2015-11-10 11:02:29 +00:00
|
|
|
//Sony CXD1222Q-1
|
|
|
|
|
2012-03-23 10:43:39 +00:00
|
|
|
struct DSP : Thread {
|
Update to v098r06 release.
byuu says:
Changelog:
- emulation cores now refresh video from host thread instead of
cothreads (fix AMD crash)
- SFC: fixed another bug with leap year months in SharpRTC emulation
- SFC: cleaned up camelCase on function names for
armdsp,epsonrtc,hitachidsp,mcc,nss,sharprtc classes
- GB: added MBC1M emulation (requires manually setting mapper=MBC1M in
manifest.bml for now, sorry)
- audio: implemented Emulator::Audio mixer and effects processor
- audio: implemented Emulator::Stream interface
- it is now possible to have more than two audio streams: eg SNES
+ SGB + MSU1 + Voicer-Kun (eventually)
- audio: added reverb delay + reverb level settings; exposed balance
configuration in UI
- video: reworked palette generation to re-enable saturation, gamma,
luminance adjustments
- higan/emulator.cpp is gone since there was nothing left in it
I know you guys are going to say the color adjust/balance/reverb stuff
is pointless. And indeed it mostly is. But I like the idea of allowing
some fun special effects and configurability that isn't system-wide.
Note: there seems to be some kind of added audio lag in the SGB
emulation now, and I don't really understand why. The code should be
effectively identical to what I had before. The only main thing is that
I'm sampling things to 48000hz instead of 32040hz before mixing. There's
no point where I'm intentionally introducing added latency though. I'm
kind of stumped, so if anyone wouldn't mind taking a look at it, it'd be
much appreciated :/
I don't have an MSU1 test ROM, but the latency issue may affect MSU1 as
well, and that would be very bad.
2016-04-22 13:35:51 +00:00
|
|
|
shared_pointer<Emulator::Stream> stream;
|
|
|
|
|
2015-10-10 02:16:12 +00:00
|
|
|
DSP();
|
2010-08-09 13:28:56 +00:00
|
|
|
|
2016-01-23 07:29:34 +00:00
|
|
|
alwaysinline auto step(uint clocks) -> void;
|
2010-08-09 13:28:56 +00:00
|
|
|
|
2015-10-10 02:16:12 +00:00
|
|
|
auto mute() const -> bool;
|
|
|
|
auto read(uint8 addr) -> uint8;
|
|
|
|
auto write(uint8 addr, uint8 data) -> void;
|
|
|
|
|
2016-02-09 11:51:12 +00:00
|
|
|
auto main() -> void;
|
2016-06-25 08:53:11 +00:00
|
|
|
auto load(Markup::Node) -> bool;
|
2015-10-10 02:16:12 +00:00
|
|
|
auto power() -> void;
|
|
|
|
auto reset() -> void;
|
|
|
|
|
Update to v098r04 release.
byuu says:
Changelog:
- SFC: fixed behavior of 21fx $21fe register when no device is connected
(must return zero)
- SFC: reduced 21fx buffer size to 1024 bytes in both directions to
mirror the FT232H we are using
- SFC: eliminated dsp/modulo-array.hpp [1]
- higan: implemented higan/video interface and migrated all cores to it
[2]
[1] the echo history buffer was 8-bytes, so there was no need for it at
all here. Not sure what I was thinking. The BRR buffer was 12-bytes, and
has very weird behavior ... but there's only a single location in the
code where it actually writes to this buffer. It's much easier to just
write to the buffer three times there instead of implementing an entire
class just to abstract away two lines of code. This change actually
boosted the speed from ~124.5fps to around ~127.5fps, but that's within
the margin of error for GCC. I doubt it's actually faster this way.
The DSP core could really use a ton of work. It comes from a port of
blargg's spc_dsp to my coding style, but he was extremely fond of using
32-bit signed integers everywhere. There's a lot of opportunity to
remove red tape masking by resizing the variables to their actual state
sizes.
I really need to find where I put spc_dsp6.sfc from blargg. It's a great
test to verify if I've made any mistakes in my implementation that would
cause regressions. Don't suppose anyone has it?
[2] so again, the idea is that higan/audio and higan/video are going to
sit between the emulation cores and the user interfaces. The hope is to
output raw encoding data from the emulation cores without having to
worry about the video display format (generally 24-bit RGB) of the host
display. And also to avoid having to repeat myself with eg three
separate implementations of interframe blending, and so on.
Furthermore, the idea is that the user interface can configure its side
of the settings, and the emulation cores can configure their sides.
Thus, neither has to worry about the other end. And now we can spin off
new user interfaces much easier without having to mess with all of these
things.
Right now, I've implemented color emulation, interframe blending and
SNES horizontal color bleed. I did not implement scanlines (and
interlace effects for them) yet, but I probably will at some point.
Further, for right now, the WonderSwan/Color screen rotation is busted
and will only show games in the horizontal orientation. Obviously this
must be fixed before the next official release, but I'll want to think
about how to implement it.
Also, the SNES light gun pointers are missing for now.
Things are a bit messy right now as I've gone through several revisions
of how to handle these things, so a good house cleaning is in order once
everything is feature-complete again. I need to sit down and think
through how and where I want to handle things like light gun cursors,
LCD icons, and maybe even rasterized text messages.
And obviously ... higan/audio is still just nall::DSP's headers. I need
to revamp that whole interface. I want to make it quite powerful with
a true audio mixer so I can handle things like
SNES+SGB+MSU1+Voicer-Kun+SNES-CD (five separate audio streams at once.)
The video system has the concept of "effects" for things like color
bleed and interframe blending. I want to extend on this with useful
other effects, such as NTSC simulation, maybe bringing back my mini-HQ2x
filter, etc. I'd also like to restore the saturation/gamma/luma
adjustment sliders ... I always liked allowing people to compensate for
their displays without having to change settings system-wide. Lastly,
I've always wanted to see some audio effects. Although I doubt we'll
ever get my dream of CoreAudio-style profiles, I'd like to get some
basic equalizer settings and echo/reverb effects in there.
2016-04-11 21:29:56 +00:00
|
|
|
//serialization.cpp
|
2015-10-10 02:16:12 +00:00
|
|
|
auto serialize(serializer&) -> void;
|
2010-08-09 13:28:56 +00:00
|
|
|
|
Update to v101r29 release.
byuu says:
Changelog:
- SMS: background VDP clips partial tiles on the left (math may not be
right ... it's hard to reason about)
- SMS: fix background VDP scroll locks
- SMS: fix VDP sprite coordinates
- SMS: paint black after the end of the visible display
- todo: shouldn't be a brute force at the end of the main VDP
loop, should happen in each rendering unit
- higan: removed emulator/debugger.hpp
- higan: removed privileged: access specifier
- SFC: removed debugger hooks
- todo: remove sfc/debugger.hpp
- Z80: fixed disassembly of (fd,dd) cb (displacement) (opcode)
instructions
- Z80: fix to prevent interrupts from firing between ix/iy prefixes
and opcodes
- todo: this is a rather hacky fix that could, if exploited, crash
the stack frame
- Z80: fix BIT flags
- Z80: fix ADD hl,reg flags
- Z80: fix CPD, CPI flags
- Z80: fix IND, INI flags
- Z80: fix INDR, INIT loop flag check
- Z80: fix OUTD, OUTI flags
- Z80: fix OTDR, OTIR loop flag check
2017-01-09 21:27:13 +00:00
|
|
|
private:
|
2016-01-23 07:29:34 +00:00
|
|
|
enum GlobalRegister : uint {
|
2015-10-10 02:16:12 +00:00
|
|
|
MVOLL = 0x0c, MVOLR = 0x1c,
|
|
|
|
EVOLL = 0x2c, EVOLR = 0x3c,
|
|
|
|
KON = 0x4c, KOFF = 0x5c,
|
|
|
|
FLG = 0x6c, ENDX = 0x7c,
|
|
|
|
EFB = 0x0d, PMON = 0x2d,
|
|
|
|
NON = 0x3d, EON = 0x4d,
|
|
|
|
DIR = 0x5d, ESA = 0x6d,
|
|
|
|
EDL = 0x7d, FIR = 0x0f, //8 coefficients at 0x0f, 0x1f, ... 0x7f
|
2010-08-09 13:28:56 +00:00
|
|
|
};
|
|
|
|
|
2016-01-23 07:29:34 +00:00
|
|
|
enum VoiceRegister : uint {
|
2015-10-10 02:16:12 +00:00
|
|
|
VOLL = 0x00, VOLR = 0x01,
|
|
|
|
PITCHL = 0x02, PITCHH = 0x03,
|
|
|
|
SRCN = 0x04, ADSR0 = 0x05,
|
|
|
|
ADSR1 = 0x06, GAIN = 0x07,
|
|
|
|
ENVX = 0x08, OUTX = 0x09,
|
2010-08-09 13:28:56 +00:00
|
|
|
};
|
|
|
|
|
2016-01-23 07:29:34 +00:00
|
|
|
enum EnvelopeMode : uint {
|
2015-10-10 02:16:12 +00:00
|
|
|
EnvelopeRelease,
|
|
|
|
EnvelopeAttack,
|
|
|
|
EnvelopeDecay,
|
|
|
|
EnvelopeSustain,
|
|
|
|
};
|
2010-08-09 13:28:56 +00:00
|
|
|
|
2016-01-23 07:29:34 +00:00
|
|
|
enum : uint {
|
2015-10-10 02:16:12 +00:00
|
|
|
BrrBlockSize = 9,
|
|
|
|
CounterRange = 2048 * 5 * 3, //30720 (0x7800)
|
|
|
|
};
|
2010-08-09 13:28:56 +00:00
|
|
|
|
2015-10-10 02:16:12 +00:00
|
|
|
struct State {
|
2010-08-09 13:28:56 +00:00
|
|
|
uint8 regs[128];
|
|
|
|
|
Update to v098r04 release.
byuu says:
Changelog:
- SFC: fixed behavior of 21fx $21fe register when no device is connected
(must return zero)
- SFC: reduced 21fx buffer size to 1024 bytes in both directions to
mirror the FT232H we are using
- SFC: eliminated dsp/modulo-array.hpp [1]
- higan: implemented higan/video interface and migrated all cores to it
[2]
[1] the echo history buffer was 8-bytes, so there was no need for it at
all here. Not sure what I was thinking. The BRR buffer was 12-bytes, and
has very weird behavior ... but there's only a single location in the
code where it actually writes to this buffer. It's much easier to just
write to the buffer three times there instead of implementing an entire
class just to abstract away two lines of code. This change actually
boosted the speed from ~124.5fps to around ~127.5fps, but that's within
the margin of error for GCC. I doubt it's actually faster this way.
The DSP core could really use a ton of work. It comes from a port of
blargg's spc_dsp to my coding style, but he was extremely fond of using
32-bit signed integers everywhere. There's a lot of opportunity to
remove red tape masking by resizing the variables to their actual state
sizes.
I really need to find where I put spc_dsp6.sfc from blargg. It's a great
test to verify if I've made any mistakes in my implementation that would
cause regressions. Don't suppose anyone has it?
[2] so again, the idea is that higan/audio and higan/video are going to
sit between the emulation cores and the user interfaces. The hope is to
output raw encoding data from the emulation cores without having to
worry about the video display format (generally 24-bit RGB) of the host
display. And also to avoid having to repeat myself with eg three
separate implementations of interframe blending, and so on.
Furthermore, the idea is that the user interface can configure its side
of the settings, and the emulation cores can configure their sides.
Thus, neither has to worry about the other end. And now we can spin off
new user interfaces much easier without having to mess with all of these
things.
Right now, I've implemented color emulation, interframe blending and
SNES horizontal color bleed. I did not implement scanlines (and
interlace effects for them) yet, but I probably will at some point.
Further, for right now, the WonderSwan/Color screen rotation is busted
and will only show games in the horizontal orientation. Obviously this
must be fixed before the next official release, but I'll want to think
about how to implement it.
Also, the SNES light gun pointers are missing for now.
Things are a bit messy right now as I've gone through several revisions
of how to handle these things, so a good house cleaning is in order once
everything is feature-complete again. I need to sit down and think
through how and where I want to handle things like light gun cursors,
LCD icons, and maybe even rasterized text messages.
And obviously ... higan/audio is still just nall::DSP's headers. I need
to revamp that whole interface. I want to make it quite powerful with
a true audio mixer so I can handle things like
SNES+SGB+MSU1+Voicer-Kun+SNES-CD (five separate audio streams at once.)
The video system has the concept of "effects" for things like color
bleed and interframe blending. I want to extend on this with useful
other effects, such as NTSC simulation, maybe bringing back my mini-HQ2x
filter, etc. I'd also like to restore the saturation/gamma/luma
adjustment sliders ... I always liked allowing people to compensate for
their displays without having to change settings system-wide. Lastly,
I've always wanted to see some audio effects. Although I doubt we'll
ever get my dream of CoreAudio-style profiles, I'd like to get some
basic equalizer settings and echo/reverb effects in there.
2016-04-11 21:29:56 +00:00
|
|
|
int echoHistory[2][8]; //echo history keeps most recent 8 stereo samples
|
|
|
|
uint3 echoHistoryOffset;
|
2010-08-09 13:28:56 +00:00
|
|
|
|
2015-10-10 02:16:12 +00:00
|
|
|
bool everyOtherSample; //toggles every sample
|
2016-01-23 07:29:34 +00:00
|
|
|
int kon; //KON value when last checked
|
|
|
|
int noise;
|
|
|
|
int counter;
|
|
|
|
int echoOffset; //offset from ESA in echo buffer
|
|
|
|
int echoLength; //number of bytes that echo_offset will stop at
|
2010-08-09 13:28:56 +00:00
|
|
|
|
|
|
|
//hidden registers also written to when main register is written to
|
2016-01-23 07:29:34 +00:00
|
|
|
int konBuffer;
|
|
|
|
int endxBuffer;
|
|
|
|
int envxBuffer;
|
|
|
|
int outxBuffer;
|
2010-08-09 13:28:56 +00:00
|
|
|
|
2015-10-10 02:16:12 +00:00
|
|
|
//temporary state between clocks (prefixed with _)
|
2010-08-09 13:28:56 +00:00
|
|
|
|
|
|
|
//read once per sample
|
2016-01-23 07:29:34 +00:00
|
|
|
int _pmon;
|
|
|
|
int _non;
|
|
|
|
int _eon;
|
|
|
|
int _dir;
|
|
|
|
int _koff;
|
2010-08-09 13:28:56 +00:00
|
|
|
|
|
|
|
//read a few clocks ahead before used
|
2016-01-23 07:29:34 +00:00
|
|
|
int _brrNextAddress;
|
|
|
|
int _adsr0;
|
|
|
|
int _brrHeader;
|
|
|
|
int _brrByte;
|
|
|
|
int _srcn;
|
|
|
|
int _esa;
|
|
|
|
int _echoDisabled;
|
2010-08-09 13:28:56 +00:00
|
|
|
|
|
|
|
//internal state that is recalculated every sample
|
2016-01-23 07:29:34 +00:00
|
|
|
int _dirAddress;
|
|
|
|
int _pitch;
|
|
|
|
int _output;
|
|
|
|
int _looped;
|
|
|
|
int _echoPointer;
|
2010-08-09 13:28:56 +00:00
|
|
|
|
|
|
|
//left/right sums
|
2016-01-23 07:29:34 +00:00
|
|
|
int _mainOut[2];
|
|
|
|
int _echoOut[2];
|
|
|
|
int _echoIn [2];
|
2010-08-09 13:28:56 +00:00
|
|
|
} state;
|
|
|
|
|
2015-10-10 02:16:12 +00:00
|
|
|
struct Voice {
|
Update to v098r04 release.
byuu says:
Changelog:
- SFC: fixed behavior of 21fx $21fe register when no device is connected
(must return zero)
- SFC: reduced 21fx buffer size to 1024 bytes in both directions to
mirror the FT232H we are using
- SFC: eliminated dsp/modulo-array.hpp [1]
- higan: implemented higan/video interface and migrated all cores to it
[2]
[1] the echo history buffer was 8-bytes, so there was no need for it at
all here. Not sure what I was thinking. The BRR buffer was 12-bytes, and
has very weird behavior ... but there's only a single location in the
code where it actually writes to this buffer. It's much easier to just
write to the buffer three times there instead of implementing an entire
class just to abstract away two lines of code. This change actually
boosted the speed from ~124.5fps to around ~127.5fps, but that's within
the margin of error for GCC. I doubt it's actually faster this way.
The DSP core could really use a ton of work. It comes from a port of
blargg's spc_dsp to my coding style, but he was extremely fond of using
32-bit signed integers everywhere. There's a lot of opportunity to
remove red tape masking by resizing the variables to their actual state
sizes.
I really need to find where I put spc_dsp6.sfc from blargg. It's a great
test to verify if I've made any mistakes in my implementation that would
cause regressions. Don't suppose anyone has it?
[2] so again, the idea is that higan/audio and higan/video are going to
sit between the emulation cores and the user interfaces. The hope is to
output raw encoding data from the emulation cores without having to
worry about the video display format (generally 24-bit RGB) of the host
display. And also to avoid having to repeat myself with eg three
separate implementations of interframe blending, and so on.
Furthermore, the idea is that the user interface can configure its side
of the settings, and the emulation cores can configure their sides.
Thus, neither has to worry about the other end. And now we can spin off
new user interfaces much easier without having to mess with all of these
things.
Right now, I've implemented color emulation, interframe blending and
SNES horizontal color bleed. I did not implement scanlines (and
interlace effects for them) yet, but I probably will at some point.
Further, for right now, the WonderSwan/Color screen rotation is busted
and will only show games in the horizontal orientation. Obviously this
must be fixed before the next official release, but I'll want to think
about how to implement it.
Also, the SNES light gun pointers are missing for now.
Things are a bit messy right now as I've gone through several revisions
of how to handle these things, so a good house cleaning is in order once
everything is feature-complete again. I need to sit down and think
through how and where I want to handle things like light gun cursors,
LCD icons, and maybe even rasterized text messages.
And obviously ... higan/audio is still just nall::DSP's headers. I need
to revamp that whole interface. I want to make it quite powerful with
a true audio mixer so I can handle things like
SNES+SGB+MSU1+Voicer-Kun+SNES-CD (five separate audio streams at once.)
The video system has the concept of "effects" for things like color
bleed and interframe blending. I want to extend on this with useful
other effects, such as NTSC simulation, maybe bringing back my mini-HQ2x
filter, etc. I'd also like to restore the saturation/gamma/luma
adjustment sliders ... I always liked allowing people to compensate for
their displays without having to change settings system-wide. Lastly,
I've always wanted to see some audio effects. Although I doubt we'll
ever get my dream of CoreAudio-style profiles, I'd like to get some
basic equalizer settings and echo/reverb effects in there.
2016-04-11 21:29:56 +00:00
|
|
|
int buffer[12 * 3]; //12 decoded samples (mirrored for wrapping)
|
2016-01-23 07:29:34 +00:00
|
|
|
int bufferOffset; //place in buffer where next samples will be decoded
|
|
|
|
int gaussianOffset; //relative fractional position in sample (0x1000 = 1.0)
|
|
|
|
int brrAddress; //address of current BRR block
|
|
|
|
int brrOffset; //current decoding offset in BRR block
|
|
|
|
int vbit; //bitmask for voice: 0x01 for voice 0, 0x02 for voice 1, etc
|
|
|
|
int vidx; //voice channel register index: 0x00 for voice 0, 0x10 for voice 1, etc
|
|
|
|
int konDelay; //KON delay/current setup phase
|
|
|
|
int envelopeMode;
|
|
|
|
int envelope; //current envelope level
|
|
|
|
int hiddenEnvelope; //used by GAIN mode 7, very obscure quirk
|
|
|
|
int _envxOut;
|
2010-08-09 13:28:56 +00:00
|
|
|
} voice[8];
|
|
|
|
|
Update to v098r04 release.
byuu says:
Changelog:
- SFC: fixed behavior of 21fx $21fe register when no device is connected
(must return zero)
- SFC: reduced 21fx buffer size to 1024 bytes in both directions to
mirror the FT232H we are using
- SFC: eliminated dsp/modulo-array.hpp [1]
- higan: implemented higan/video interface and migrated all cores to it
[2]
[1] the echo history buffer was 8-bytes, so there was no need for it at
all here. Not sure what I was thinking. The BRR buffer was 12-bytes, and
has very weird behavior ... but there's only a single location in the
code where it actually writes to this buffer. It's much easier to just
write to the buffer three times there instead of implementing an entire
class just to abstract away two lines of code. This change actually
boosted the speed from ~124.5fps to around ~127.5fps, but that's within
the margin of error for GCC. I doubt it's actually faster this way.
The DSP core could really use a ton of work. It comes from a port of
blargg's spc_dsp to my coding style, but he was extremely fond of using
32-bit signed integers everywhere. There's a lot of opportunity to
remove red tape masking by resizing the variables to their actual state
sizes.
I really need to find where I put spc_dsp6.sfc from blargg. It's a great
test to verify if I've made any mistakes in my implementation that would
cause regressions. Don't suppose anyone has it?
[2] so again, the idea is that higan/audio and higan/video are going to
sit between the emulation cores and the user interfaces. The hope is to
output raw encoding data from the emulation cores without having to
worry about the video display format (generally 24-bit RGB) of the host
display. And also to avoid having to repeat myself with eg three
separate implementations of interframe blending, and so on.
Furthermore, the idea is that the user interface can configure its side
of the settings, and the emulation cores can configure their sides.
Thus, neither has to worry about the other end. And now we can spin off
new user interfaces much easier without having to mess with all of these
things.
Right now, I've implemented color emulation, interframe blending and
SNES horizontal color bleed. I did not implement scanlines (and
interlace effects for them) yet, but I probably will at some point.
Further, for right now, the WonderSwan/Color screen rotation is busted
and will only show games in the horizontal orientation. Obviously this
must be fixed before the next official release, but I'll want to think
about how to implement it.
Also, the SNES light gun pointers are missing for now.
Things are a bit messy right now as I've gone through several revisions
of how to handle these things, so a good house cleaning is in order once
everything is feature-complete again. I need to sit down and think
through how and where I want to handle things like light gun cursors,
LCD icons, and maybe even rasterized text messages.
And obviously ... higan/audio is still just nall::DSP's headers. I need
to revamp that whole interface. I want to make it quite powerful with
a true audio mixer so I can handle things like
SNES+SGB+MSU1+Voicer-Kun+SNES-CD (five separate audio streams at once.)
The video system has the concept of "effects" for things like color
bleed and interframe blending. I want to extend on this with useful
other effects, such as NTSC simulation, maybe bringing back my mini-HQ2x
filter, etc. I'd also like to restore the saturation/gamma/luma
adjustment sliders ... I always liked allowing people to compensate for
their displays without having to change settings system-wide. Lastly,
I've always wanted to see some audio effects. Although I doubt we'll
ever get my dream of CoreAudio-style profiles, I'd like to get some
basic equalizer settings and echo/reverb effects in there.
2016-04-11 21:29:56 +00:00
|
|
|
//gaussian.cpp
|
2015-10-10 02:16:12 +00:00
|
|
|
static const int16 GaussianTable[512];
|
2016-01-23 07:29:34 +00:00
|
|
|
auto gaussianInterpolate(const Voice& v) -> int;
|
2010-08-09 13:28:56 +00:00
|
|
|
|
Update to v098r04 release.
byuu says:
Changelog:
- SFC: fixed behavior of 21fx $21fe register when no device is connected
(must return zero)
- SFC: reduced 21fx buffer size to 1024 bytes in both directions to
mirror the FT232H we are using
- SFC: eliminated dsp/modulo-array.hpp [1]
- higan: implemented higan/video interface and migrated all cores to it
[2]
[1] the echo history buffer was 8-bytes, so there was no need for it at
all here. Not sure what I was thinking. The BRR buffer was 12-bytes, and
has very weird behavior ... but there's only a single location in the
code where it actually writes to this buffer. It's much easier to just
write to the buffer three times there instead of implementing an entire
class just to abstract away two lines of code. This change actually
boosted the speed from ~124.5fps to around ~127.5fps, but that's within
the margin of error for GCC. I doubt it's actually faster this way.
The DSP core could really use a ton of work. It comes from a port of
blargg's spc_dsp to my coding style, but he was extremely fond of using
32-bit signed integers everywhere. There's a lot of opportunity to
remove red tape masking by resizing the variables to their actual state
sizes.
I really need to find where I put spc_dsp6.sfc from blargg. It's a great
test to verify if I've made any mistakes in my implementation that would
cause regressions. Don't suppose anyone has it?
[2] so again, the idea is that higan/audio and higan/video are going to
sit between the emulation cores and the user interfaces. The hope is to
output raw encoding data from the emulation cores without having to
worry about the video display format (generally 24-bit RGB) of the host
display. And also to avoid having to repeat myself with eg three
separate implementations of interframe blending, and so on.
Furthermore, the idea is that the user interface can configure its side
of the settings, and the emulation cores can configure their sides.
Thus, neither has to worry about the other end. And now we can spin off
new user interfaces much easier without having to mess with all of these
things.
Right now, I've implemented color emulation, interframe blending and
SNES horizontal color bleed. I did not implement scanlines (and
interlace effects for them) yet, but I probably will at some point.
Further, for right now, the WonderSwan/Color screen rotation is busted
and will only show games in the horizontal orientation. Obviously this
must be fixed before the next official release, but I'll want to think
about how to implement it.
Also, the SNES light gun pointers are missing for now.
Things are a bit messy right now as I've gone through several revisions
of how to handle these things, so a good house cleaning is in order once
everything is feature-complete again. I need to sit down and think
through how and where I want to handle things like light gun cursors,
LCD icons, and maybe even rasterized text messages.
And obviously ... higan/audio is still just nall::DSP's headers. I need
to revamp that whole interface. I want to make it quite powerful with
a true audio mixer so I can handle things like
SNES+SGB+MSU1+Voicer-Kun+SNES-CD (five separate audio streams at once.)
The video system has the concept of "effects" for things like color
bleed and interframe blending. I want to extend on this with useful
other effects, such as NTSC simulation, maybe bringing back my mini-HQ2x
filter, etc. I'd also like to restore the saturation/gamma/luma
adjustment sliders ... I always liked allowing people to compensate for
their displays without having to change settings system-wide. Lastly,
I've always wanted to see some audio effects. Although I doubt we'll
ever get my dream of CoreAudio-style profiles, I'd like to get some
basic equalizer settings and echo/reverb effects in there.
2016-04-11 21:29:56 +00:00
|
|
|
//counter.cpp
|
2015-10-10 02:16:12 +00:00
|
|
|
static const uint16 CounterRate[32];
|
|
|
|
static const uint16 CounterOffset[32];
|
|
|
|
auto counterTick() -> void;
|
2016-01-23 07:29:34 +00:00
|
|
|
auto counterPoll(uint rate) -> bool;
|
2010-08-09 13:28:56 +00:00
|
|
|
|
Update to v098r04 release.
byuu says:
Changelog:
- SFC: fixed behavior of 21fx $21fe register when no device is connected
(must return zero)
- SFC: reduced 21fx buffer size to 1024 bytes in both directions to
mirror the FT232H we are using
- SFC: eliminated dsp/modulo-array.hpp [1]
- higan: implemented higan/video interface and migrated all cores to it
[2]
[1] the echo history buffer was 8-bytes, so there was no need for it at
all here. Not sure what I was thinking. The BRR buffer was 12-bytes, and
has very weird behavior ... but there's only a single location in the
code where it actually writes to this buffer. It's much easier to just
write to the buffer three times there instead of implementing an entire
class just to abstract away two lines of code. This change actually
boosted the speed from ~124.5fps to around ~127.5fps, but that's within
the margin of error for GCC. I doubt it's actually faster this way.
The DSP core could really use a ton of work. It comes from a port of
blargg's spc_dsp to my coding style, but he was extremely fond of using
32-bit signed integers everywhere. There's a lot of opportunity to
remove red tape masking by resizing the variables to their actual state
sizes.
I really need to find where I put spc_dsp6.sfc from blargg. It's a great
test to verify if I've made any mistakes in my implementation that would
cause regressions. Don't suppose anyone has it?
[2] so again, the idea is that higan/audio and higan/video are going to
sit between the emulation cores and the user interfaces. The hope is to
output raw encoding data from the emulation cores without having to
worry about the video display format (generally 24-bit RGB) of the host
display. And also to avoid having to repeat myself with eg three
separate implementations of interframe blending, and so on.
Furthermore, the idea is that the user interface can configure its side
of the settings, and the emulation cores can configure their sides.
Thus, neither has to worry about the other end. And now we can spin off
new user interfaces much easier without having to mess with all of these
things.
Right now, I've implemented color emulation, interframe blending and
SNES horizontal color bleed. I did not implement scanlines (and
interlace effects for them) yet, but I probably will at some point.
Further, for right now, the WonderSwan/Color screen rotation is busted
and will only show games in the horizontal orientation. Obviously this
must be fixed before the next official release, but I'll want to think
about how to implement it.
Also, the SNES light gun pointers are missing for now.
Things are a bit messy right now as I've gone through several revisions
of how to handle these things, so a good house cleaning is in order once
everything is feature-complete again. I need to sit down and think
through how and where I want to handle things like light gun cursors,
LCD icons, and maybe even rasterized text messages.
And obviously ... higan/audio is still just nall::DSP's headers. I need
to revamp that whole interface. I want to make it quite powerful with
a true audio mixer so I can handle things like
SNES+SGB+MSU1+Voicer-Kun+SNES-CD (five separate audio streams at once.)
The video system has the concept of "effects" for things like color
bleed and interframe blending. I want to extend on this with useful
other effects, such as NTSC simulation, maybe bringing back my mini-HQ2x
filter, etc. I'd also like to restore the saturation/gamma/luma
adjustment sliders ... I always liked allowing people to compensate for
their displays without having to change settings system-wide. Lastly,
I've always wanted to see some audio effects. Although I doubt we'll
ever get my dream of CoreAudio-style profiles, I'd like to get some
basic equalizer settings and echo/reverb effects in there.
2016-04-11 21:29:56 +00:00
|
|
|
//envelope.cpp
|
2015-10-10 02:16:12 +00:00
|
|
|
auto envelopeRun(Voice& v) -> void;
|
2010-08-09 13:28:56 +00:00
|
|
|
|
Update to v098r04 release.
byuu says:
Changelog:
- SFC: fixed behavior of 21fx $21fe register when no device is connected
(must return zero)
- SFC: reduced 21fx buffer size to 1024 bytes in both directions to
mirror the FT232H we are using
- SFC: eliminated dsp/modulo-array.hpp [1]
- higan: implemented higan/video interface and migrated all cores to it
[2]
[1] the echo history buffer was 8-bytes, so there was no need for it at
all here. Not sure what I was thinking. The BRR buffer was 12-bytes, and
has very weird behavior ... but there's only a single location in the
code where it actually writes to this buffer. It's much easier to just
write to the buffer three times there instead of implementing an entire
class just to abstract away two lines of code. This change actually
boosted the speed from ~124.5fps to around ~127.5fps, but that's within
the margin of error for GCC. I doubt it's actually faster this way.
The DSP core could really use a ton of work. It comes from a port of
blargg's spc_dsp to my coding style, but he was extremely fond of using
32-bit signed integers everywhere. There's a lot of opportunity to
remove red tape masking by resizing the variables to their actual state
sizes.
I really need to find where I put spc_dsp6.sfc from blargg. It's a great
test to verify if I've made any mistakes in my implementation that would
cause regressions. Don't suppose anyone has it?
[2] so again, the idea is that higan/audio and higan/video are going to
sit between the emulation cores and the user interfaces. The hope is to
output raw encoding data from the emulation cores without having to
worry about the video display format (generally 24-bit RGB) of the host
display. And also to avoid having to repeat myself with eg three
separate implementations of interframe blending, and so on.
Furthermore, the idea is that the user interface can configure its side
of the settings, and the emulation cores can configure their sides.
Thus, neither has to worry about the other end. And now we can spin off
new user interfaces much easier without having to mess with all of these
things.
Right now, I've implemented color emulation, interframe blending and
SNES horizontal color bleed. I did not implement scanlines (and
interlace effects for them) yet, but I probably will at some point.
Further, for right now, the WonderSwan/Color screen rotation is busted
and will only show games in the horizontal orientation. Obviously this
must be fixed before the next official release, but I'll want to think
about how to implement it.
Also, the SNES light gun pointers are missing for now.
Things are a bit messy right now as I've gone through several revisions
of how to handle these things, so a good house cleaning is in order once
everything is feature-complete again. I need to sit down and think
through how and where I want to handle things like light gun cursors,
LCD icons, and maybe even rasterized text messages.
And obviously ... higan/audio is still just nall::DSP's headers. I need
to revamp that whole interface. I want to make it quite powerful with
a true audio mixer so I can handle things like
SNES+SGB+MSU1+Voicer-Kun+SNES-CD (five separate audio streams at once.)
The video system has the concept of "effects" for things like color
bleed and interframe blending. I want to extend on this with useful
other effects, such as NTSC simulation, maybe bringing back my mini-HQ2x
filter, etc. I'd also like to restore the saturation/gamma/luma
adjustment sliders ... I always liked allowing people to compensate for
their displays without having to change settings system-wide. Lastly,
I've always wanted to see some audio effects. Although I doubt we'll
ever get my dream of CoreAudio-style profiles, I'd like to get some
basic equalizer settings and echo/reverb effects in there.
2016-04-11 21:29:56 +00:00
|
|
|
//brr.cpp
|
2015-10-10 02:16:12 +00:00
|
|
|
auto brrDecode(Voice& v) -> void;
|
2010-08-09 13:28:56 +00:00
|
|
|
|
Update to v098r04 release.
byuu says:
Changelog:
- SFC: fixed behavior of 21fx $21fe register when no device is connected
(must return zero)
- SFC: reduced 21fx buffer size to 1024 bytes in both directions to
mirror the FT232H we are using
- SFC: eliminated dsp/modulo-array.hpp [1]
- higan: implemented higan/video interface and migrated all cores to it
[2]
[1] the echo history buffer was 8-bytes, so there was no need for it at
all here. Not sure what I was thinking. The BRR buffer was 12-bytes, and
has very weird behavior ... but there's only a single location in the
code where it actually writes to this buffer. It's much easier to just
write to the buffer three times there instead of implementing an entire
class just to abstract away two lines of code. This change actually
boosted the speed from ~124.5fps to around ~127.5fps, but that's within
the margin of error for GCC. I doubt it's actually faster this way.
The DSP core could really use a ton of work. It comes from a port of
blargg's spc_dsp to my coding style, but he was extremely fond of using
32-bit signed integers everywhere. There's a lot of opportunity to
remove red tape masking by resizing the variables to their actual state
sizes.
I really need to find where I put spc_dsp6.sfc from blargg. It's a great
test to verify if I've made any mistakes in my implementation that would
cause regressions. Don't suppose anyone has it?
[2] so again, the idea is that higan/audio and higan/video are going to
sit between the emulation cores and the user interfaces. The hope is to
output raw encoding data from the emulation cores without having to
worry about the video display format (generally 24-bit RGB) of the host
display. And also to avoid having to repeat myself with eg three
separate implementations of interframe blending, and so on.
Furthermore, the idea is that the user interface can configure its side
of the settings, and the emulation cores can configure their sides.
Thus, neither has to worry about the other end. And now we can spin off
new user interfaces much easier without having to mess with all of these
things.
Right now, I've implemented color emulation, interframe blending and
SNES horizontal color bleed. I did not implement scanlines (and
interlace effects for them) yet, but I probably will at some point.
Further, for right now, the WonderSwan/Color screen rotation is busted
and will only show games in the horizontal orientation. Obviously this
must be fixed before the next official release, but I'll want to think
about how to implement it.
Also, the SNES light gun pointers are missing for now.
Things are a bit messy right now as I've gone through several revisions
of how to handle these things, so a good house cleaning is in order once
everything is feature-complete again. I need to sit down and think
through how and where I want to handle things like light gun cursors,
LCD icons, and maybe even rasterized text messages.
And obviously ... higan/audio is still just nall::DSP's headers. I need
to revamp that whole interface. I want to make it quite powerful with
a true audio mixer so I can handle things like
SNES+SGB+MSU1+Voicer-Kun+SNES-CD (five separate audio streams at once.)
The video system has the concept of "effects" for things like color
bleed and interframe blending. I want to extend on this with useful
other effects, such as NTSC simulation, maybe bringing back my mini-HQ2x
filter, etc. I'd also like to restore the saturation/gamma/luma
adjustment sliders ... I always liked allowing people to compensate for
their displays without having to change settings system-wide. Lastly,
I've always wanted to see some audio effects. Although I doubt we'll
ever get my dream of CoreAudio-style profiles, I'd like to get some
basic equalizer settings and echo/reverb effects in there.
2016-04-11 21:29:56 +00:00
|
|
|
//misc.cpp
|
2015-10-10 02:16:12 +00:00
|
|
|
auto misc27() -> void;
|
|
|
|
auto misc28() -> void;
|
|
|
|
auto misc29() -> void;
|
|
|
|
auto misc30() -> void;
|
2010-08-09 13:28:56 +00:00
|
|
|
|
Update to v098r04 release.
byuu says:
Changelog:
- SFC: fixed behavior of 21fx $21fe register when no device is connected
(must return zero)
- SFC: reduced 21fx buffer size to 1024 bytes in both directions to
mirror the FT232H we are using
- SFC: eliminated dsp/modulo-array.hpp [1]
- higan: implemented higan/video interface and migrated all cores to it
[2]
[1] the echo history buffer was 8-bytes, so there was no need for it at
all here. Not sure what I was thinking. The BRR buffer was 12-bytes, and
has very weird behavior ... but there's only a single location in the
code where it actually writes to this buffer. It's much easier to just
write to the buffer three times there instead of implementing an entire
class just to abstract away two lines of code. This change actually
boosted the speed from ~124.5fps to around ~127.5fps, but that's within
the margin of error for GCC. I doubt it's actually faster this way.
The DSP core could really use a ton of work. It comes from a port of
blargg's spc_dsp to my coding style, but he was extremely fond of using
32-bit signed integers everywhere. There's a lot of opportunity to
remove red tape masking by resizing the variables to their actual state
sizes.
I really need to find where I put spc_dsp6.sfc from blargg. It's a great
test to verify if I've made any mistakes in my implementation that would
cause regressions. Don't suppose anyone has it?
[2] so again, the idea is that higan/audio and higan/video are going to
sit between the emulation cores and the user interfaces. The hope is to
output raw encoding data from the emulation cores without having to
worry about the video display format (generally 24-bit RGB) of the host
display. And also to avoid having to repeat myself with eg three
separate implementations of interframe blending, and so on.
Furthermore, the idea is that the user interface can configure its side
of the settings, and the emulation cores can configure their sides.
Thus, neither has to worry about the other end. And now we can spin off
new user interfaces much easier without having to mess with all of these
things.
Right now, I've implemented color emulation, interframe blending and
SNES horizontal color bleed. I did not implement scanlines (and
interlace effects for them) yet, but I probably will at some point.
Further, for right now, the WonderSwan/Color screen rotation is busted
and will only show games in the horizontal orientation. Obviously this
must be fixed before the next official release, but I'll want to think
about how to implement it.
Also, the SNES light gun pointers are missing for now.
Things are a bit messy right now as I've gone through several revisions
of how to handle these things, so a good house cleaning is in order once
everything is feature-complete again. I need to sit down and think
through how and where I want to handle things like light gun cursors,
LCD icons, and maybe even rasterized text messages.
And obviously ... higan/audio is still just nall::DSP's headers. I need
to revamp that whole interface. I want to make it quite powerful with
a true audio mixer so I can handle things like
SNES+SGB+MSU1+Voicer-Kun+SNES-CD (five separate audio streams at once.)
The video system has the concept of "effects" for things like color
bleed and interframe blending. I want to extend on this with useful
other effects, such as NTSC simulation, maybe bringing back my mini-HQ2x
filter, etc. I'd also like to restore the saturation/gamma/luma
adjustment sliders ... I always liked allowing people to compensate for
their displays without having to change settings system-wide. Lastly,
I've always wanted to see some audio effects. Although I doubt we'll
ever get my dream of CoreAudio-style profiles, I'd like to get some
basic equalizer settings and echo/reverb effects in there.
2016-04-11 21:29:56 +00:00
|
|
|
//voice.cpp
|
2015-10-10 02:16:12 +00:00
|
|
|
auto voiceOutput(Voice& v, bool channel) -> void;
|
|
|
|
auto voice1 (Voice& v) -> void;
|
|
|
|
auto voice2 (Voice& v) -> void;
|
|
|
|
auto voice3 (Voice& v) -> void;
|
|
|
|
auto voice3a(Voice& v) -> void;
|
|
|
|
auto voice3b(Voice& v) -> void;
|
|
|
|
auto voice3c(Voice& v) -> void;
|
|
|
|
auto voice4 (Voice& v) -> void;
|
|
|
|
auto voice5 (Voice& v) -> void;
|
|
|
|
auto voice6 (Voice& v) -> void;
|
|
|
|
auto voice7 (Voice& v) -> void;
|
|
|
|
auto voice8 (Voice& v) -> void;
|
|
|
|
auto voice9 (Voice& v) -> void;
|
2010-08-09 13:28:56 +00:00
|
|
|
|
Update to v098r04 release.
byuu says:
Changelog:
- SFC: fixed behavior of 21fx $21fe register when no device is connected
(must return zero)
- SFC: reduced 21fx buffer size to 1024 bytes in both directions to
mirror the FT232H we are using
- SFC: eliminated dsp/modulo-array.hpp [1]
- higan: implemented higan/video interface and migrated all cores to it
[2]
[1] the echo history buffer was 8-bytes, so there was no need for it at
all here. Not sure what I was thinking. The BRR buffer was 12-bytes, and
has very weird behavior ... but there's only a single location in the
code where it actually writes to this buffer. It's much easier to just
write to the buffer three times there instead of implementing an entire
class just to abstract away two lines of code. This change actually
boosted the speed from ~124.5fps to around ~127.5fps, but that's within
the margin of error for GCC. I doubt it's actually faster this way.
The DSP core could really use a ton of work. It comes from a port of
blargg's spc_dsp to my coding style, but he was extremely fond of using
32-bit signed integers everywhere. There's a lot of opportunity to
remove red tape masking by resizing the variables to their actual state
sizes.
I really need to find where I put spc_dsp6.sfc from blargg. It's a great
test to verify if I've made any mistakes in my implementation that would
cause regressions. Don't suppose anyone has it?
[2] so again, the idea is that higan/audio and higan/video are going to
sit between the emulation cores and the user interfaces. The hope is to
output raw encoding data from the emulation cores without having to
worry about the video display format (generally 24-bit RGB) of the host
display. And also to avoid having to repeat myself with eg three
separate implementations of interframe blending, and so on.
Furthermore, the idea is that the user interface can configure its side
of the settings, and the emulation cores can configure their sides.
Thus, neither has to worry about the other end. And now we can spin off
new user interfaces much easier without having to mess with all of these
things.
Right now, I've implemented color emulation, interframe blending and
SNES horizontal color bleed. I did not implement scanlines (and
interlace effects for them) yet, but I probably will at some point.
Further, for right now, the WonderSwan/Color screen rotation is busted
and will only show games in the horizontal orientation. Obviously this
must be fixed before the next official release, but I'll want to think
about how to implement it.
Also, the SNES light gun pointers are missing for now.
Things are a bit messy right now as I've gone through several revisions
of how to handle these things, so a good house cleaning is in order once
everything is feature-complete again. I need to sit down and think
through how and where I want to handle things like light gun cursors,
LCD icons, and maybe even rasterized text messages.
And obviously ... higan/audio is still just nall::DSP's headers. I need
to revamp that whole interface. I want to make it quite powerful with
a true audio mixer so I can handle things like
SNES+SGB+MSU1+Voicer-Kun+SNES-CD (five separate audio streams at once.)
The video system has the concept of "effects" for things like color
bleed and interframe blending. I want to extend on this with useful
other effects, such as NTSC simulation, maybe bringing back my mini-HQ2x
filter, etc. I'd also like to restore the saturation/gamma/luma
adjustment sliders ... I always liked allowing people to compensate for
their displays without having to change settings system-wide. Lastly,
I've always wanted to see some audio effects. Although I doubt we'll
ever get my dream of CoreAudio-style profiles, I'd like to get some
basic equalizer settings and echo/reverb effects in there.
2016-04-11 21:29:56 +00:00
|
|
|
//echo.cpp
|
|
|
|
auto calculateFIR(bool channel, int index) -> int;
|
2016-01-23 07:29:34 +00:00
|
|
|
auto echoOutput(bool channel) -> int;
|
2015-10-10 02:16:12 +00:00
|
|
|
auto echoRead(bool channel) -> void;
|
|
|
|
auto echoWrite(bool channel) -> void;
|
|
|
|
auto echo22() -> void;
|
|
|
|
auto echo23() -> void;
|
|
|
|
auto echo24() -> void;
|
|
|
|
auto echo25() -> void;
|
|
|
|
auto echo26() -> void;
|
|
|
|
auto echo27() -> void;
|
|
|
|
auto echo28() -> void;
|
|
|
|
auto echo29() -> void;
|
|
|
|
auto echo30() -> void;
|
2010-08-09 13:28:56 +00:00
|
|
|
|
Update to v098r04 release.
byuu says:
Changelog:
- SFC: fixed behavior of 21fx $21fe register when no device is connected
(must return zero)
- SFC: reduced 21fx buffer size to 1024 bytes in both directions to
mirror the FT232H we are using
- SFC: eliminated dsp/modulo-array.hpp [1]
- higan: implemented higan/video interface and migrated all cores to it
[2]
[1] the echo history buffer was 8-bytes, so there was no need for it at
all here. Not sure what I was thinking. The BRR buffer was 12-bytes, and
has very weird behavior ... but there's only a single location in the
code where it actually writes to this buffer. It's much easier to just
write to the buffer three times there instead of implementing an entire
class just to abstract away two lines of code. This change actually
boosted the speed from ~124.5fps to around ~127.5fps, but that's within
the margin of error for GCC. I doubt it's actually faster this way.
The DSP core could really use a ton of work. It comes from a port of
blargg's spc_dsp to my coding style, but he was extremely fond of using
32-bit signed integers everywhere. There's a lot of opportunity to
remove red tape masking by resizing the variables to their actual state
sizes.
I really need to find where I put spc_dsp6.sfc from blargg. It's a great
test to verify if I've made any mistakes in my implementation that would
cause regressions. Don't suppose anyone has it?
[2] so again, the idea is that higan/audio and higan/video are going to
sit between the emulation cores and the user interfaces. The hope is to
output raw encoding data from the emulation cores without having to
worry about the video display format (generally 24-bit RGB) of the host
display. And also to avoid having to repeat myself with eg three
separate implementations of interframe blending, and so on.
Furthermore, the idea is that the user interface can configure its side
of the settings, and the emulation cores can configure their sides.
Thus, neither has to worry about the other end. And now we can spin off
new user interfaces much easier without having to mess with all of these
things.
Right now, I've implemented color emulation, interframe blending and
SNES horizontal color bleed. I did not implement scanlines (and
interlace effects for them) yet, but I probably will at some point.
Further, for right now, the WonderSwan/Color screen rotation is busted
and will only show games in the horizontal orientation. Obviously this
must be fixed before the next official release, but I'll want to think
about how to implement it.
Also, the SNES light gun pointers are missing for now.
Things are a bit messy right now as I've gone through several revisions
of how to handle these things, so a good house cleaning is in order once
everything is feature-complete again. I need to sit down and think
through how and where I want to handle things like light gun cursors,
LCD icons, and maybe even rasterized text messages.
And obviously ... higan/audio is still just nall::DSP's headers. I need
to revamp that whole interface. I want to make it quite powerful with
a true audio mixer so I can handle things like
SNES+SGB+MSU1+Voicer-Kun+SNES-CD (five separate audio streams at once.)
The video system has the concept of "effects" for things like color
bleed and interframe blending. I want to extend on this with useful
other effects, such as NTSC simulation, maybe bringing back my mini-HQ2x
filter, etc. I'd also like to restore the saturation/gamma/luma
adjustment sliders ... I always liked allowing people to compensate for
their displays without having to change settings system-wide. Lastly,
I've always wanted to see some audio effects. Although I doubt we'll
ever get my dream of CoreAudio-style profiles, I'd like to get some
basic equalizer settings and echo/reverb effects in there.
2016-04-11 21:29:56 +00:00
|
|
|
//dsp.cpp
|
2015-10-10 02:16:12 +00:00
|
|
|
static auto Enter() -> void;
|
|
|
|
auto tick() -> void;
|
2010-08-09 13:28:56 +00:00
|
|
|
};
|
|
|
|
|
Update to v085r03 release.
byuu says:
Changelog:
- fixed cursor being visible under Metacity window manager (hopefully
doesn't cause regression with other WMs)
- show normal cursor when using SDL video driver
- added menu accelerators (meh, why not?)
- removed debugvirtual, ChipDebugger and chip/debugger functionality
entirely
- alt/smp disassembler moved up
- fixed alt/smp incw/decw instructions (unsigned->uint16 for internal
variables)
My plan going forward for a debugger is not to hardcode functionality
that causes the 10-15% slowdown right into the emulator itself.
Instead, I'm going to make a callback class, which will be a specialized
version of nall::function:
- can call function even if not assigned (results in no-op, return type
must have a trivial default constructor)
- if compiled without #define DEBUGGER, the entire thing turns into
a huge no-op; and will be eliminated entirely when compiled
- strategically place the functions: cb_step, cb_read, cb_write, etc.
From here, the ui-debugger GUI will bind the callbacks, implement
breakpoint checking, usage table generation, etc itself.
I'll probably have to add some breakout commands to exit the emulation
core prior to a frame event in some cases as well.
I didn't initially want any debugger-related stuff in the base cores,
but the #if debugger sCPUDebugger #else sCPU #endif stuff was already
more of a burden than this will be.
2012-02-04 09:23:53 +00:00
|
|
|
extern DSP dsp;
|