mirror of https://github.com/bsnes-emu/bsnes.git
818 Commits
Author | SHA1 | Message | Date |
---|---|---|---|
Tim Allen | 89d47914b9 |
Update to v102r14 release.
byuu says: Changelog: - (MS,GG,MD)/PSG: flip output bit from noise channel [TmEE] - MD/YM2612: rewrite YM2612::Channel functions to YM2612::Channel::Operator functions¹ - MD/YM2612: pitch/octave I/O registers should set reload, not value (fixes sound in most games) - MD/YM2612: don't try to sign-extend raw PCM values (fixes Shining Force opening music) - MD/YM2612: various algorithm simplifications; conversions from `*`, `/`, `%` to `<<`, `>>`; etc. Overall ... Sonic the Hedgehog sounds really, really great. Almost perfect, but there's a bit of clamping going on in the special zones. Langrisser II sounds really great. Shining Force sounds pretty much perfect. Bare Knucles (Streets of Rage) does pretty badly ... punches sound more like dinging a salad fork on a wine glass, heh. Altered Beast is extremely broken ... no music at the title screen, very distorted in-game music. I suspect a bug outside of the YM2612 is affecting this game. So, the YM2612 emulation isn't perfect, but it's a really good start to the most complex sound chip in all of higan. Hopefully the VRC7 and YM2413 will prove to be less ferocious ... not that I'm in any rush to work on either. The former is going to need the NES mapper rewrite to be done first, and the latter is cool but not very necessary since all those games have fallbacks to the inferior PSG audio. But really ... I can't thank Cydrak enough for doing this for me. It would have probably taken me months to parse through all of the documentation on this chip (most of which is in a 55-page thread on spritesmind that is filled with wrong/outdated information at the start, and corrections as you go deeper.) Not to mention, learning about what the hell detuning, low-frequency oscillation, tremolo, vibrato, etc were all about. Or how those algorithms to compute the final output work. Or the dozens of special cases littered in there to make everything sound good. Fierce, nasty chip that. Now the last real problem is save states ... the Mega Drive is going to be the trickiest of all to implement with libco. There are lots of areas where one chip will deadlock another chip while it completes some operation. We don't have a choice but to force those stalls to abort anyway, in order to let libco reach the start of its entry point once again. I don't know what kind of impact that'll have on states ... I suspect they'll work almost as reliably as the SNES does, but I can't know that until I implement it. It's going to be pretty nasty, though. ¹: this basically removes a lot of unnecessary op. prefixes and the need to capture `auto& op = operators[index]` at the start of every function. I wanted to have subfunctions like `YM2612::Channel::Operator::Envelope::run()`, etc but unfortunately, pretty much all of the envelope, phase, pitch, level functions need to access each other's state. |
|
Tim Allen | 0bf2c9d4e1 |
Update to v102r13 release.
byuu says: Changelog: - removed Emulator::Interface::videoFrequency(), audioFrequency()¹ - (MS,GG,MD)/PSG: removed inversion on noise channel LFSR update [mic_] - MD/PSG: lowered volume to match YM2612 volume - MD/YM2612: added Cydrak's emulation of FM channels and LFO² ¹: These were no longer used by the UI. The video frequency is adaptive on many systems. And the audio frequency is meaningless due to Emulator::Audio always outputting a consistent frequency specified by the UI. Plus, take the Genesis where there's two sound chips running at different frequencies. So, these had to go. ²: Due to some lurking bugs, the audio is completely broken unfortunately. Will need to be debugged :( First pass looking for any typos didn't yield any obvious results. |
|
Tim Allen | 4c3f9b93e7 |
Update to v102r12 release.
byuu says: Changelog: - MD/PSG: fixed 68K bus Z80 status read address location - MS, GG, MD/PSG: channels post-decrement their counters, not pre-decrement [Cydrak]¹ - MD/VDP: cache screen width registers once per scanline; screen height registers once per frame - MD/VDP: support 256-width display mode (used in Shining Force, etc) - MD/YM2612: implemented timers² - MD/YM2612: implemented 8-bit PCM DAC² - 68000: TRAP instruction should index the vector location by 32 (eg by 128 bytes), fixes Shining Force - nall: updated hex(), octal(), binary() functions to take uintmax instead of template<typename T> parameter³ ¹: this one makes an incredible difference. Sie noticed that lots of games set a period of 0, which would end up being a really long period with pre-decrement. By fixing this, noise shows up in many more games, and sounds way better in games even where it did before. You can hear extra sound on Lunar - Sanposuru Gakuen's title screen, the noise in Sonic The Hedgehog (Mega Drive) sounds better, etc. ²: this also really helps sound. The timers allow PSG music to play back at the correct speed instead of playing back way too quickly. And the PCM DAC lets you hear a lot of drum effects, as well as the "Sega!!" sound at the start of Sonic the Hedgehog, and the infamous, "Rise from your grave!" line from Altered Beast. Still, most music on the Mega Drive comes from the FM channels, so there's still not a whole lot to listen to. I didn't implement Cydrak's $02c test register just yet. Sie wasn't 100% certain on how the extended DAC bit worked, so I'd like to play it a little conservative and get sound working, then I'll go back and add a toggle or something to enable undocumented registers, that way we can use that to detect any potential problems they might be causing. ³: unfortunately we lose support for using hex() on nall/arithmetic types. If I have a const Pair& version of the function, then the compiler gets confused on whether Natural<32> should use uintmax or const Pair&, because compilers are stupid, and you can't have explicit arguments in overloaded functions. So even though either function would work, it just decides to error out instead >_> This is actually really annoying, because I want hex() to be useful for printing out nall/crypto keys and hashes directly. But ... this change had to be made. Negative signed integers would crash programs, and that was taking out my 68000 disassembler. |
|
Tim Allen | 1cab2dfeb8 |
Update to v102r11 release.
byuu says: Changelog: - MD: connected 32KB cartridge RAM up to every Genesis game under 2MB loaded¹ - MS, GG, MD: improved PSG noise channel emulation, hopefully² - MS, GG, MD: lowered PSG volume so that the lowpass doesn't clamp samples³ - MD: added read/write handlers for VRAM, VSRAM, CRAM - MD: block VRAM copy when CD4 is clear⁴ - MD: rewrote VRAM fill, VRAM copy to be byte-based⁵ - MD: VRAM fill byte set should fall through to regular data port write handler⁶ ¹: the header parsing for backup RAM is really weird. It's spaces when not used, and seems to be 0x02000001-0x02003fff for the Shining games. I don't understand why it starts at 0x02000001 instead of 0x02000000. So I'm just forcing every game to have 32KB of RAM for now. There's also special handling for ROMs > 2MB that also have RAM (Phantasy Star IV, etc) where there's a toggle to switch between ROM and RAM. For now, that's not emulated. I was hoping the Shining games would run after this, but they're still dead-locking on me :( ²: Cydrak pointed out some flaws in my attempt to implement what he had. I was having trouble understanding what he meant, so I went back and read the docs on the sound chip and tried implementing the counter the way the docs describe. Hopefully I have this right, but I don't know of any good test ROMs to make sure my noise emulation is correct. The docs say the shifted-out value goes to the output instead of the low bit of the LFSR, so I made that change as well. I think I hear the noise I'm supposed to in Sonic Marble Zone now, but it seems like it's not correct in Green Hill Zone, adding a bit of an annoying buzz to the background music. Maybe it sounds better with the YM2612, but more likely, I still screwed something up :/ ³: it's set to 50% range for both cores right now. For the MD, it will need to be 25% once YM2612 emulation is in. ⁴: technically, this deadlocks the VDP until a hard reset. I could emulate this, but for now I just don't do the VRAM copy in this case. ⁵: VSRAM fill and CRAM fill not supported in this new mode. They're technically undocumented, and I don't have good notes on how they work. I've been seeing conflicting notes on whether the VRAM fill buffer is 8-bits or 16-bits (I chose 8-bits), and on whether you write the low byte and then high byte of each words, or the high byte and then low byte (I chose the latter.) The VRAM copy improvements fix the opening text in Langrisser II, so that's great. ⁶: Langrisser II sets the transfer length to one less than needed to fill the background letter tile on the scenario overview screen. After moving to byte-sized transfers, a black pixel was getting stuck there. So effectively, VRAM fill length becomes DMA length + 1, and the first byte uses the data port so it writes a word value instead of just a byte value. Hopefully this is all correct, although it probably gets way more complicated with the VDP FIFO. |
|
Tim Allen | 68f04c3bb8 |
Update to v102r10 release.
byuu says: Changelog: - removed Emulator::Interface::Capabilities¹ - MS: improved the PSG emulation a bit - MS: added cheat code support - MS: added save state support² - MD: emulated the PSG³ ¹: there's really no point to it anymore. I intend to add cheat codes to the GBA core, as well as both cheat codes and save states to the Mega Drive core. I no longer intend to emulate any new systems, so these values will always be true. Further, the GUI doesn't respond to these values to disable those features anymore ever since the hiro rewrite, so they're double useless. ²: right now, the Z80 core is using a pointer for HL-\>(IX,IY) overrides. But I can't reliably serialize pointers, so I need to convert the Z80 core to use an integer here. The save states still appear to work fine, but there's the potential for an instruction to execute incorrectly if you're incredibly unlucky, so this needs to be fixed as soon as possible. Further, I still need a way to serialize array<T, Size> objects, and I should also add nall::Boolean serialization support. ³: I don't have a system in place to share identical sound chips. But this chip is so incredibly simple that it's not really much trouble to duplicate it. Further, I can strip out the stereo sound support code from the Game Gear portion, so it's even tinier. Note that the Mega Drive only just barely uses the PSG. Not at all in Altered Beast, and only for a tiny part of the BGM music on Sonic 1, plus his jump sound effect. |
|
Tim Allen | 8071da4c6a |
Update to v102r09 release.
byuu says: Changelog: - MD: restructured DMA to a subclass of VDP - MD: implemented VRAM copy mode (fixes Langrisser II ... mostly) - MS: implemened PSG support [Cydrak] - GG: implemented PSG stereo sound support - MS: use the new struct Model {} design that other cores use The MS/GG PSG should be feature complete, but I don't have good tests for Game Gear stereo mode, nor for the noise channel. There's also a really weird behavior with when to reload the channel counters on volume register writes. I can confirm what Cydrak observed in that following the docs and reloading always creates serious audio distortion problems. So, more research is needed there. To get the correct sound out of the PSG, I have to run it at 3.58MHz / 16, which seems really weird to me. The docs make it sound like it's supposed to run at the full 3.58MHz. If we can really run it at 223.7KHz, then that's help reduce the overhead of PSG emulation, which will definitely come in handy for Mega Drive, and possibly later Mega CD, emulation. I have not implemented the PSG into the Mega Drive just yet. Nor have I implemented save states or cheat code support into the MS/GG cores yet. The latter is next on my list. |
|
Tim Allen | d76c0c7e82 |
Update to v102r08 release.
byuu says: Changelog: - PCE: restructured VCE, VDCs to run one scanline at a time - PCE: bound VDCs to 1365x262 timing (in order to decouple the VDCs from the VCE) - PCE: the two changes above allow save states to function; also grants a minor speed boost - PCE: added cheat code support (uses 21-bit bus addressing; compare byte will be useful here) - 68K: fixed `mov *,ccr` to read two bytes instead of one [Cydrak] - Z80: emulated /BUSREQ, /BUSACK; allows 68K to suspend the Z80 [Cydrak] - MD: emulated the Z80 executing instructions [Cydrak] - MD: emulated Z80 interrupts (triggered during each Vblank period) [Cydrak] - MD: emulated Z80 memory map [Cydrak] - MD: added stubs for PSG, YM2612 accesses [Cydrak] - MD: improved bus emulation [Cydrak] The PCE core is pretty much ready to go. The only major feature missing is FM modulation. The Mega Drive improvements let us start to see the splash screens for Langrisser II, Shining Force, Shining in the Darkness. I was hoping I could get them in-game, but no such luck. My Z80 implementation is probably flawed in some way ... now that I think about it, I believe I missed the BusAPU::reset() check for having been granted access to the Z80 first. But I doubt that's the problem. Next step is to implement Cydrak's PSG core into the Master System emulator. Once that's in, I'm going to add save states and cheat code support to the Master System core. Next, I'll add the PSG core into the Mega Drive. Then I'll add the 'easy' PCM part of the YM2612. Then the rest of the beastly YM2612 core. Then finally, cap things off with save state and cheat code support. Should be nearing a new release at that point. |
|
Tim Allen | 7c9b78b7bb |
Update to v102r07 release.
byuu says: Changelog: - PCE: emulated PSG volume controls (vastly enhances audio quality) - PCE: emulated PSG noise as a square wave (somewhat enhances audio quality) - PCE: added save state support (currently broken and deadlocks the emulator though) Thankfully, MAME had some rather easy to read code on how the volume adjustment works, which they apparently ripped out of expired patents. Hooray! The two remaining sound issues are: 1. the random number generator for the noise channel is definitely not hardware accurate. But it won't affect the sound quality at all. You'd only be able to tell the difference by looking at hex bytes of a stream rip. 2. I have no clue how to emulate the LFO (frequency modulation). A comment in MAME's code (they also don't emulate it) advises that they aren't aware of any games that even use it. But I'm there has to be at least one? Given LFO not being used, and the RNG not really mattering all that much ... the sound's pretty close to perfect now. |
|
Tim Allen | fa6cbac251 |
Update to v102r06 release.
byuu says: Changelog: - added higan/emulator/platform.hpp (moved out Emulator::Platform from emulator/interface.hpp) - moved gmake build paramter to nall/GNUmakefile; both higan and icarus use it now - added build=profile mode - MD: added the region select I/O register - MD: started to add region selection support internally (still no external select or PAL support) - PCE: added cycle stealing when reading/writing to the VDC or VCE; and when using ST# instructions - PCE: cleaned up PSG to match the behavior of Mednafen (doesn't improve sound at all ;_;) - note: need to remove loadWaveSample, loadWavePeriod - HuC6280: ADC/SBC decimal mode consumes an extra cycle; does not set V flag - HuC6280: block transfer instructions were taking one cycle too many - icarus: added code to strip out PC Engine ROM headers - hiro: added options support to BrowserDialog The last one sure ended in failure. The plan was to put a region dropdown directly onto hiro::BrowserDialog, and I had all the code for it working. But I forgot one important detail: the system loads cartridges AFTER powering on, so even though I could technically change the system region post-boot, I'd rather not do so. So that means we have to know what region we want before we even select a game. Shit. |
|
Tim Allen | bf70044edc |
Update to v102r05 release.
byuu says: Changelog: - higan: added Makefile option, `build=(release|debug|instrument|optimize)` , defaults to release - PCE: added preliminary PSG (sound) emulation The Makefile thing is just to make it easier to build debug releases without having to hand-edit the Makefile. Just say "gmake build=debug" and you'll get -g, otherwise you'll get -O3 -s. I'll probably start adding these build= blocks to my other projects. Or maybe I'll put it into nall, in which case release will need a different name ... a stable -01, and a fast -03 mode. I also want to add a mode to generate profiling information (via gprof.) Unfortunately, the existing documentation on the PCE's PSG is as barebones as humanly possible. Right now, I support waveform mode, direct D/A mode, and noise generation mode. However for noise, I'm not actually generating a proper square wave, and I don't know the PRNG algorithm used for choosing the random values. So for now, I'm just feeding in nall::random() values to it. I'm also not sure about the noise mode's frequency counter. Magic Kit is implying it's 64*~frequency, but that results in an 11-bit period. It seems only logical that we'd want a 12-bit period. So my guess is that it's actually 12-bit, and halfway through it alternates between two randomly generated values every 32 samples, and the two values are generated every time the period hits zero. Next up, it's not clear when the period counter is reloaded, either for the waveform or the noise mode. So for now, when enabling the channel, I reload the waveform period. And when enabling noise mode, I reload the noise period. I don't know if you need to do it when writing to the frequency registers or not. Next, it's not clear whether the period is a decrement-and-compare, or a compare-and-decrement, and whether we reload with frequency, frequency-1, or frequency+1. There's this cryptic note in pcetext.txt: > The PSG channel frequency is 12 bits, $001 is the highest frequency, > $FFF is the next to lowest frequency, and $000 is the lowest frequency. As best I can tell, he's trying to say that it's decrement-and-compare. Whatever the case, there's periodic popping noises every few seconds. I thought it might be because this is the first system with a fractional sampling rate (~3.57MHz), but rounding the frequency to a whole number doesn't help at all, and emulator/audio should be able to handle fractional resampling rates anyway. The popping noises could also be due to PSG writes being cycle-timed, and my HuC6280 cycle timings not being very great yet. The PSG has no kind of interrupts, so I think careful timing is the only way to do certain things, especially D/A mode. Next up, I really don't understand the frequency modulation mode at all. I don't have any idea whatsoever how to support that. It also has a frequency value that we'll need to understand how the period works and reloads. Basic idea though is the channel 1 output turns into a value to modulate channel 0's frequency by, and channel 1's output gets muted. Next up, I don't know how the volume controls work at all. There's a master volume left+right, per-channel volume left+right, and per-channel overall volume. The documentation lists their effects in terms of decibels. I have no fucking clue how to turn decibels into multiply-by values. Let alone how to stack THREE levels of audio volume controls >_> Next, it looks like the output is always 5-bit unsigned per-channel, but there's also all the volume adjustments. So I don't know the final bit-depth of the final output to normalize the value into a signed floating point value between -1.0 and +1.0. So for now, half the potential speaker range (anything below zero) isn't used in the generated output. As bad as all this sounds, and it is indeed bad ... the audio's about ~75% correct, so you can definitely play games like this, it just won't be all that much fun. |
|
Tim Allen | ee7662a8be |
Update to v102r04 release.
byuu says: Changelog: - Super Game Boy support is functional once again - new GameBoy::SuperGameBoyInterface class - system.(dmg,cgb,sgb) is now Model::(Super)GameBoy(Color) ala the PC Engine - merged WonderSwanInterface, WonderSwanColorInterface shared functions to WonderSwan::Interface - merged GameBoyInterface, GameBoyColorInterface shared functions to GameBoy::Interface - Interface::unload() now calls Interface::save() for Master System, Game Gear, Mega Drive, PC Engine, SuperGrafx - PCE: emulated PCE-CD backup RAM; stored per-game as save.ram (2KiB file) - this means you can now save your progress in games like Neutopia - the PCE-CD I/O registers like BRAM write protect are not emulated yet - PCE: IRQ sources now hold the IRQ line state, instead of the CPU holding it - this fixes most SuperGrafx games, which were fighting over the VDC IRQ line previously - PCE: CPU I/O $14xx should return the pending IRQ bits even if IRQs are disabled - PCE: VCE and the VDCs now synchronize to each other; fixes pixel widths in all games - PCE: greatly increased the accuracy of the VPC priority selection code (windows may be buggy still) - HuC6280: PLA, PLX, PLY should set Z, N flags; fixes many game bugs [Jonas Quinn] The big thing I wanted to do was enslave the VDC(s) to the VCE. But unfortunately, I forgot about the asynchronous DMA channels that each VDC supports, so this isn't going to be possible I'm afraid. In the most demanding case, Daimakaimura in-game, we're looking at 85fps on my Xeon E3 1276v3. So ... not great, and we don't even have sound connected yet. We are going to have to profile and optimize this code once sound emulation and save states are in. Basically, think of it like this: the VCE, VDC0, and VDC1 all have the same overhead, scheduling wise (which is the bulk of the performance loss) as the dot-renderer for the SNES core. So it's like there's three bsnes-accuracy PPU threads running just for video. ----- Oh, just a fair warning ... the hooks for the SGB are a work in progress. If anyone is working on higan or a fork and want to do something similar to it, don't use it as a template, at least not yet. Right now, higan looks like this: - Emulator::Video handles the platform→videoRefresh calls - Emulator::Audio handles the platform→audioSample calls - each core hard-codes the platform→inputPoll, inputRumble calls - each core hard-codes calls to path, open, load to process files - dipSettings and notify are specialty hacks, neither are even hooked up right now to anything With the SGB, it's an emulation core inside an emulation core, so ideally you want to hook all of those functions. Emulator::Video and Emulator::Audio aren't really abstractions over that, as the GB core calls them and we have to special case not calling them in SGB mode. The path, open, load can be implemented without hooks, thanks to the UI only using one instance of Emulator::Platform for all cores. All we have to do is override the folder path ID for the "Game Boy.sys" folder, so that it picks "Super Game Boy.sfc/" and loads its boot ROM instead. That's just a simple argument to GameBoy::System::load() and we're done. dipSettings, notify and inputRumble don't matter. But we do also have to hook inputPoll as well. The nice idea would be for SuperFamicom::ICD2 to inherit from Emulator::Platform and provide the desired functions that we need to overload. After that, we'd just need the GB core to keep an abstraction over the global Emulator::platform\* handle, to select between the UI version and the SFC::ICD2 version. However ... that doesn't work because of Emulator::Video and Emulator::Audio. They would also have to gain an abstraction over Emulator::platform\*, and even worse ... you'd have to constantly swap between the two so that the SFC core uses the UI, and the GB core uses the ICD2. And so, for right now, I'm checking Model::SuperGameBoy() -> bool everywhere, and choosing between the UI and ICD2 targets that way. And as such, the ICD2 doesn't really need Emulator::Platform inheritance, although it certainly could do that and just use the functions it needs. But the SGB is even weirder, because we need additional new signals beyond just Emulator::Platform, like joypWrite(), etc. I'd also like to work on the Emulator::Stream for the SGB core. I don't see why we can't have the GB core create its own stream, and let the ICD2 just use that instead. We just have to be careful about the ICD2's CPU soft reset function, to make sure the GB core's Stream object remains valid. What I think that needs is a way to release an Emulator::Stream individually, rather than calling Emulator::Audio::reset() to do it. They are shared\_pointer objects, so I think if I added a destructor function to remove it from Emulator::Audio::streams, then that should work. |
|
Tim Allen | 186f008574 |
Update to v102r03 release.
byuu says: Changelog: - PCE: split VCE from VDC - HuC6280: changed bus from (uint21 addr) to (uint8 bank, uint13 addr) - added SuperGrafx emulation (adds secondary VDC, plus new VPC) The VDC now has no concept of the actual display raster timing, and instead is driven by Vpulse (start of frame) and Hpulse (start of scanline) signals from the VCE. One still can't render the start of the next scanline onto the current scanline through overly aggressive timings, but it shouldn't be too much more difficult to allow that to occur now. This process incurs quite a major speed hit, so low-end systems with Atom CPUs can't run things at 60fps anymore. The timing needs a lot of work. The pixels end up very jagged if the VCE doesn't output batches of 2-4 pixels at a time. But this should not be a requirement at all, so I'm not sure what's going wrong there. Yo, Bro and the 512-width mode of TV Sports Basketball is now broken as a result of these changes, and I'm not sure why. To load SuperGrafx games, you're going to have to change the .pce extensions to .sg or .sgx. Or you can manually move the games from the PC Engine folder to the SuperGrafx folder and change the game folder extensions. I have no way to tell the games apart. Mednafen uses CRC32 comparisons, and I may consider that since there's only five games, but I'm not sure yet. The only SuperGrafx game that's playable right now is Aldynes. And the priorities are all screwed up. I don't understand how the windows or the priorities work at all from sgxtech.txt, so ... yeah. It's pretty broken, but it's a start. I could really use some help with this, as I'm very lost right now with rendering :/ ----- Note that the SuperGrafx is technically its own system, it's not an add-on. As such, I'm giving it a separate .sys folder, and a separate library. There's debate over how to name this thing. "SuperGrafx" appears more popular than "Super Grafx". And you might also call it the "PC Engine SuperGrafx", but I decided to leave off the prefix so it appears more distinct. |
|
Tim Allen | bdc100e123 |
Update to v102r02 release.
byuu says: Changelog: - I caved on the `samples[] = {0.0}` thing, but I'm very unhappy about it - if it's really invalid C++, then GCC needs to stop accepting it in strict `-std=c++14` mode - Emulator::Interface::Information::resettable is gone - Emulator::Interface::reset() is gone - FC, SFC, MD cores updated to remove soft reset behavior - split GameBoy::Interface into GameBoyInterface, GameBoyColorInterface - split WonderSwan::Interface into WonderSwanInterface, WonderSwanColorInterface - PCE: fixed off-by-one scanline error [hex_usr] - PCE: temporary hack to prevent crashing when VDS is set to < 2 - hiro: Cocoa: removed (u)int(#) constants; converted (u)int(#) types to (u)int_(#)t types - icarus: replaced usage of unique with strip instead (so we don't mess up frameworks on macOS) - libco: added macOS-specific section marker [Ryphecha] So ... the major news this time is the removal of the soft reset behavior. This is a major!! change that results in a 100KiB diff file, and it's very prone to accidental mistakes!! If anyone is up for testing, or even better -- looking over the code changes between v102r01 and v102r02 and looking for any issues, please do so. Ideally we'll want to test every NES mapper type and every SNES coprocessor type by loading said games and power cycling to make sure the games are all cleanly resetting. It's too big of a change for me to cover there not being any issues on my own, but this is truly critical code, so yeah ... please help if you can. We technically lose a bit of hardware documentation here. The soft reset events do all kinds of interesting things in all kinds of different chips -- or at least they do on the SNES. This is obviously not ideal. But in the process of removing these portions of code, I found a few mistakes I had made previously. It simplifies resetting the system state a lot when not trying to have all the power() functions call the reset() functions to share partial functionality. In the future, the goal will be to come up with a way to add back in the soft reset behavior via keyboard binding as with the Master System core. What's going to have to happen is that the key binding will have to send a "reset pulse" to every emulated chip, and those chips are going to have to act independently to power() instead of reusing functionality. We'll get there eventually, but there's many things of vastly greater importance to work on right now, so it'll be a while. The information isn't lost ... we'll just have to pull it out of v102 when we are ready. Note that I left the SNES reset vector simulation code in, even though it's not possible to trigger, for the time being. Also ... the Super Game Boy core is still disconnected. To be honest, it totally slipped my mind when I released v102 that it wasn't connected again yet. This one's going to be pretty tricky to be honest. I'm thinking about making a third GameBoy::Interface class just for SGB, and coming up with some way of bypassing platform-> calls when in this mode. |
|
Tim Allen | c40e9754bc |
Update to v102r01 release.
byuu says: Changelog: - MS, MD, PCE: remove controllers from scheduler in destructor [hex_usr] - PCE: no controller should return all bits set (still causing errant key presses when swapping gamepads) - PCE: emulate MDR for hardware I/O $0800-$17ff - PCE: change video resolution to 1140x242 - PCE: added tertiary background Vscroll register (secondary cache) - PCE: create classes out of VDC VRAM, SATB, CRAM for cleaner access and I/O registers - PCE: high bits of CRAM read should be set - PCE: partially emulated VCE display registers: color frequency, HDS, HDW, VDS, VDW - PCE: 32-width sprites now split to two 16-width sprites to handle overflow properly - PCE: hopefully emulated sprite zero hit correctly (it's not well documented, and not often used) - PCE: trigger line coincidence interrupts during the previous scanline's Hblank period - tomoko: raise viewport from 320x240 to 326x242 to accommodate PC Engine's max resolution - nall: workaround for Clang compilation bug that can't figure out that a char is an integral data type |
|
Tim Allen | ae5968cfeb |
Update to v102 release.
byuu says (in the public announcement): This release adds very preliminary emulation of the Sega Master System (Mark III), Sega Game Gear, Sega Mega Drive (Genesis), and NEC PC Engine (Turbografx-16). These cores do not yet offer sound emulation, save states or cheat codes. I'm always very hesitant to release a new emulation core in its alpha stages, as in the past this has resulted in lasting bad impressions of cores that have since improved greatly. For instance, the Game Boy Advance emulation offered today is easily the second most accurate around, yet it is still widely judged by its much older alpha implementation. However, it's always been tradition with higan to not hold onto code in secret. Rather than delay future releases for another year or two, I'll put my faith in you all to understand that the emulation of these systems will improve over time. I hope that by releasing things as they are now, I might be able to receive some much needed assistance in improving these cores, as the documentation for these new systems is very much less than ideal. byuu says (in the WIP forum): Changelog: - PCE: latch background scroll registers (fixes Neutopia scrolling) - PCE: clip background attribute table scrolling (fixes Blazing Lazers scrolling) - PCE: support background/sprite enable/disable bits - PCE: fix large sprite indexing (fixes Blazing Lazers title screen sprites) - HuC6280: wrap zeropage accesses to never go beyond $20xx - HuC6280: fix alternating addresses for block move instructions (fixes Neutopia II) - HuC6280: block move instructions save and restore A,X,Y registers - HuC6280: emulate BCD mode (may not be 100% correct, based on SNES BCD) (fixes Blazing Lazers scoring) |
|
Tim Allen | b03563426f |
Update to v101r35 release.
byuu says: Changelog: - PCE: added 384KB HuCard ROM mirroring mode - PCE: corrected D-pad polling order - PCE: corrected palette color ordering (GRB, not RGB -- yes, seriously) - PCE: corrected SATB DMA -- should write to SATB, not to VRAM - PCE: broke out Background, Sprite VDC settings to separate subclasses - PCE: emulated VDC backgrounds - PCE: emulated VDC sprites - PCE: emulated VDC sprite overflow, collision interrupts - HuC6280: fixed disassembler output for STi instructions - HuC6280: added missing LastCycle check to interrupt() - HuC6280: fixed BIT, CMP, CPX, CPY, TRB, TSB, TST flag testing and result - HuC6280: added extra cycle delays to the block move instructions - HuC6280: fixed ordering for flag set/clear instructions (happens after LastCycle check) - HuC6280: removed extra cycle from immediate instructions - HuC6280: fixed indirectLoad, indirectYStore absolute addressing - HuC6280: fixed BBR, BBS zeropage value testing - HuC6280: fixed stack push/pull direction Neutopia looks okay until the main title screen, then there's some gibberish on the bottom. The game also locks up with some gibberish once you actually start a new game. So, still not playable just yet =( |
|
Tim Allen | f500426158 |
Update to v101r34 release.
byuu says: Changelog: - PCE: emulated gamepad polling - PCE: emulated CPU interrupt sources - PCE: emulated timer - PCE: smarter emulation of ST0,ST1,ST2 instructions - PCE: better structuring of CPU, VDP IO registers - PCE: connected palette generation to the interface - PCE: emulated basic VDC timing - PCE: emulated VDC Vblank, Coincidence, and DMA completion IRQs - PCE: emulated VRAM, SATB DMA transfers - PCE: emulated VDC I/O registers Everything I've implemented today likely has lots of bugs, and is untested for obvious reasons. So basically, after I fix many horrendous bugs, it should now be possible to implement the VDC and start getting graphical output. |
|
Tim Allen | 8499c64756 |
Update to v101r33 release.
byuu says: Changelog: - PCE: HuC6280 core completed There's bound to be a countless stream of bugs, and the cycle counts are almost certainly not exact yet, but ... all instructions are implemented. So at this point, I can start comparing trace logs against Mednafen's debugger output. Of course, we're very likely to immediately slam into a wall of needing I/O registers implemented for the VDC in order to proceed further. |
|
Tim Allen | 26bd7590ad |
Update to v101r32 release.
byuu says: Changelog: - SMS: fixed controller connection bug - SMS: fixed Z80 reset bug - PCE: emulated HuC6280 MMU - PCE: emulated HuC6280 RAM - PCE: emulated HuCard ROM reading - PCE: implemented 178 instructions - tomoko: removed "soft reset" functionality - tomoko: moved "power cycle" to just above "unload" option I'm not sure of the exact number of HuC6280 instructions, but it's less than 260. Many of the ones I skipped are HuC6280-originals that I don't know how to emulate just yet. I'm also really unsure about the zero page stuff. I believe we should be adding 0x2000 to the addresses to hit page 1, which is supposed to be mapped to the zero page (RAM). But when I look at turboEMU's source, I have no clue how the hell it could possibly be doing that. It looks to be reading from page 0, which is almost always ROM, which would be ... really weird. I also don't know if I've emulated the T mode opcodes correctly or not. The documentation on them is really confusing. |
|
Tim Allen | 21ee597aae | Add a `.gitlab-ci.yml` to automate WIP builds. | |
Tim Allen | bf90bdfcc8 |
Update to v101r31 release.
byuu says: Changelog: - converted Emulator::Interface::Bind to Emulator::Platform - temporarily disabled SGB hooks - SMS: emulated Game Gear palette (latching word-write behavior not implemented yet) - SMS: emulated Master System 'Reset' button, Game Gear 'Start' button - SMS: removed reset() functionality, driven by the mappable input now instead - SMS: split interface class in two: one for Master System, one for Game Gear - SMS: emulated Game Gear video cropping to 160x144 - PCE: started on HuC6280 CPU core—so far only registers, NOP instruction has been implemented Errata: - Super Game Boy support is broken and thus disabled - if you switch between Master System and Game Gear without restarting, bad things happen: - SMS→GG, no video output on the GG - GG→SMS, no input on the SMS I'm not sure what's causing the SMS\<-\>GG switch bug, having a hard time debugging it. Help would be very much appreciated, if anyone's up for it. Otherwise I'll keep trying to track it down on my end. |
|
Tim Allen | 0ad70a30f8 |
Update to v101r30 release.
byuu says: Changelog: - SMS: added cartridge ROM/RAM mirroring (fixes Alex Kidd) - SMS: fixed 8x16 sprite mode (fixes Wonder Boy, Ys graphics) - Z80: emulated "ex (sp),hl" instruction - Z80: fixed INx NF (should be set instead of cleared) - Z80: fixed loop condition check for CPxR, INxR, LDxR, OTxR (fixes walking in Wonder Boy) - SFC: removed Debugger and sfc/debugger.hpp - icarus: connected MS, GG, MD importing to the scan dialog - PCE: added emulation skeleton to higan and icarus At this point, Master System games are fairly highly compatible, sans audio. Game Gear games are running, but I need to crop the resolution and support the higher color palette that they can utilize. It's really something else the way they handled the resolution shrink on that thing. The last change is obviously going to be the biggest news. I'm very well aware it's not an ideal time to start on a new emulation core, with the MS and MD cores only just now coming to life with no audio support. But, for whatever reason, my heart's really set on working on the PC Engine. I wanted to write the final higan skeleton core, and get things ready so that whenever I'm in the mood to work on the PCE, I can do so. The skeleton is far and away the most tedious and obnoxious part of the emulator development, because it's basically all just lots of boilerplate templated code, lots of new files to create, etc. I really don't know how things are going to proceed ... but I can say with 99.9% certainty that this will be the final brand new core ever added to higan -- at least one written by me, that is. This was basically the last system from my childhood that I ever cared about. It's the last 2D system with games that I really enjoy playing. No other system is worth dividing my efforts and reducing the quality and amount of time to work on the systems I have. In the future, there will be potential for FDS, Mega CD and PCE-CD support. But those will all be add-ons, and they'll all be really difficult and challenge the entire design of higan's UI (it's entirely cartridge-driven at this time.) None of them will be entirely new cores like this one. |
|
Tim Allen | 79c83ade70 |
Update to v101r29 release.
byuu says: Changelog: - SMS: background VDP clips partial tiles on the left (math may not be right ... it's hard to reason about) - SMS: fix background VDP scroll locks - SMS: fix VDP sprite coordinates - SMS: paint black after the end of the visible display - todo: shouldn't be a brute force at the end of the main VDP loop, should happen in each rendering unit - higan: removed emulator/debugger.hpp - higan: removed privileged: access specifier - SFC: removed debugger hooks - todo: remove sfc/debugger.hpp - Z80: fixed disassembly of (fd,dd) cb (displacement) (opcode) instructions - Z80: fix to prevent interrupts from firing between ix/iy prefixes and opcodes - todo: this is a rather hacky fix that could, if exploited, crash the stack frame - Z80: fix BIT flags - Z80: fix ADD hl,reg flags - Z80: fix CPD, CPI flags - Z80: fix IND, INI flags - Z80: fix INDR, INIT loop flag check - Z80: fix OUTD, OUTI flags - Z80: fix OTDR, OTIR loop flag check |
|
Tim Allen | a3aea95e6b |
Update to v101r28 release.
byuu says: Changelog: - SMS: emulated the remaining 240 instructions in the (0xfd, 0xdd) 0xcb (displacement) (opcode) set - 1/8th of these were "legal" instructions, and apparently games use them a lot - SMS: emulated the standard gamepad controllers - reset button not emulated yet The reset button is tricky. In every other case, reset is a hardware thing that instantly reboots the entire machine. But on the SMS, it's more like a gamepad button that's attached to the front of the device. When you press it, it fires off a reset vector interrupt and the gamepad polling routine lets you query the status of the button. Just having a reset option in the "Master System" hardware menu is not sufficient to fully emulate the behavior. Even more annoying is that the Game Gear doesn't have such a button, yet the core information structs aren't flexible enough for the Master System to have it, and the Game Gear to not have it, in the main menu. But that doesn't matter anyway, since it won't work having it in the menu for the Master System. So as a result, I'm going to have to have a new "input device" called "Hardware" that has the "Reset" button listed under there. And for the sake of consistency, I'm not sure if we should treat the other systems the same way or not :/ |
|
Tim Allen | 569f5abc28 |
Update to v101r27 release.
byuu says: Changelog: - SMS: emulated the generic Sega memory mapper (none of the more limited forms of it yet) - (missing ROM shift, ROM write enable emulation -- no commercial games use either, though) - SMS: bus I/O returns 0xff instead of 0x00 so games don't think every key is being pressed at once - (this is a hack until I implement proper controller pad reading) - SMS: very limited protection against reading/writing past the end of ROM/RAM (todo: should mirror) - SMS: VDP background HSCROLL subtracts, rather than adds, to the offset (unlike VSCROLL) - SMS: VDP VSCROLL is 9-bit, modulates voffset+vscroll to 224 in 192-line mode (32x28 tilemap) - SMS: VDP tiledata for backgrounds and sprites use `7-(x&7)` rather than `(x&7)` - SMS: fix output color to be 6-bit rather than 5-bit - SMS: left clip uses register `#7`, not palette color `#7` - (todo: do we want `color[reg7]` or `color[16 + reg7]`?) - SMS: refined handling of 0xcb, 0xed prefixes in the Z80 core and its disassembler - SMS: emulated (0xfd, 0xdd) 0xcb opcodes 0x00-0x0f (still missing 0x10-0xff) - SMS: fixed 0xcb 0b-----110 opcodes to use direct HL and never allow (IX,IY)+d - SMS: fixed major logic bug in (IX,IY)+d displacement - (was using `read(x)` instead of `operand()` for the displacement byte fetch before) - icarus: fake there always being 32KiB of RAM in all SMS cartridges for the time being - (not sure how to detect this stuff yet; although I've read it's not even really possible `>_>`) TODO: remove processor/z80/dissassembler.cpp code block at line 396 (as it's unnecessary.) Lots of commercial games are starting to show trashed graphical output now. |
|
Tim Allen | 5bdf55f08f |
Update to v101r25 release.
byuu says: Changelog: - SMS: emulated VDP mode 4 graphical output (background, sprites) - added $(windres) to icarus as well I'm sure the VDP emulation is still really, really buggy, but essentially I handle: - mode 4 rendering - background scrolling - background hscroll lock - background vscroll lock - background nametable relocation - sprite nametable relocation - sprite tiledata relocation - sprite 192-line y=0xd0 edge case (end sprite rendering) - sprite 8-pixel x-coordinate displacement - sprite extended size (height only in mode 4) - sprite overflow - sprite collision - left column masking - display disable - backdrop color - 192, 224, 240 height I do not support: - mode 2 rendering - sprite zoom - disallowing 240 height in NTSC mode - PAL mode - probably lots more |
|
Tim Allen | e30780bb72 |
Update to v101r25 release.
byuu says: Changelog: - Makefile: added $(windres), -lpthread to Windows port - GBA: WAITCNT.prefetch is not writable (should fix Donkey Kong: King of Swing) \[endrift\] - SMS: fixed hcounter shift value \[hex\_usr\] - SMS: emulated interrupts (reset button isn't hooked up anywhere, not sure where to put it yet) This WIP actually took a really long time because the documentation on SMS interrupts was all over the place. I'm hoping I've emulated them correctly, but I honestly have no idea. It's based off my best understanding from four or five different sources. So it's probably quite buggy. However, a few interrupts fire in Sonic the Hedgehog, so that's something to start with. Now I just have to hope I've gotten some games far enough in that I can start seeing some data in the VDP VRAM. I need that before I can start emulating graphics mode 4 to get some actual screen output. Or I can just say to hell with it and use a "Hello World" test ROM. That'd probably be smarter. |
|
Tim Allen | bab2ac812a |
Update to v101r24 release.
byuu says: Changelog: - SMS: extended bus mapping of in/out ports: now decoding them fully inside ms/bus - SMS: moved Z80 disassembly code from processor/z80 to ms/cpu (cosmetic) - SMS: hooked up non-functional silent PSG sample generation, so I can cap the framerate at 60fps - SMS: hooked up the VDP main loop: 684 clocks/scanline, 262 scanlines/frame (no PAL support yet) - SMS: emulated the VDP Vcounter and Hcounter polling ... hopefully it's right, as it's very bizarre - SMS: emulated VDP in/out ports (data read, data write, status read, control write, register write) - SMS: decoding and caching all VDP register flags (variable names will probably change) - nall: \#undef IN on Windows port (prevent compilation warning on processor/z80) Watching Sonic the Hedgehog, I can definitely see some VDP register writes going through, which is a good sign. Probably the big thing that's needed before I can get enough into the VDP to start showing graphics is interrupt support. And interrupts are never fun to figure out :/ What really sucks on this front is I'm flying blind on the Z80 CPU core. Without a working VDP, I can't run any Z80 test ROMs to look for CPU bugs. And the CPU is certainly too buggy still to run said test ROM anyway. I can't find any SMS emulators with trace logging from reset. Such logs vastly accelerate tracking down CPU logic bugs, so without them, it's going to take a lot longer. |
|
Tim Allen | 1d7b674dd4 |
Update to v101r23 release.
byuu says: This is a really tiny WIP. Just wanted to add the known fixes before I start debugging it against Mednafen in a fork. Changelog: - Z80: fixed flag calculations on 8-bit ADC, ADD, SBC, SUB - Z80: fixed flag calculations on 16-bit ADD - Z80: simplified DAA logic \[AWJ\] - Z80: RETI sets IFF1=IFF2 (same as RETN) |
|
Tim Allen | c2c957a9da |
Update to v101r22 release.
byuu says: Changelog: - Z80: all 25 remaining instructions implemented Now onto the debugging ... :/ |
|
Tim Allen | 8cf20dabbf |
Update to v101r21 release.
byuu says: Changelog: - Z80: emulated 83 new instructions - Z80: timing improvements DAA is a skeleton implementation to complete the normal opcode set. Also worth noting that I don't know exactly what the hell RETI is doing, so for now it acts like RET. RETN probably needs some special handling besides just setting IFF1=IFF2 as well. I'm now missing 24 ED-prefix instructions, plus DAA, for a total of 25 opcodes remaining. And then, of course, several weeks worth of debugging all of the inevitable bugs in the core. |
|
Tim Allen | 2707c5316d |
Update to v101r20 release.
byuu says: Changelog: - Z80: emulated 272 new instructions - hiro/GTK: fixed v101r19 Linux regression [thanks, SuperMikeMan!] |
|
Tim Allen | f3e67da937 |
Update to v101r19 release.
byuu says: Changelog: - added \~130 new PAL games to icarus (courtesy of Smarthuman and aquaman) - added all three Korean-localized games to icarus - sfc: removed SuperDisc emulation (it was going nowhere) - sfc: fixed MSU1 regression where the play/repeat flags were not being cleared on track select - nall: cryptography support added; will be used to sign future databases (validation will always be optional) - minor shims to fix compilation issues due to nall changes The real magic is that we now have 25-30% of the PAL SNES library in icarus! Signing will be tricky. Obviously if I put the public key inside the higan archive, then all anyone has to do is change that public key for their own releases. And if you download from my site (which is now over HTTPS), then you don't need the signing to verify integrity. I may just put the public key on my site on my site and leave it at that, we'll see. |
|
Tim Allen | c6fc15f8d2 |
Update to v101r18 release.
byuu says: Changelog: - added 30 new PAL games to icarus (courtesy of Mikerochip) - new version of libco no longer requires mprotect nor W|X permissions - nall: default C compiler to -std=c11 instead of -std=c99 - nall: use `-fno-strict-aliasing` during compilation - updated nall/certificates (hopefully for the last time) - updated nall/http to newer coding conventions - nall: improve handling of range() function I didn't really work on higan at all, this is mostly just a release because lots of other things have changed. The most interesting is `-fno-strict-aliasing` ... basically, it joins `-fwrapv` as being "stop the GCC developers from doing *really* evil shit that could lead to security vulnerabilities or instabilities." For the most part, it's a ~2% speed penalty for higan. Except for the Sega Genesis, where it's a ~10% speedup. I have no idea how that's possible, but clearly something's going very wrong with strict aliasing on the Genesis core. So ... it is what it is. If you need the performance for the non-Genesis cores, you can turn it off in your builds. But I'm getting quite sick of C++'s "surprises" and clever compiler developers, so I'm keeping it on in all of my software going forward. |
|
Tim Allen | d6e9d94ec3 |
Update to v101r17 release.
byuu says: Changelog: - Z80: added most opcodes between 0x00 and 0x3f (two or three hard ones missing still) - Z80: redid register declaration *again* to handle AF', BC', DE', HL' (ugggggh, the fuck? Alternate registers??) - basically, using `#define <register name>` values to get around horrendously awful naming syntax - Z80: improved handling of displace() so that it won't ever trigger on (BC) or (DE) |
|
Tim Allen | 2fbbccf985 |
Update to v101r16 release.
byuu says: Changelog: - Z80: implemented 113 new instructions (all the easy LD/ADC/ADD/AND/OR/SBC/SUB/XOR ones) - Z80: used alternative to castable<To, With> type (manual cast inside instruction() register macros) - Z80: debugger: used register macros to reduce typing and increase readability - Z80: debugger: smarter way of handling multiple DD/FD prefixes (using gotos, yay!) - ruby: fixed crash with Windows input driver on exit (from SuperMikeMan) I have no idea how the P/V flag is supposed to work on AND/OR/XOR, so that's probably wrong for now. HALT is also mostly a dummy function for now. But I typically implement those inside instruction(), so it probably won't need to be changed? We'll see. |
|
Tim Allen | 4c3f58150c |
Update to v101r15 release.
byuu says: Changelog: - added (poorly-named) castable<To, With> template - Z80 debugger rewritten to make declaring instructions much simpler - Z80 has more instructions implemented; supports displacement on (IX), (IY) now - added `Processor::M68K::Bus` to mirror `Processor::Z80::Bus` - it does add a pointer indirection; so I'm not sure if I want to do this for all of my emulator cores ... |
|
Tim Allen | d91f3999cc |
Update to v101r14 release.
byuu says: Changelog: - rewrote the Z80 core to properly handle 0xDD (IX0 and 0xFD (IY) prefixes - added Processor::Z80::Bus as a new type of abstraction - all of the instructions implemented have their proper T-cycle counts now - added nall/certificates for my public keys The goal of `Processor::Z80::Bus` is to simulate the opcode fetches being 2-read + 2-wait states; operand+regular reads/writes being 3-read. For now, this puts the cycle counts inside the CPU core. At the moment, I can't think of any CPU core where this wouldn't be appropriate. But it's certainly possible that such a case exists. So this may not be the perfect solution. The reason for having it be a subclass of Processor::Z80 instead of virtual functions for the MasterSystem::CPU core to define is due to naming conflicts. I wanted the core to say `in(addr)` and have it take the four clocks. But I also wanted a version of the function that didn't consume time when called. One way to do that would be for the core to call `Z80::in(addr)`, which then calls the regular `in(addr)` that goes to `MasterSystem::CPU::in(addr)`. But I don't want to put the `Z80::` prefix on all of the opcodes. Very easy to forget it, and then end up not consuming any time. Another is to use uglier names in the `MasterSystem::CPU` core, like `read_`, `write_`, `in_`, `out_`, etc. But, yuck. So ... yeah, this is an experiment. We'll see how it goes. |
|
Tim Allen | 7c96826eb0 |
Update to v101r13 release.
byuu says: Changelog: - MS: added ms/bus - Z80: implemented JP/JR/CP/DI/IM/IN instructions - MD/VDP: added window layer emulation - MD/controller/gamepad: fixed d2,d3 bits (Altered Beast requires this) The Z80 is definitely a lot nastier than the LR35902. There's a lot of table duplication with HL→IX→IY; and two of them nest two levels deep (eg FD CB xx xx), so the design may change as I implement more. |
|
Tim Allen | 5df717ff2a |
Update to v101r12 release.
byuu says: Changelog: - new md/bus/ module for bus reads/writes - abstracts byte/word accesses wherever possible (everything but RAM; forces all but I/O to word, I/O to byte) - holds the system RAM since that's technically not part of the CPU anyway - added md/controller and md/system/peripherals - added emulation of gamepads - added stub PSG audio output (silent) to cap the framerate at 60fps with audio sync enabled - fixed VSRAM reads for plane vertical scrolling (two bugs here: add instead of sub; interlave plane A/B) - mask nametable read offsets (can't exceed 8192-byte nametables apparently) - emulated VRAM/VSRAM/CRAM reads from VDP data port - fixed sprite width/height size calculations - added partial emulation of 40-tile per scanline limitation (enough to fix Sonic's title screen) - fixed off-by-one sprite range testing - fixed sprite tile indexing - Vblank happens at Y=224 with overscan disabled - unsure what happens when you toggle it between Y=224 and Y=240 ... probably bad things - fixed reading of address register for ADDA, CMPA, SUBA - fixed sign extension for MOVEA effect address reads - updated MOVEM to increment the read addresses (but not writeback) for (aN) mode With all of that out of the way, we finally have Sonic the Hedgehog (fully?) playable. I played to stage 1-2 and through the special stage, at least. EDIT: yeah, we probably need HIRQs for Labyrinth Zone. Not much else works, of course. Most games hang waiting on the Z80, and those that don't (like Altered Beast) are still royally screwed. Tons of features still missing; including all of the Z80/PSG/YM2612. A note on the perihperals this time around: the Mega Drive EXT port is basically identical to the regular controller ports. So unlike with the Famicom and Super Famicom, I'm inheriting the exension port from the controller class. |
|
Tim Allen | f7ddbfc462 |
Update to v101r11 release.
byuu says: Changelog: - 68K: fixed NEG/NEGX operand order - 68K: fixed bug in disassembler that was breaking trace logging - VDP: improved sprite rendering (still 100% broken) - VDP: added horizontal/vertical scrolling (90% broken) Forgot: - 68K: fix extension word sign bit on indexed modes for disassembler as well - 68K: emulate STOP properly (use r.stop flag; clear on IRQs firing) I'm really wearing out fast here. The Genesis documentation is somehow even worse than Game Boy documentation, but this is a far more complex system. It's a massive time sink to sit here banging away at every possible combination of how things could work, only to see no positive improvements. Nothing I do seems to get sprites to do a goddamn thing. squee says the sprite Y field is 10-bits, X field is 9-bits. genvdp says they're both 10-bits. BlastEm treats them like they're both 10-bits, then masks off the upper bit so it's effectively 9-bits anyway. Nothing ever bothers to tell you whether the horizontal scroll values are supposed to add or subtract from the current X position. Probably the most basic detail you could imagine for explaining horizontal scrolling and yet ... nope. Nothing. I can't even begin to understand how the VDP FIFO functionality works, or what the fuck is meant by "slots". I'm completely at a loss as how how in the holy hell the 68K works with 8-bit accesses. I don't know whether I need byte/word handlers for every device, or if I can just hook it right into the 68K core itself. This one's probably the most major design detail. I need to know this before I go and implement the PSG/YM2612/IO ports-\>gamepads/Z80/etc. Trying to debug the 68K is murder because basically every game likes to start with a 20,000,000-instruction reset phase of checksumming entire games, and clearing out the memory as agonizingly slowly as humanly possible. And like the ARM, there's too many registers so I'd need three widescreen monitors to comfortably view the entire debugger output lines onscreen. I can't get any test ROMs to debug functionality outside of full games because every **goddamned** test ROM coder thinks it's acceptable to tell people to go fetch some toolchain from a link that died in the late '90s and only works on MS-DOS 6.22 to build their fucking shit, because god forbid you include a 32KiB assembled ROM image in your fucking archives. ... I may have to take a break for a while. We'll see. |
|
Tim Allen | 0b70a01b47 |
Update to v101r10 release.
byuu says: Changelog: - 68K: MOVEQ is 8-bit signed - 68K: disassembler was print EOR for OR instructions - 68K: address/program-counter indexed mode had the signed-word/long bit backward - 68K: ADDQ/SUBQ #n,aN always works in long mode; regardless of size - 68K→VDP DMA needs to use `mode.bit(0)<<22|dmaSource`; increment by one instead of two - Z80: added registers and initial two instructions - MS: hooked up enough to load and start running games - Sonic the Hedgehog can execute exactly one instruction... whoo. |
|
Tim Allen | 4d2e17f9c0 |
Update to v101r09 release.
byuu says: Sorry, two WIPs in one day. Got excited and couldn't wait. Changelog: - ADDQ, SUBQ shouldn't update flags when targeting an address register - ADDA should sign extend effective address reads - JSR was pushing the PC too early - some improvements to 8-bit register reads on the VDP (still needs work) - added H/V counter reads to the VDP IO port region - icarus: added support for importing Master System and Game Gear ROMs - tomoko: added library sub-menus for each manufacturer - still need to sort Game Gear after Mega Drive somehow ... The sub-menu system actually isn't all that bad. It is indeed a bit more annoying, but not as annoying as I thought it was going to be. However, it looks a hell of a lot nicer now. |
|
Tim Allen | 043f6a8b33 |
Update to v101r08 release.
byuu says: Changelog: - 68K: fixed read-modify-write instructions - 68K: fixed ADDX bug (using wrong target) - 68K: fixed major bug with SUB using wrong argument ordering - 68K: fixed sign extension when reading address registers from effective addressing - 68K: fixed sign extension on CMPA, SUBA instructions - VDP: improved OAM sprite attribute table caching behavior - VDP: improved DMA fill operation behavior - added Master System / Game Gear stubs (needed for developing the Z80 core) |
|
Tim Allen | ffd150735b |
Update to v101r07 release.
byuu says: Added VDP sprite rendering. Can't get any games far enough in to see if it actually works. So in other words, it doesn't work at all and is 100% completely broken. Also added 68K exceptions and interrupts. So far only the VDP interrupt is present. It definitely seems to be firing in commercial games, so that's promising. But the implementation is almost certainly completely wrong. There is fuck all of nothing for documentation on how interrupts actually work. I had to find out the interrupt vector numbers from reading the comments from the Sonic the Hedgehog disassembly. I have literally no fucking clue what I0-I2 (3-bit integer priority value in the status register) is supposed to do. I know that Vblank=6, Hblank=4, Ext(gamepad)=2. I know that at reset, SR.I=7. I don't know if I'm supposed to block interrupts when I is >, >=, <, <= to the interrupt level. I don't know what level CPU exceptions are supposed to be. Also implemented VDP regular DMA. No idea if it works correctly since none of the commercial games run far enough to use it. So again, it's horribly broken for usre. Also improved VDP fill mode. But I don't understand how it takes byte-lengths when the bus is 16-bit. The transfer times indicate it's actually transferring at the same speed as the 68K->VDP copy, strongly suggesting it's actually doing 16-bit transfers at a time. In which case, what happens when you set an odd transfer length? Also, both DMA modes can now target VRAM, VSRAM, CRAM. Supposedly there's all kinds of weird shit going on when you target VSRAM, CRAM with VDP fill/copy modes, but whatever. Get to that later. Also implemented a very lazy preliminary wait mechanism to to stall out a processor while another processor exerts control over the bus. This one's going to be a major work in progress. For one, it totally breaks the model I use to do save states with libco. For another, I don't know if a 68K->VDP DMA instantly locks the CPU, or if it the CPU could actually keep running if it was executing out of RAM when it started the DMA transfer from ROM (eg it's a bus busy stall, not a hard chip stall.) That'll greatly change how I handle the waiting. Also, the OSS driver now supports Audio::Latency. Sound should be even lower latency now. On FreeBSD when set to 0ms, it's absolutely incredible. Cannot detect latency whatsoever. The Mario jump sound seems to happen at the very instant I hear my cherry blue keyswitch activate. |
|
Tim Allen | 427bac3011 |
Update to v101r06 release.
byuu says: I reworked the video sizing code. Ended up wasting five fucking hours fighting GTK. When you call `gtk_widget_set_size_request`, it doesn't actually happen then. This is kind of a big deal because when I then go to draw onto the viewport, the actual viewport child window is still the old size, so the image gets distorted. It recovers in a frame or so with emulation, but if we were to put a still image on there, it would stay distorted. The first thought is, `while(gtk_events_pending()) gtk_main_iteration_do(false);` right after the `set_size_request`. But nope, it tells you there's no events pending. So then you think, go deeper, use `XPending()` instead. Same thing, GTK hasn't actually issued the command to Xlib yet. So then you think, if the widget is realized, just call a blocking `gtk_main_iteration`. One call does nothing, two calls results in a deadlock on the second one ... do it before program startup, and the main window will never appear. Great. Oh, and it's not just the viewport. It's also the widget container area of the windows, as well as the window itself, as well as the fullscreen mode toggle effect. They all do this. For the latter three, I couldn't find anything that worked, so I just added 20ms loops of constantly calling `gtk_main_iteration_do(false)` after each one of those things. The downside here is toggling the status bar takes 40ms, so you'll see it and it'll feel a tiny bit sluggish. But I can't have a 20ms wait on each widget resize, that would be catastrophic to performance on windows with lots of widgets. I tried hooking configure-event and size-allocate, but they were very unreliable. So instead I ended up with a loop that waits up to a maximm of 20ms that inspects the `widget->allocation.(width,height)` values directly and waits for them to be what we asked for with `set_size_request`. There was some extreme ugliness in GTK with calling `gtk_main_iteration_do` recursively (`hiro::Widget::setGeometry` is called recursively), so I had to lock it to only happen on the top level widgets (the child ones should get resized while waiting on the top-level ones, so it should be fine in practice), and also only run it on realized widgets. Even still, I'm getting ~3 timeouts when opening the settings dialog in higan, but no other windows. But, this is the best I can do for now. And the reason for all of this pain? Yeah, updated the video code. So the Emulator::Interface now has this: struct VideoSize { uint width, height; }; //or requiem for a tuple auto videoSize() -> VideoSize; auto videoSize(uint width, uint height, bool arc) -> VideoSize; The first function, for now, is just returning the literal surface size. I may remove this ... one thing I want to allow for is cores that send different texture sizes based on interlace/hires/overscan/etc settings. The second function is more interesting. Instead of having the UI trying to figure out sizing, I figure the emulation cores can do a better job and we can customize it per-core now. So it gets the window's width and height, and whether the user asked for aspect correction, and then computes the best width/height ratio possible. For now they're all just doing multiples of a 1x scale to the UI 2x,3x,4x modes. We still need a third function, which will probably be what I repurpose videoSize() for: to return the 'effective' size for pixel shaders, to then feed into ruby, to then feed into quark, to then feed into our shaders. Since shaders use normalized coordinates for pixel fetching, this should work out just fine. The real texture size will be exposed to quark shaders as well, of course. Now for the main window ... it's just hard-coded to be 640x480, 960x720, 1280x960 for now. It works nicely for some cores on some modes, not so much for others. Work in progress I guess. I also took the opportunity to draw the about dialog box logo on the main window. Got a bit fancy and used the old spherical gradient and impose functionality of nall/image on it. Very minor highlight, nothing garish. Just something nicer than a solid black window. If you guys want to mess around with sizes, placements, and gradient styles/colors/shapes ... feel free. If you come up with something nicer, do share. That's what led to all the GTK hell ... the logo wasn't drawing right as you resized the window. But now it is, though I am not at all happy with the hacking I had to do. I also had to improve the video update code as a result of this: - when you unload a game, it blacks out the screen - if you are not quitting the emulator, it'll draw the logo; if you are, it won't - when you load a game, it black out the logo These options prevent any unsightliness from resizing the viewport with image data on it already I need to redraw the logo when toggling fullscreen with no game loaded as well for Windows, it seems. |
|
Tim Allen | ac2d0ba1cf |
Update to v101r05 release.
byuu says: Changelog: - 68K: fixed bug that affected BSR return address - VDP: added very preliminary emulation of planes A, B, W (W is entirely broken though) - VDP: added command/address stuff so you can write to VRAM, CRAM, VSRAM - VDP: added VRAM fill DMA I would be really surprised if any commercial games showed anything at all, so I'd probably recommend against wasting your time trying, unless you're really bored :P Also, I wanted to add: I am accepting patches\! So if anyone wants to look over the 68K core for bugs, that would save me untold amounts of time in the near future :D |
|
Tim Allen | 1df2549d18 |
Update to v101r04 release.
byuu says: Changelog: - pulled the (u)intN type aliases into higan instead of leaving them in nall - added 68K LINEA, LINEF hooks for illegal instructions - filled the rest of the 68K lambda table with generic instance of ILLEGAL - completed the 68K disassembler effective addressing modes - still unsure whether I should use An to decode absolute addresses or not - pro: way easier to read where accesses are taking place - con: requires An to be valid; so as a disassembler it does a poor job - making it optional: too much work; ick - added I/O decoding for the VDP command-port registers - added skeleton timing to all five processor cores - output at 1280x480 (needed for mixed 256/320 widths; and to handle interlace modes) The VDP, PSG, Z80, YM2612 are all stepping one clock at a time and syncing; which is the pathological worst case for libco. But they also have no logic inside of them. With all the above, I'm averaging around 250fps with just the 68K core actually functional, and the VDP doing a dumb "draw white pixels" loop. Still way too early to tell how this emulator is going to perform. Also, the 320x240 mode of the Genesis means that we don't need an aspect correction ratio. But we do need to ensure the output window is a multiple 320x240 so that the scale values work correctly. I was hard-coding aspect correction to stretch the window an additional \*8/7. But that won't work anymore so ... the main higan window is now 640x480, 960x720, or 1280x960. Toggling aspect correction only changes the video width inside the window. It's a bit jarring ... the window is a lot wider, more black space now for most modes. But for now, it is what it is. |
|
Tim Allen | 9b8c3ff8c0 |
Update to v101r03 release.
byuu says: The 68K core now implements all 88 instructions. It ended up being 111 instructions in my core due to splitting up opcodes with the same name but different addressing modes or directions (removes conditions at the expense of more code.) Technically, I don't have exceptions actually implemented yet, and RESET/STOP don't do anything but set flags. So there's still more to go. But ... close enough for statistics time! The M68K core source code is 124,712 bytes in size. The next largest core is the ARM7 core at 70,203 bytes in size. The M68K object size is 942KiB; with the next largest being the V30MZ core at 173KiB. There are a total of 19,656 invalid opcodes in the 68000 revision (unless of course I've made mistakes in my mappings, which is very probably.) Now the fun part ... figuring out how to fix bugs in this core without VDP emulation :/ |
|
Tim Allen | 0a57cac70c |
Update to v101r02 release.
byuu says: Changelog: - Emulator: use `(uintmax)-1 >> 1` for the units of time - MD: implemented 13 new 68K instructions (basically all of the remaining easy ones); 21 remain - nall: replaced `(u)intmax_t` (64-bit) with *actual* `(u)intmax` type (128-bit where available) - this extends to everything: atoi, string, etc. You can even print 128-bit variables if you like 22,552 opcodes still don't exist in the 68K map. Looking like quite a few entries will be blank once I finish. |