bsnes/ruby/implementation.cpp

173 lines
3.9 KiB
C++
Raw Normal View History

/* Global Headers */
Update to v094r08 release. byuu says: Lots of changes this time around. FreeBSD stability and compilation is still a work in progress. FreeBSD 10 + Clang 3.3 = 108fps FreeBSD 10 + GCC 4.7 = 130fps Errata 1: I've been fighting that god-damned endian.h header for the past nine WIPs now. The above WIP isn't building now because FreeBSD isn't including headers before using certain types, and you end up with a trillion error messages. So just delete all the endian.h includes from nall/intrinsics.hpp to build. Errata 2: I was trying to match g++ and g++47, so I used $(findstring g++,$(compiler)), which ends up also matching clang++. Oops. Easy fix, put Clang first and then else if g++ next. Not ideal, but oh well. All it's doing for now is declaring -fwrapv twice, so you don't have to fix it just yet. Probably just going to alias g++="g++47" and do exact matching instead. Errata 3: both OpenGL::term and VideoGLX::term are causing a core dump on BSD. No idea why. The resources are initialized and valid, but releasing them crashes the application. Changelog: - nall/Makefile is more flexible with overriding $(compiler), so you can build with GCC or Clang on BSD (defaults to GCC now) - PLATFORM_X was renamed to PLATFORM_XORG, and it's also declared with PLATFORM_LINUX or PLATFORM_BSD - PLATFORM_XORG probably isn't the best name ... still thinking about what best to call LINUX|BSD|SOLARIS or ^(WINDOWS|MACOSX) - fixed a few legitimate Clang warning messages in nall - Compiler::VisualCPP is ugly as hell, renamed to Compiler::CL - nall/platform includes nall/intrinsics first. Trying to move away from testing for _WIN32, etc directly in all files. Work in progress. - nall turns off Clang warnings that I won't "fix", because they aren't broken. It's much less noisy to compile with warnings on now. - phoenix gains the ability to set background and foreground colors on various text container widgets (GTK only for now.) - rewrote a lot of the MSU1 code to try and simplify it. Really hope I didn't break anything ... I don't have any MSU1 test ROMs handy - SNES coprocessor audio is now mixed as sclamp<16>(system_sample + coprocessor_sample) instead of sclamp<16>((sys + cop) / 2) - allows for greater chance of aliasing (still low, SNES audio is quiet), but doesn't cut base system volume in half anymore - fixed Super Scope and Justifier cursor colors - use input.xlib instead of input.x ... allows Xlib input driver to be visible on Linux and BSD once again - make install and make uninstall must be run as root again; no longer using install but cp instead for BSD compatibility - killed $(DESTDIR) ... use make prefix=$DESTDIR$prefix instead - you can now set text/background colors for the loki console via (eg): - settings.terminal.background-color 0x000000 - settings.terminal.foreground-color 0xffffff
2014-02-24 09:39:09 +00:00
#if defined(PLATFORM_XORG)
#include <X11/Xlib.h>
#include <X11/Xutil.h>
#include <X11/Xatom.h>
#elif defined(PLATFORM_MACOSX)
#define decimal CocoaDecimal
#include <Cocoa/Cocoa.h>
#include <Carbon/Carbon.h>
#undef decimal
#elif defined(PLATFORM_WINDOWS)
#include <windows.h>
#endif
using namespace nall;
/* Video */
#define DeclareVideo(Name) \
Update to v093r12 release. byuu says: I've completely redone the ethos InputManager and ruby to work on HID::Device objects instead of one giant scancode pool. Currently only the udev driver supports the changes to ruby, so only Linux users will be able to compile and run this WIP build. The nice thing about the new system is that it's now possible to uniquely identify controllers, so if you swap out gamepads, you won't end up with it working but with all the mappings all screwed up. Since higan lets you map multiple physical inputs to one emulated input, you can now configure your keyboard and multiple gamepads to the same emulated input, and then just use whatever controller you want. Because USB gamepad makers failed to provide unique serial#s with each controller, we have to limit the mapping to specific USB ports. Otherwise, we couldn't distinguish two otherwise identical gamepads. So basically your computer USB ports act like real game console input port numbers. Which is kind of neat, I guess. And the really nice thing about the new system is that we now have the capability to support hotplugging input devices. I haven't yet added this to any drivers, but I'm definitely going to add it to udev for v094 official. Finally, with the device ID (vendor ID + product ID) exposed, we gain one last really cool feature that we may be able to develop more in the future. Say we created a joypad.bml file to include with higan. In it, we'd store the Xbox 360 controller, and pre-defined button mappings for each emulated system. So if higan detects you have an Xbox 360 controller, you can just plug it in and use it. Even better, we can clearly specify the difference between triggers and analog axes, and name each individual input. So you'd see "Xbox 360 Gamepad #1: Left Trigger" instead of higan v093's "JP0::Axis2.Hi" Note: for right now, ethos' input manager isn't filtering the device IDs to look pretty. So you're going to see a 64-bit hex value for a device ID right now instead of something like Joypad#N for now.
2013-12-23 11:43:51 +00:00
struct Video##Name : Video { \
Video##Name() : p(*new pVideo##Name) {} \
~Video##Name() { delete &p; } \
\
auto cap(const string& name) -> bool { return p.cap(name); } \
auto get(const string& name) -> any { return p.get(name); } \
auto set(const string& name, const any& value) -> bool { return p.set(name, value); } \
\
auto lock(uint32_t*& data, unsigned& pitch, unsigned width, unsigned height) -> bool { return p.lock(data, pitch, width, height); } \
auto unlock() -> void { p.unlock(); } \
auto clear() -> void { p.clear(); } \
auto refresh() -> void { p.refresh(); } \
\
auto init() -> bool { return p.init(); } \
auto term() -> void { p.term(); } \
\
private: \
pVideo##Name& p; \
};
#ifdef VIDEO_CGL
#include <ruby/video/cgl.cpp>
#endif
#ifdef VIDEO_DIRECT3D
#include <ruby/video/direct3d.cpp>
#endif
#ifdef VIDEO_DIRECTDRAW
#include <ruby/video/directdraw.cpp>
#endif
#ifdef VIDEO_GDI
#include <ruby/video/gdi.cpp>
#endif
#ifdef VIDEO_GLX
#include <ruby/video/glx.cpp>
#endif
#ifdef VIDEO_SDL
#include <ruby/video/sdl.cpp>
#endif
#ifdef VIDEO_WGL
#include <ruby/video/wgl.cpp>
#endif
#ifdef VIDEO_XSHM
#include <ruby/video/xshm.cpp>
#endif
#ifdef VIDEO_XV
#include <ruby/video/xv.cpp>
#endif
/* Audio */
#define DeclareAudio(Name) \
Update to v093r12 release. byuu says: I've completely redone the ethos InputManager and ruby to work on HID::Device objects instead of one giant scancode pool. Currently only the udev driver supports the changes to ruby, so only Linux users will be able to compile and run this WIP build. The nice thing about the new system is that it's now possible to uniquely identify controllers, so if you swap out gamepads, you won't end up with it working but with all the mappings all screwed up. Since higan lets you map multiple physical inputs to one emulated input, you can now configure your keyboard and multiple gamepads to the same emulated input, and then just use whatever controller you want. Because USB gamepad makers failed to provide unique serial#s with each controller, we have to limit the mapping to specific USB ports. Otherwise, we couldn't distinguish two otherwise identical gamepads. So basically your computer USB ports act like real game console input port numbers. Which is kind of neat, I guess. And the really nice thing about the new system is that we now have the capability to support hotplugging input devices. I haven't yet added this to any drivers, but I'm definitely going to add it to udev for v094 official. Finally, with the device ID (vendor ID + product ID) exposed, we gain one last really cool feature that we may be able to develop more in the future. Say we created a joypad.bml file to include with higan. In it, we'd store the Xbox 360 controller, and pre-defined button mappings for each emulated system. So if higan detects you have an Xbox 360 controller, you can just plug it in and use it. Even better, we can clearly specify the difference between triggers and analog axes, and name each individual input. So you'd see "Xbox 360 Gamepad #1: Left Trigger" instead of higan v093's "JP0::Axis2.Hi" Note: for right now, ethos' input manager isn't filtering the device IDs to look pretty. So you're going to see a 64-bit hex value for a device ID right now instead of something like Joypad#N for now.
2013-12-23 11:43:51 +00:00
struct Audio##Name : Audio { \
Audio##Name() : p(*new pAudio##Name) {} \
~Audio##Name() { delete &p; } \
\
auto cap(const string& name) -> bool { return p.cap(name); } \
auto get(const string& name) -> any { return p.get(name); } \
auto set(const string& name, const any& value) -> bool { return p.set(name, value); } \
\
auto sample(uint16_t left, uint16_t right) -> void { p.sample(left, right); } \
auto clear() -> void { p.clear(); } \
\
auto init() -> bool { return p.init(); } \
auto term() -> void { p.term(); } \
\
private: \
pAudio##Name& p; \
};
#ifdef AUDIO_ALSA
#include <ruby/audio/alsa.cpp>
#endif
#ifdef AUDIO_AO
#include <ruby/audio/ao.cpp>
#endif
#ifdef AUDIO_DIRECTSOUND
#include <ruby/audio/directsound.cpp>
#endif
#ifdef AUDIO_OPENAL
#include <ruby/audio/openal.cpp>
#endif
#ifdef AUDIO_OSS
#include <ruby/audio/oss.cpp>
#endif
#ifdef AUDIO_PULSEAUDIO
#include <ruby/audio/pulseaudio.cpp>
#endif
#ifdef AUDIO_PULSEAUDIOSIMPLE
#include <ruby/audio/pulseaudiosimple.cpp>
#endif
#ifdef AUDIO_XAUDIO2
#include <ruby/audio/xaudio2.cpp>
#endif
/* Input */
#define DeclareInput(Name) \
Update to v093r12 release. byuu says: I've completely redone the ethos InputManager and ruby to work on HID::Device objects instead of one giant scancode pool. Currently only the udev driver supports the changes to ruby, so only Linux users will be able to compile and run this WIP build. The nice thing about the new system is that it's now possible to uniquely identify controllers, so if you swap out gamepads, you won't end up with it working but with all the mappings all screwed up. Since higan lets you map multiple physical inputs to one emulated input, you can now configure your keyboard and multiple gamepads to the same emulated input, and then just use whatever controller you want. Because USB gamepad makers failed to provide unique serial#s with each controller, we have to limit the mapping to specific USB ports. Otherwise, we couldn't distinguish two otherwise identical gamepads. So basically your computer USB ports act like real game console input port numbers. Which is kind of neat, I guess. And the really nice thing about the new system is that we now have the capability to support hotplugging input devices. I haven't yet added this to any drivers, but I'm definitely going to add it to udev for v094 official. Finally, with the device ID (vendor ID + product ID) exposed, we gain one last really cool feature that we may be able to develop more in the future. Say we created a joypad.bml file to include with higan. In it, we'd store the Xbox 360 controller, and pre-defined button mappings for each emulated system. So if higan detects you have an Xbox 360 controller, you can just plug it in and use it. Even better, we can clearly specify the difference between triggers and analog axes, and name each individual input. So you'd see "Xbox 360 Gamepad #1: Left Trigger" instead of higan v093's "JP0::Axis2.Hi" Note: for right now, ethos' input manager isn't filtering the device IDs to look pretty. So you're going to see a 64-bit hex value for a device ID right now instead of something like Joypad#N for now.
2013-12-23 11:43:51 +00:00
struct Input##Name : Input { \
Input##Name() : p(*new pInput##Name) {} \
~Input##Name() { delete &p; } \
\
auto cap(const string& name) -> bool { return p.cap(name); } \
auto get(const string& name) -> any { return p.get(name); } \
auto set(const string& name, const any& value) -> bool { return p.set(name, value); } \
\
auto acquire() -> bool { return p.acquire(); } \
auto unacquire() -> bool { return p.unacquire(); } \
auto acquired() -> bool { return p.acquired(); } \
auto poll() -> vector<shared_pointer<HID::Device>> { return p.poll(); } \
auto rumble(uint64_t id, bool enable) -> bool { return p.rumble(id, enable); } \
\
auto init() -> bool { return p.init(); } \
auto term() -> void { p.term(); } \
\
private: \
pInput##Name& p; \
};
#ifdef INPUT_CARBON
#include <ruby/input/carbon.cpp>
#endif
#ifdef INPUT_SDL
#include <ruby/input/sdl.cpp>
#endif
#ifdef INPUT_UDEV
#include <ruby/input/udev.cpp>
#endif
#ifdef INPUT_WINDOWS
#include <ruby/input/windows.cpp>
#endif
Update to v093r12 release. byuu says: I've completely redone the ethos InputManager and ruby to work on HID::Device objects instead of one giant scancode pool. Currently only the udev driver supports the changes to ruby, so only Linux users will be able to compile and run this WIP build. The nice thing about the new system is that it's now possible to uniquely identify controllers, so if you swap out gamepads, you won't end up with it working but with all the mappings all screwed up. Since higan lets you map multiple physical inputs to one emulated input, you can now configure your keyboard and multiple gamepads to the same emulated input, and then just use whatever controller you want. Because USB gamepad makers failed to provide unique serial#s with each controller, we have to limit the mapping to specific USB ports. Otherwise, we couldn't distinguish two otherwise identical gamepads. So basically your computer USB ports act like real game console input port numbers. Which is kind of neat, I guess. And the really nice thing about the new system is that we now have the capability to support hotplugging input devices. I haven't yet added this to any drivers, but I'm definitely going to add it to udev for v094 official. Finally, with the device ID (vendor ID + product ID) exposed, we gain one last really cool feature that we may be able to develop more in the future. Say we created a joypad.bml file to include with higan. In it, we'd store the Xbox 360 controller, and pre-defined button mappings for each emulated system. So if higan detects you have an Xbox 360 controller, you can just plug it in and use it. Even better, we can clearly specify the difference between triggers and analog axes, and name each individual input. So you'd see "Xbox 360 Gamepad #1: Left Trigger" instead of higan v093's "JP0::Axis2.Hi" Note: for right now, ethos' input manager isn't filtering the device IDs to look pretty. So you're going to see a 64-bit hex value for a device ID right now instead of something like Joypad#N for now.
2013-12-23 11:43:51 +00:00
#ifdef INPUT_XLIB
#include <ruby/input/xlib.cpp>
#endif