riviera's still crashing.
byuu says:
26 hours in, 173 instructions implemented. Although the four segment
prefix opcodes don't actually do anything yet. There's less than 256
actual instructions on the 80186, not sure of the exact count.
Gunpey gets around ~8,200 instructions in before hitting an unsupported
opcode (loop). Riviera goes off the rails on a retf and ends up
executing an endless stream of bad opcodes in RAM =( Both games hammer
the living shit out of the in/out ports pretty much immediately.
byuu says:
Man, the 80186 is taking a lot longer to implement than I thought it
would. So far I'm 18 hours into this emulator. Whereas I had Super Mario
Bros fully playable (no sound) in 12 hours for the NES >_>
I refactored all the byte/word variant functions to single functions
that take a size parameter. Cuts the amount of code in half.
Also implemented repz/repnz + movsb/movsw, so Riviera now gets 299
instructions in before dying. Nobody really bothers to explain how the
CPU actually implements these instructions, but I think I have it right:
ignore non-string opcodes that follow rep, invoke the string operations
inside the rep opcodes to prevent interrupts from triggering between the
two (which will be even more fun for segment selector overrides ...)
The next opcode needed is 0xC7, which ... throws ModRM on its head. In
this mode, ModRM is only used to determine the target operand (and it
doesn't use the middle bits for that at all), and the source is an
immediate that follows it. Gonna have to waste a few more hours thinking
about how best to handle that.
Also, disabled HiDPI for higan as well on OS X.
byuu says:
More V30MZ implemented, a lot more to go.
icarus now supports importing WS and WSC games. It expects them to have
the correct file extension, same for GB and GBC.
> Ugh, apparently HiDPI icarus doesn't let you press the check boxes.
I set the flag value in the plist to false for now. Forgot to do it for
higan, but hopefully I won't forget before release.
byuu says:
Lots of improvements. We're now able to start executing some V30MZ
instructions. 32 of 256 opcodes implemented so far.
I hope this goes without saying, but there's absolutely no point in
loading WS/WSC games right now. You won't see anything until I have the
full CPU and partial PPU implemented.
ROM bank 2 works properly now, the I/O map is 16-bit (address) x 16-bit
(data) as it should be*, and I have a basic disassembler in place
(adding to it as I emulate new opcodes.)
(* I don't know what happens if you access an 8-bit port in 16-bit mode
or vice versa, so for now I'm just treating the handlers as always being
16-bit, and discarding the upper 8-bits when not needed.)
byuu says:
So, this WIP starts work on something new for higan. Obviously, I can't
keep it a secret until it's ready, because I want to continue daily WIP
releases, and of course, solicit feedback as I go along.
byuu says:
Note: balanced/performance profiles still broken, sorry.
Changelog:
- added nall/GNUmakefile unique() function; used on linking phase of
higan
- added nall/unique_pointer
- target-tomoko and {System}::Video updated to use
unique_pointer<ClassName> instead of ClassName* [1]
- locate() updated to search multiple paths [2]
- GB: pass gekkio's if_ie_registers and boot_hwio-G test ROMs
- FC, GB, GBA: merge video/ into the PPU cores
- ruby: fixed ~AudioXAudio2() typo
[1] I expected this to cause new crashes on exit due to changing the
order of destruction of objects (and deleting things that weren't
deleted before), but ... so far, so good. I guess we'll see what crops
up, especially on OS X (which is already crashing for unknown reasons on
exit.)
[2] right now, the search paths are: programpath(), {configpath(),
"higan/"}, {localpath(), "higan/"}; but we can add as many more as we
want, and we can also add platform-specific versions.
byuu says:
A minor WIP to get us started.
Changelog:
- System::Video merged to PPU::Video
- System::Audio merged to DSP::Audio
- System::Configuration merged to Interface::Settings
- created emulator/emulator.cpp and accompanying object file for shared
code between all cores
Currently, emulator.cpp just holds a videoColor() function that takes
R16G16B16, performs gamma/saturation/luma adjust, and outputs
(currently) A8R8G8B8. It's basically an internal function call for cores
to use when generating palette entries. This code used to exist inside
ui-tomoko/program/interface.cpp, but we have to move it internal for
software display emulation. But in the future, we could add other useful
cross-core functionality here.
byuu says:
This release features improvements to all emulation cores, but most
substantially for the Game Boy core. All of blargg's test ROMs that pass
in gambatte now either pass in higan, or are off by 1-2 clocks (the
actual behaviors are fully emulated.) I consider the Game Boy core to
now be fairly accurate, but there's still more improvements to be had.
Also, what's sure to be a major feature for some: higan now has full
support for loading and playing ordinary ROM files, whether they have
copier headers, weird extensions, or are inside compressed archives. You
can load these games from the command-line, from the main Library menu
(via Load ROM Image), or via drag-and-drop on the main higan window. Of
course, fans of game folders and the library need not worry: that's
still there as well.
Also new, you can drop the (uncompressed) Game Boy Advance BIOS onto the
higan main window to install it into the correct location with the
correct file name.
Lastly, this release technically restores Mac OS X support. However,
it's still not very stable, so I have decided against releasing binaries
at this time. I'd rather not rush this and leave a bad first impression
for OS X users.
Changelog (since v096):
- higan: project source code hierarchy restructured; icarus directly
integrated
- higan: added software emulation of color-bleed, LCD-refresh,
scanlines, interlacing
- icarus: you can now load and import ROM files/archives from the main
higan menu
- NES: fixed manifest parsing for board mirroring and VRC pinouts
- SNES: fixed manifest for Star Ocean
- SNES: fixed manifest for Rockman X2,X3
- GB: enabling LCD restarts frame
- GB: emulated extra OAM STAT IRQ quirk required for GBVideoPlayer
(Shonumi)
- GB: VBK, BGPI, OBPI are readable
- GB: OAM DMA happens inside PPU core instead of CPU core
- GB: fixed APU length and sweep operations
- GB: emulated wave RAM quirks when accessing while channel is enabled
- GB: improved timings of several CPU opcodes (gekkio)
- GB: improved timings of OAM DMA refresh (gekkio)
- GB: CPU uses open collector logic; return 0xFF for unmapped memory
(gekkio)
- GBA: fixed sequencer enable flags; fixes audio in Zelda - Minish Cap
(Jonas Quinn)
- GBA: fixed disassembler masking error (Lioncash)
- hiro: Cocoa support added; higan can now be compiled on Mac OS X 10.7+
- nall: improved program path detection on Windows
- higan/Windows: moved configuration data from %appdata% to
%localappdata%
- higan/Linux,BSD: moved configuration data from ~/.config/higan to
~/.local/higan