Currently, QEMU checks the specify number of topology domains to detect
if there's extended topology levels (e.g., checking nr_dies).
With this bitmap, the extended CPU topology (the levels other than SMT,
core and package) could be easier to detect without touching the
topology details.
This is also in preparation for the follow-up to decouple CPUID[0x1F]
subleaf with specific topology level.
Tested-by: Yongwei Ma <yongwei.ma@intel.com>
Signed-off-by: Zhao Liu <zhao1.liu@intel.com>
Tested-by: Babu Moger <babu.moger@amd.com>
Reviewed-by: Xiaoyao Li <xiaoyao.li@intel.com>
Message-ID: <20240424154929.1487382-10-zhao1.liu@intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
LAM uses CR3[61] and CR3[62] to configure/enable LAM on user pointers.
LAM uses CR4[28] to configure/enable LAM on supervisor pointers.
For CR3 LAM bits, no additional handling needed:
- TCG
LAM is not supported for TCG of target-i386. helper_write_crN() and
helper_vmrun() check max physical address bits before calling
cpu_x86_update_cr3(), no change needed, i.e. CR3 LAM bits are not allowed
to be set in TCG.
- gdbstub
x86_cpu_gdb_write_register() will call cpu_x86_update_cr3() to update cr3.
Allow gdb to set the LAM bit(s) to CR3, if vcpu doesn't support LAM,
KVM_SET_SREGS will fail as other reserved bits.
For CR4 LAM bit, its reservation depends on vcpu supporting LAM feature or
not.
- TCG
LAM is not supported for TCG of target-i386. helper_write_crN() and
helper_vmrun() check CR4 reserved bit before calling cpu_x86_update_cr4(),
i.e. CR4 LAM bit is not allowed to be set in TCG.
- gdbstub
x86_cpu_gdb_write_register() will call cpu_x86_update_cr4() to update cr4.
Mask out LAM bit on CR4 if vcpu doesn't support LAM.
- x86_cpu_reset_hold() doesn't need special handling.
Signed-off-by: Binbin Wu <binbin.wu@linux.intel.com>
Tested-by: Xuelian Guo <xuelian.guo@intel.com>
Reviewed-by: Xiaoyao Li <xiaoyao.li@intel.com>
Reviewed-by: Zhao Liu <zhao1.liu@intel.com>
Message-ID: <20240112060042.19925-3-binbin.wu@linux.intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Linear Address Masking (LAM) is a new Intel CPU feature, which allows
software to use of the untranslated address bits for metadata.
The bit definition:
CPUID.(EAX=7,ECX=1):EAX[26]
Add CPUID definition for LAM.
Note LAM feature is not supported for TCG of target-i386, LAM CPIUD bit
will not be added to TCG_7_1_EAX_FEATURES.
More info can be found in Intel ISE Chapter "LINEAR ADDRESS MASKING(LAM)"
https://cdrdv2.intel.com/v1/dl/getContent/671368
Signed-off-by: Robert Hoo <robert.hu@linux.intel.com>
Co-developed-by: Binbin Wu <binbin.wu@linux.intel.com>
Signed-off-by: Binbin Wu <binbin.wu@linux.intel.com>
Tested-by: Xuelian Guo <xuelian.guo@intel.com>
Reviewed-by: Xiaoyao Li <xiaoyao.li@intel.com>
Reviewed-by: Zhao Liu <zhao1.liu@intel.com>
Message-ID: <20240112060042.19925-2-binbin.wu@linux.intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
The PCOMMIT instruction was never included in any physical processor.
TCG implements it as a no-op instruction, but its utility is debatable
to say the least. Drop it from the decoder since it is only available
with "-cpu max", which does not guarantee migration compatibility
across versions, and deprecate the property just in case someone is
using it as "pcommit=off".
Reviewed-by: Richard Henderson <richard.henderson@linaro.org>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Observed the following failure while booting the SEV-SNP guest and the
guest fails to boot with the smp parameters:
"-smp 192,sockets=1,dies=12,cores=8,threads=2".
qemu-system-x86_64: sev_snp_launch_update: SNP_LAUNCH_UPDATE ret=-5 fw_error=22 'Invalid parameter'
qemu-system-x86_64: SEV-SNP: CPUID validation failed for function 0x8000001e, index: 0x0.
provided: eax:0x00000000, ebx: 0x00000100, ecx: 0x00000b00, edx: 0x00000000
expected: eax:0x00000000, ebx: 0x00000100, ecx: 0x00000300, edx: 0x00000000
qemu-system-x86_64: SEV-SNP: failed update CPUID page
Reason for the failure is due to overflowing of bits used for "Node per
processor" in CPUID Fn8000001E_ECX. This field's width is 3 bits wide and
can hold maximum value 0x7. With dies=12 (0xB), it overflows and spills
over into the reserved bits. In the case of SEV-SNP, this causes CPUID
enforcement failure and guest fails to boot.
The PPR documentation for CPUID_Fn8000001E_ECX [Node Identifiers]
=================================================================
Bits Description
31:11 Reserved.
10:8 NodesPerProcessor: Node per processor. Read-only.
ValidValues:
Value Description
0h 1 node per processor.
7h-1h Reserved.
7:0 NodeId: Node ID. Read-only. Reset: Fixed,XXh.
=================================================================
As in the spec, the valid value for "node per processor" is 0 and rest
are reserved.
Looking back at the history of decoding of CPUID_Fn8000001E_ECX, noticed
that there were cases where "node per processor" can be more than 1. It
is valid only for pre-F17h (pre-EPYC) architectures. For EPYC or later
CPUs, the linux kernel does not use this information to build the L3
topology.
Also noted that the CPUID Function 0x8000001E_ECX is available only when
TOPOEXT feature is enabled. This feature is enabled only for EPYC(F17h)
or later processors. So, previous generation of processors do not not
enumerate 0x8000001E_ECX leaf.
There could be some corner cases where the older guests could enable the
TOPOEXT feature by running with -cpu host, in which case legacy guests
might notice the topology change. To address those cases introduced a
new CPU property "legacy-multi-node". It will be true for older machine
types to maintain compatibility. By default, it will be false, so new
decoding will be used going forward.
The documentation is taken from Preliminary Processor Programming
Reference (PPR) for AMD Family 19h Model 11h, Revision B1 Processors 55901
Rev 0.25 - Oct 6, 2022.
Cc: qemu-stable@nongnu.org
Fixes: 31ada106d8 ("Simplify CPUID_8000_001E for AMD")
Link: https://bugzilla.kernel.org/show_bug.cgi?id=206537
Reviewed-by: Zhao Liu <zhao1.liu@intel.com>
Signed-off-by: Babu Moger <babu.moger@amd.com>
Message-ID: <0ee4b0a8293188a53970a2b0e4f4ef713425055e.1714757834.git.babu.moger@amd.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
accel/tcg/ files requires the following definitions:
- TARGET_LONG_BITS
- TARGET_PAGE_BITS
- TARGET_PHYS_ADDR_SPACE_BITS
- TCG_GUEST_DEFAULT_MO
The first 3 are defined in "cpu-param.h". The last one
in "cpu.h", with a bunch of definitions irrelevant for
TCG. By moving the TCG_GUEST_DEFAULT_MO definition to
"cpu-param.h", we can simplify various accel/tcg includes.
Signed-off-by: Philippe Mathieu-Daudé <philmd@linaro.org>
Reviewed-by: Richard Henderson <richard.henderson@linaro.org>
Acked-by: Nicholas Piggin <npiggin@gmail.com>
Message-Id: <20231211212003.21686-4-philmd@linaro.org>
Allows to set guest-phys-bits (cpuid leaf 80000008, eax[23:16])
via -cpu $model,guest-phys-bits=$nr.
Signed-off-by: Gerd Hoffmann <kraxel@redhat.com>
Message-ID: <20240318155336.156197-3-kraxel@redhat.com>
Reviewed-by: Zhao Liu <zhao1.liu@intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
The low bit of MMU indices for x86 TCG indicates whether the processor is
in 32-bit mode and therefore linear addresses have to be masked to 32 bits.
However, the index was computed incorrectly, leading to possible conflicts
in the TLB for any address above 4G.
Analyzed-by: Mark Cave-Ayland <mark.cave-ayland@ilande.co.uk>
Fixes: b1661801c1 ("target/i386: Fix physical address truncation", 2024-02-28)
Cc: qemu-stable@nongnu.org
Resolves: https://gitlab.com/qemu-project/qemu/-/issues/2206
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
The address translation logic in get_physical_address() will currently
truncate physical addresses to 32 bits unless long mode is enabled.
This is incorrect when using physical address extensions (PAE) outside
of long mode, with the result that a 32-bit operating system using PAE
to access memory above 4G will experience undefined behaviour.
The truncation code was originally introduced in commit 33dfdb5 ("x86:
only allow real mode to access 32bit without LMA"), where it applied
only to translations performed while paging is disabled (and so cannot
affect guests using PAE).
Commit 9828198 ("target/i386: Add MMU_PHYS_IDX and MMU_NESTED_IDX")
rearranged the code such that the truncation also applied to the use
of MMU_PHYS_IDX and MMU_NESTED_IDX. Commit 4a1e9d4 ("target/i386: Use
atomic operations for pte updates") brought this truncation into scope
for page table entry accesses, and is the first commit for which a
Windows 10 32-bit guest will reliably fail to boot if memory above 4G
is present.
The truncation code however is not completely redundant. Even though the
maximum address size for any executed instruction is 32 bits, helpers for
operations such as BOUND, FSAVE or XSAVE may ask get_physical_address()
to translate an address outside of the 32-bit range, if invoked with an
argument that is close to the 4G boundary. Likewise for processor
accesses, for example TSS or IDT accesses, when EFER.LMA==0.
So, move the address truncation in get_physical_address() so that it
applies to 32-bit MMU indexes, but not to MMU_PHYS_IDX and MMU_NESTED_IDX.
Resolves: https://gitlab.com/qemu-project/qemu/-/issues/2040
Fixes: 4a1e9d4d11 ("target/i386: Use atomic operations for pte updates", 2022-10-18)
Cc: qemu-stable@nongnu.org
Co-developed-by: Michael Brown <mcb30@ipxe.org>
Signed-off-by: Michael Brown <mcb30@ipxe.org>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Accesses from a 32-bit environment (32-bit code segment for instruction
accesses, EFER.LMA==0 for processor accesses) have to mask away the
upper 32 bits of the address. While a bit wasteful, the easiest way
to do so is to use separate MMU indexes. These days, QEMU anyway is
compiled with a fixed value for NB_MMU_MODES. Split MMU_USER_IDX,
MMU_KSMAP_IDX and MMU_KNOSMAP_IDX in two.
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Remove knowledge of specific MMU indexes (other than MMU_NESTED_IDX and
MMU_PHYS_IDX) from mmu_translate(). This will make it possible to split
32-bit and 64-bit MMU indexes.
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
This commit adds support for x2APIC transitions when writing to
MSR_IA32_APICBASE register and finally adds CPUID_EXT_X2APIC to
TCG_EXT_FEATURES.
The set_base in APICCommonClass now returns an integer to indicate error in
execution. apic_set_base return -1 on invalid APIC state transition,
accelerator can use this to raise appropriate exception.
Signed-off-by: Bui Quang Minh <minhquangbui99@gmail.com>
Message-Id: <20240111154404.5333-4-minhquangbui99@gmail.com>
Acked-by: Michael S. Tsirkin <mst@redhat.com>
Signed-off-by: Michael S. Tsirkin <mst@redhat.com>
This commit extends the APIC ID to 32-bit long and remove the 255 max APIC
ID limit in userspace APIC. The array that manages local APICs is now
dynamically allocated based on the max APIC ID of created x86 machine.
Also, new x2APIC IPI destination determination scheme, self IPI and x2APIC
mode register access are supported.
Signed-off-by: Bui Quang Minh <minhquangbui99@gmail.com>
Message-Id: <20240111154404.5333-3-minhquangbui99@gmail.com>
Acked-by: Michael S. Tsirkin <mst@redhat.com>
Signed-off-by: Michael S. Tsirkin <mst@redhat.com>
This commit creates apic_register_read/write which are used by both
apic_mem_read/write for MMIO access and apic_msr_read/write for MSR access.
The apic_msr_read/write returns -1 on error, accelerator can use this to
raise the appropriate exception.
Signed-off-by: Bui Quang Minh <minhquangbui99@gmail.com>
Message-Id: <20240111154404.5333-2-minhquangbui99@gmail.com>
Acked-by: Michael S. Tsirkin <mst@redhat.com>
Signed-off-by: Michael S. Tsirkin <mst@redhat.com>
For user-only mode, use MMU_USER_IDX.
For system mode, use CPUClass.mmu_index.
Reviewed-by: Philippe Mathieu-Daudé <philmd@linaro.org>
Signed-off-by: Richard Henderson <richard.henderson@linaro.org>
ALU instructions can write to both memory and flags. If the CC_SRC*
and CC_DST locations have been written already when a memory access
causes a fault, the value in CC_SRC* and CC_DST might be interpreted
with the wrong CC_OP (the one that is in effect before the instruction.
Besides just using the wrong result for the flags, something like
subtracting -1 can have disastrous effects if the current CC_OP is
CC_OP_EFLAGS: this is because QEMU does not expect bits outside the ALU
flags to be set in CC_SRC, and env->eflags can end up set to all-ones.
In the case of the attached testcase, this sets IOPL to 3 and would
cause an assertion failure if SUB is moved to the new decoder.
This mechanism is not really needed for BMI instructions, which can
only write to a register, but put it to use anyway for cleanliness.
In the case of BZHI, the code has to be modified slightly to ensure
that decode->cc_src is written, otherwise the new assertions trigger.
Reviewed-by: Richard Henderson <richard.henderson@linaro.org>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
cpu_cc_compute_all() has an argument that is always equal to CC_OP for historical
reasons (dating back to commit a7812ae412, "TCG variable type checking.", 2008-11-17,
which added the argument to helper_cc_compute_all). It does not make sense for the
argument to have any other value, so remove it and clean up some lines that are not
too long anymore.
Reviewed-by: Richard Henderson <richard.henderson@linaro.org>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
In 32-bit mode, pc = eip + cs_base is also 32-bit, and must wrap.
Failure to do so results in incorrect memory exceptions to the guest.
Before 732d548732, this was implicitly done via truncation to
target_ulong but only in qemu-system-i386, not qemu-system-x86_64.
To fix this, we must add conditional zero-extensions.
Since we have to test for 32 vs 64-bit anyway, note that cs_base
is always zero in 64-bit mode.
Resolves: https://gitlab.com/qemu-project/qemu/-/issues/2022
Signed-off-by: Richard Henderson <richard.henderson@linaro.org>
Reviewed-by: Paolo Bonzini <pbonzini@redhat.com>
Message-Id: <20231212172510.103305-1-richard.henderson@linaro.org>
In the nr_threads' comment, specify it represents the
number of threads in the "core" to avoid confusion.
Also add comment for nr_dies in CPUX86State.
Signed-off-by: Zhao Liu <zhao1.liu@intel.com>
Reviewed-by: Philippe Mathieu-Daudé <philmd@linaro.org>
Tested-by: Babu Moger <babu.moger@amd.com>
Tested-by: Yongwei Ma <yongwei.ma@intel.com>
Acked-by: Michael S. Tsirkin <mst@redhat.com>
Message-ID: <20231024090323.1859210-5-zhao1.liu@linux.intel.com>
Signed-off-by: Philippe Mathieu-Daudé <philmd@linaro.org>
The OBJECT_DECLARE_CPU_TYPE() macro forward-declares each
ArchCPUClass type. These forward declarations are sufficient
for code in hw/ to use the QOM definitions. No need to expose
these structure definitions. Keep each local to their target/
by moving them to the corresponding "cpu.h" header.
Suggested-by: Richard Henderson <richard.henderson@linaro.org>
Signed-off-by: Philippe Mathieu-Daudé <philmd@linaro.org>
Reviewed-by: Richard Henderson <richard.henderson@linaro.org>
Message-Id: <20231013140116.255-13-philmd@linaro.org>
Hegerogeneous code needs access to the FOO_CPU_TYPE_NAME()
macro to resolve target CPU types. Move the declaration
(along with the required FOO_CPU_TYPE_SUFFIX) to "cpu-qom.h".
"target/foo/cpu-qom.h" is supposed to be target agnostic
(include-able by any target). Add such mention in the
header.
Signed-off-by: Philippe Mathieu-Daudé <philmd@linaro.org>
Acked-by: LIU Zhiwei <zhiwei_liu@linux.alibaba.com>
Reviewed-by: Richard Henderson <richard.henderson@linaro.org>
Message-Id: <20231013140116.255-7-philmd@linaro.org>
Enforce the style described by commit 067109a11c ("docs/devel:
mention the spacing requirement for QOM"):
The first declaration of a storage or class structure should
always be the parent and leave a visual space between that
declaration and the new code. It is also useful to separate
backing for properties (options driven by the user) and internal
state to make navigation easier.
Signed-off-by: Philippe Mathieu-Daudé <philmd@linaro.org>
Reviewed-by: Richard Henderson <richard.henderson@linaro.org>
Reviewed-by: Zhao Liu <zhao1.liu@intel.com>
Message-Id: <20231013140116.255-2-philmd@linaro.org>
Retain the separate structure to emphasize its importance.
Enforce CPUArchState always follows CPUState without padding.
Reviewed-by: Anton Johansson <anjo@rev.ng>
Signed-off-by: Richard Henderson <richard.henderson@linaro.org>
On parts that enumerate IA32_VMX_BASIC MSR bit as 1, any exception vector
can be delivered with or without an error code if the other consistency
checks are satisfied.
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Latest Intel platform GraniteRapids-D introduces AMX-COMPLEX, which adds
two instructions to perform matrix multiplication of two tiles containing
complex elements and accumulate the results into a packed single precision
tile.
AMX-COMPLEX is enumerated via CPUID.(EAX=7,ECX=1):EDX[bit 8]. Add the CPUID
definition for AMX-COMPLEX, AMX-COMPLEX will be enabled automatically when
using '-cpu host' and KVM advertises AMX-COMPLEX to userspace.
Signed-off-by: Tao Su <tao1.su@linux.intel.com>
Reviewed-by: Xiaoyao Li <xiaoyao.li@intel.com>
Message-ID: <20230830074324.84059-1-tao1.su@linux.intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Current QEMU can expose waitpkg to guests when it is available. However,
VMX_SECONDARY_EXEC_ENABLE_USER_WAIT_PAUSE is still not recognized and
masked by QEMU. This can lead to an unexpected situation when a L1
hypervisor wants to expose waitpkg to a L2 guest. The L1 hypervisor can
assume that VMX_SECONDARY_EXEC_ENABLE_USER_WAIT_PAUSE exists as waitpkg is
available. The L1 hypervisor then can accidentally expose waitpkg to the
L2 guest. This will cause invalid opcode exception in the L2 guest when
it executes waitpkg related instructions.
This patch adds VMX_SECONDARY_EXEC_ENABLE_USER_WAIT_PAUSE support, and
sets up dependency between the bit and CPUID_7_0_ECX_WAITPKG. QEMU should
not expose waitpkg feature if VMX_SECONDARY_EXEC_ENABLE_USER_WAIT_PAUSE is
not available to avoid unexpected invalid opcode exception in L2 guests.
Signed-off-by: Ake Koomsin <ake@igel.co.jp>
Message-ID: <20230807093339.32091-2-ake@igel.co.jp>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Currently, bit 13, 14, 15 and 24 of MSR_IA32_ARCH_CAPABILITIES are
disclosed for fixing security issues, so add those bit definitions.
Signed-off-by: Tao Su <tao1.su@linux.intel.com>
Reviewed-by: Igor Mammedov <imammedo@redhat.com>
Message-ID: <20230706054949.66556-5-tao1.su@linux.intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
CPUID.(EAX=7,ECX=2):EDX[bit 5] enumerates MCDT_NO. Processors enumerate
this bit as 1 do not exhibit MXCSR Configuration Dependent Timing (MCDT)
behavior and do not need to be mitigated to avoid data-dependent behavior
for certain instructions.
Since MCDT_NO is in a new sub-leaf, add a new CPUID feature word
FEAT_7_2_EDX. Also update cpuid_level_func7 by FEAT_7_2_EDX.
Signed-off-by: Tao Su <tao1.su@linux.intel.com>
Reviewed-by: Xiaoyao Li <xiaoyao.li@intel.com>
Message-ID: <20230706054949.66556-3-tao1.su@linux.intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Signed-off-by: Anton Johansson <anjo@rev.ng>
Reviewed-by: Richard Henderson <richard.henderson@linaro.org>
Message-Id: <20230621135633.1649-4-anjo@rev.ng>
Signed-off-by: Richard Henderson <richard.henderson@linaro.org>
Since commit 604664726f ("target/i386: Restrict cpu_exec_interrupt()
handler to sysemu"), do_cpu_sipi() isn't called anymore on user
emulation. Remove the now pointless stub.
Signed-off-by: Philippe Mathieu-Daudé <philmd@linaro.org>
Reviewed-by: Richard Henderson <richard.henderson@linaro.org>
Message-Id: <20230602224628.59546-2-philmd@linaro.org>
As reported by the Intel's doc:
"FB_CLEAR: The processor will overwrite fill buffer values as part of
MD_CLEAR operations with the VERW instruction.
On these processors, L1D_FLUSH does not overwrite fill buffer values."
If this cpu feature is present in host, allow QEMU to choose whether to
show it to the guest too.
One disadvantage of not exposing it is that the guest will report
a non existing vulnerability in
/sys/devices/system/cpu/vulnerabilities/mmio_stale_data
because the mitigation is present only when the cpu has
(FLUSH_L1D and MD_CLEAR) or FB_CLEAR
features enabled.
Signed-off-by: Emanuele Giuseppe Esposito <eesposit@redhat.com>
Message-Id: <20230201135759.555607-3-eesposit@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
As reported by Intel's doc:
"L1D_FLUSH: Writeback and invalidate the L1 data cache"
If this cpu feature is present in host, allow QEMU to choose whether to
show it to the guest too.
One disadvantage of not exposing it is that the guest will report
a non existing vulnerability in
/sys/devices/system/cpu/vulnerabilities/mmio_stale_data
because the mitigation is present only when the cpu has
(FLUSH_L1D and MD_CLEAR) or FB_CLEAR
features enabled.
Signed-off-by: Emanuele Giuseppe Esposito <eesposit@redhat.com>
Message-Id: <20230201135759.555607-2-eesposit@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Add the following featute bits.
vnmi: Virtual NMI (VNMI) allows the hypervisor to inject the NMI into the
guest without using Event Injection mechanism meaning not required to
track the guest NMI and intercepting the IRET.
The presence of this feature is indicated via the CPUID function
0x8000000A_EDX[25].
automatic-ibrs :
The AMD Zen4 core supports a new feature called Automatic IBRS.
It is a "set-and-forget" feature that means that, unlike e.g.,
s/w-toggled SPEC_CTRL.IBRS, h/w manages its IBRS mitigation
resources automatically across CPL transitions.
The presence of this feature is indicated via the CPUID function
0x80000021_EAX[8].
The documention for the features are available in the links below.
a. Processor Programming Reference (PPR) for AMD Family 19h Model 01h,
Revision B1 Processors
b. AMD64 Architecture Programmer’s Manual Volumes 1–5 Publication No. Revision
40332 4.05 Date October 2022
Signed-off-by: Santosh Shukla <santosh.shukla@amd.com>
Signed-off-by: Kim Phillips <kim.phillips@amd.com>
Signed-off-by: Babu Moger <babu.moger@amd.com>
Link: https://www.amd.com/system/files/TechDocs/55898_B1_pub_0.50.zip
Link: https://www.amd.com/system/files/TechDocs/40332_4.05.pdf
Message-Id: <20230504205313.225073-7-babu.moger@amd.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Add the following feature bits.
no-nested-data-bp : Processor ignores nested data breakpoints.
lfence-always-serializing : LFENCE instruction is always serializing.
null-sel-cls-base : Null Selector Clears Base. When this bit is
set, a null segment load clears the segment base.
The documentation for the features are available in the links below.
a. Processor Programming Reference (PPR) for AMD Family 19h Model 01h,
Revision B1 Processors
b. AMD64 Architecture Programmer’s Manual Volumes 1–5 Publication No. Revision
40332 4.05 Date October 2022
Signed-off-by: Babu Moger <babu.moger@amd.com>
Acked-by: Michael S. Tsirkin <mst@redhat.com>
Link: https://www.amd.com/system/files/TechDocs/55898_B1_pub_0.50.zip
Link: https://www.amd.com/system/files/TechDocs/40332_4.05.pdf
Message-Id: <20230504205313.225073-5-babu.moger@amd.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Add the following feature bits.
amd-psfd : Predictive Store Forwarding Disable:
PSF is a hardware-based micro-architectural optimization
designed to improve the performance of code execution by
predicting address dependencies between loads and stores.
While SSBD (Speculative Store Bypass Disable) disables both
PSF and speculative store bypass, PSFD only disables PSF.
PSFD may be desirable for the software which is concerned
with the speculative behavior of PSF but desires a smaller
performance impact than setting SSBD.
Depends on the following kernel commit:
b73a54321ad8 ("KVM: x86: Expose Predictive Store Forwarding Disable")
stibp-always-on :
Single Thread Indirect Branch Prediction mode has enhanced
performance and may be left always on.
The documentation for the features are available in the links below.
a. Processor Programming Reference (PPR) for AMD Family 19h Model 01h,
Revision B1 Processors
b. SECURITY ANALYSIS OF AMD PREDICTIVE STORE FORWARDING
Signed-off-by: Babu Moger <babu.moger@amd.com>
Acked-by: Michael S. Tsirkin <mst@redhat.com>
Link: https://www.amd.com/system/files/documents/security-analysis-predictive-store-forwarding.pdf
Link: https://www.amd.com/system/files/TechDocs/55898_B1_pub_0.50.zip
Message-Id: <20230504205313.225073-4-babu.moger@amd.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Latest Intel platform Granite Rapids has introduced a new instruction -
PREFETCHIT0/1, which moves code to memory (cache) closer to the
processor depending on specific hints.
The bit definition:
CPUID.(EAX=7,ECX=1):EDX[bit 14]
Add CPUID definition for PREFETCHIT0/1.
Signed-off-by: Jiaxi Chen <jiaxi.chen@linux.intel.com>
Signed-off-by: Tao Su <tao1.su@linux.intel.com>
Reviewed-by: Xiaoyao Li <xiaoyao.li@intel.com>
Message-Id: <20230303065913.1246327-7-tao1.su@linux.intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
AVX-NE-CONVERT is a new set of instructions which can convert low
precision floating point like BF16/FP16 to high precision floating point
FP32, as well as convert FP32 elements to BF16. This instruction allows
the platform to have improved AI capabilities and better compatibility.
The bit definition:
CPUID.(EAX=7,ECX=1):EDX[bit 5]
Add CPUID definition for AVX-NE-CONVERT.
Signed-off-by: Jiaxi Chen <jiaxi.chen@linux.intel.com>
Signed-off-by: Tao Su <tao1.su@linux.intel.com>
Reviewed-by: Xiaoyao Li <xiaoyao.li@intel.com>
Message-Id: <20230303065913.1246327-6-tao1.su@linux.intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
AVX-VNNI-INT8 is a new set of instructions in the latest Intel platform
Sierra Forest, aims for the platform to have superior AI capabilities.
This instruction multiplies the individual bytes of two unsigned or
unsigned source operands, then adds and accumulates the results into the
destination dword element size operand.
The bit definition:
CPUID.(EAX=7,ECX=1):EDX[bit 4]
AVX-VNNI-INT8 is on a new feature bits leaf. Add a CPUID feature word
FEAT_7_1_EDX for this leaf.
Add CPUID definition for AVX-VNNI-INT8.
Signed-off-by: Jiaxi Chen <jiaxi.chen@linux.intel.com>
Signed-off-by: Tao Su <tao1.su@linux.intel.com>
Reviewed-by: Xiaoyao Li <xiaoyao.li@intel.com>
Message-Id: <20230303065913.1246327-5-tao1.su@linux.intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
AVX-IFMA is a new instruction in the latest Intel platform Sierra
Forest. This instruction packed multiplies unsigned 52-bit integers and
adds the low/high 52-bit products to Qword Accumulators.
The bit definition:
CPUID.(EAX=7,ECX=1):EAX[bit 23]
Add CPUID definition for AVX-IFMA.
Signed-off-by: Jiaxi Chen <jiaxi.chen@linux.intel.com>
Signed-off-by: Tao Su <tao1.su@linux.intel.com>
Reviewed-by: Xiaoyao Li <xiaoyao.li@intel.com>
Message-Id: <20230303065913.1246327-4-tao1.su@linux.intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Latest Intel platform Granite Rapids has introduced a new instruction -
AMX-FP16, which performs dot-products of two FP16 tiles and accumulates
the results into a packed single precision tile. AMX-FP16 adds FP16
capability and allows a FP16 GPU trained model to run faster without
loss of accuracy or added SW overhead.
The bit definition:
CPUID.(EAX=7,ECX=1):EAX[bit 21]
Add CPUID definition for AMX-FP16.
Signed-off-by: Jiaxi Chen <jiaxi.chen@linux.intel.com>
Signed-off-by: Tao Su <tao1.su@linux.intel.com>
Reviewed-by: Xiaoyao Li <xiaoyao.li@intel.com>
Message-Id: <20230303065913.1246327-3-tao1.su@linux.intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
CMPccXADD is a new set of instructions in the latest Intel platform
Sierra Forest. This new instruction set includes a semaphore operation
that can compare and add the operands if condition is met, which can
improve database performance.
The bit definition:
CPUID.(EAX=7,ECX=1):EAX[bit 7]
Add CPUID definition for CMPCCXADD.
Signed-off-by: Jiaxi Chen <jiaxi.chen@linux.intel.com>
Signed-off-by: Tao Su <tao1.su@linux.intel.com>
Reviewed-by: Xiaoyao Li <xiaoyao.li@intel.com>
Message-Id: <20230303065913.1246327-2-tao1.su@linux.intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Introduce support for one shot and periodic mode of Xen PV timers,
whereby timer interrupts come through a special virq event channel
with deadlines being set through:
1) set_timer_op hypercall (only oneshot)
2) vcpu_op hypercall for {set,stop}_{singleshot,periodic}_timer
hypercalls
Signed-off-by: Joao Martins <joao.m.martins@oracle.com>
Signed-off-by: David Woodhouse <dwmw@amazon.co.uk>
Reviewed-by: Paul Durrant <paul@xen.org>
The GSI callback (and later PCI_INTX) is a level triggered interrupt. It
is asserted when an event channel is delivered to vCPU0, and is supposed
to be cleared when the vcpu_info->evtchn_upcall_pending field for vCPU0
is cleared again.
Thankfully, Xen does *not* assert the GSI if the guest sets its own
evtchn_upcall_pending field; we only need to assert the GSI when we
have delivered an event for ourselves. So that's the easy part, kind of.
There's a slight complexity in that we need to hold the BQL before we
can call qemu_set_irq(), and we definitely can't do that while holding
our own port_lock (because we'll need to take that from the qemu-side
functions that the PV backend drivers will call). So if we end up
wanting to set the IRQ in a context where we *don't* already hold the
BQL, defer to a BH.
However, we *do* need to poll for the evtchn_upcall_pending flag being
cleared. In an ideal world we would poll that when the EOI happens on
the PIC/IOAPIC. That's how it works in the kernel with the VFIO eventfd
pairs — one is used to trigger the interrupt, and the other works in the
other direction to 'resample' on EOI, and trigger the first eventfd
again if the line is still active.
However, QEMU doesn't seem to do that. Even VFIO level interrupts seem
to be supported by temporarily unmapping the device's BARs from the
guest when an interrupt happens, then trapping *all* MMIO to the device
and sending the 'resample' event on *every* MMIO access until the IRQ
is cleared! Maybe in future we'll plumb the 'resample' concept through
QEMU's irq framework but for now we'll do what Xen itself does: just
check the flag on every vmexit if the upcall GSI is known to be
asserted.
Signed-off-by: David Woodhouse <dwmw@amazon.co.uk>
Reviewed-by: Paul Durrant <paul@xen.org>
Add the array of virq ports to each vCPU so that we can deliver timers,
debug ports, etc. Global virqs are allocated against vCPU 0 initially,
but can be migrated to other vCPUs (when we implement that).
The kernel needs to know about VIRQ_TIMER in order to accelerate timers,
so tell it via KVM_XEN_VCPU_ATTR_TYPE_TIMER. Also save/restore the value
of the singleshot timer across migration, as the kernel will handle the
hypercalls automatically now.
Signed-off-by: David Woodhouse <dwmw@amazon.co.uk>
Reviewed-by: Paul Durrant <paul@xen.org>
The kvm_xen_inject_vcpu_callback_vector() function will either deliver
the per-vCPU local APIC vector (as an MSI), or just kick the vCPU out
of the kernel to trigger KVM's automatic delivery of the global vector.
Support for asserting the GSI/PCI_INTX callbacks will come later.
Also add kvm_xen_get_vcpu_info_hva() which returns the vcpu_info of
a given vCPU.
Signed-off-by: David Woodhouse <dwmw@amazon.co.uk>
Reviewed-by: Paul Durrant <paul@xen.org>
The HVMOP_set_evtchn_upcall_vector hypercall sets the per-vCPU upcall
vector, to be delivered to the local APIC just like an MSI (with an EOI).
This takes precedence over the system-wide delivery method set by the
HVMOP_set_param hypercall with HVM_PARAM_CALLBACK_IRQ. It's used by
Windows and Xen (PV shim) guests but normally not by Linux.
Signed-off-by: Ankur Arora <ankur.a.arora@oracle.com>
Signed-off-by: Joao Martins <joao.m.martins@oracle.com>
[dwmw2: Rework for upstream kernel changes and split from HVMOP_set_param]
Signed-off-by: David Woodhouse <dwmw@amazon.co.uk>
Reviewed-by: Paul Durrant <paul@xen.org>
Allow guest to setup the vcpu runstates which is used as
steal clock.
Signed-off-by: Joao Martins <joao.m.martins@oracle.com>
Signed-off-by: David Woodhouse <dwmw@amazon.co.uk>
Reviewed-by: Paul Durrant <paul@xen.org>
In order to support Linux vdso in Xen.
Signed-off-by: Joao Martins <joao.m.martins@oracle.com>
Signed-off-by: David Woodhouse <dwmw@amazon.co.uk>
Reviewed-by: Paul Durrant <paul@xen.org>
Handle the hypercall to set a per vcpu info, and also wire up the default
vcpu_info in the shared_info page for the first 32 vCPUs.
To avoid deadlock within KVM a vCPU thread must set its *own* vcpu_info
rather than it being set from the context in which the hypercall is
invoked.
Add the vcpu_info (and default) GPA to the vmstate_x86_cpu for migration,
and restore it in kvm_arch_put_registers() appropriately.
Signed-off-by: Joao Martins <joao.m.martins@oracle.com>
Signed-off-by: David Woodhouse <dwmw@amazon.co.uk>
Reviewed-by: Paul Durrant <paul@xen.org>
Introduce support for emulating CPUID for Xen HVM guests. It doesn't make
sense to advertise the KVM leaves to a Xen guest, so do Xen unconditionally
when the xen-version machine property is set.
Signed-off-by: Joao Martins <joao.m.martins@oracle.com>
[dwmw2: Obtain xen_version from KVM property, make it automatic]
Signed-off-by: David Woodhouse <dwmw@amazon.co.uk>
Reviewed-by: Paul Durrant <paul@xen.org>
- Various header cleaned up (removing pointless headers)
- Mark various files/code user/system specific
- Make various objects target-independent
- Remove tswapN() calls from dump.o
- Suggest g_assert_not_reached() instead of assert(0)
- qdev / qom
- Replace various container_of() by QOM cast macros
- Declare some QOM macros using OBJECT_DECLARE_TYPE()
- Embed OHCI QOM child in SM501 chipset
- hw (ISA & IDE)
- add some documentation, improve function names
- un-inline, open-code few functions
- have ISA API accessing IRQ/DMA prefer ISABus over ISADevice
- Demote IDE subsystem maintenance to "Odd Fixes"
- ui: Improve Ctrl+Alt hint on Darwin Cocoa
-----BEGIN PGP SIGNATURE-----
iQIzBAABCAAdFiEE+qvnXhKRciHc/Wuy4+MsLN6twN4FAmP9IeAACgkQ4+MsLN6t
wN7bdQ//SxJYJuQvqTT6s+O0LmP6NbqvhxCXX7YAwK2jCTM+zTgcqqRZCcisLQol
3ENu2UhnZmiLKHSOxatOVozbws08/u8Vl+WkW4UTMUb1yo5KPaPtq808Y95RdAJB
7D7B5juDGnFRAHXZz38zVk9uIuEkm+Po/pD0JQa+upBtAAgOJTqGavDNSR5+T0Yl
VjGdwK0b10skPqiF6OABYoy/4IFHVJJFIbARZh+a7hrF0llsbzUts5JiYsOxEEHQ
t3woUItdMnS1m0+Ty4AQ8m0Yv9y4HZOIzixvsZ+vChj5ariwUhL9/7wC/s/UCYEg
gKVA5X8R6n/ME6DScK99a+CyR/MXkz70b/rOUZxoutXhV3xdh4X1stL4WN9W/m3z
D4i4ZrUsDUcKCGWlj49of/dKbOPwk1+e/mT0oDZD6JzG0ODjfdVxvJ/JEV2iHgS3
WqHuSKzX/20H9j7/MgfbQ0HjBFOQ8tl781vQzhD+y+cF/IiTsHhrE6esIWho4bob
kfSdVydUWWRnBsnyGoRZXoEMX9tn+pu0nKxEDm2Bo2+jajsa0aZZPokgjxaz4MnD
Hx+/p1E+8IuOn05JgzQSgTJmKFdSbya203tXIsTo1kL2aJTJ6QfMvgEPP/fkn+lS
oQyVBFZmb1JDdTM1MxOncnlWLg74rp/CWEc+u5pSdbxMO/M/uac=
=AV/+
-----END PGP SIGNATURE-----
Merge tag 'buildsys-qom-qdev-ui-20230227' of https://github.com/philmd/qemu into staging
- buildsys
- Various header cleaned up (removing pointless headers)
- Mark various files/code user/system specific
- Make various objects target-independent
- Remove tswapN() calls from dump.o
- Suggest g_assert_not_reached() instead of assert(0)
- qdev / qom
- Replace various container_of() by QOM cast macros
- Declare some QOM macros using OBJECT_DECLARE_TYPE()
- Embed OHCI QOM child in SM501 chipset
- hw (ISA & IDE)
- add some documentation, improve function names
- un-inline, open-code few functions
- have ISA API accessing IRQ/DMA prefer ISABus over ISADevice
- Demote IDE subsystem maintenance to "Odd Fixes"
- ui: Improve Ctrl+Alt hint on Darwin Cocoa
# -----BEGIN PGP SIGNATURE-----
#
# iQIzBAABCAAdFiEE+qvnXhKRciHc/Wuy4+MsLN6twN4FAmP9IeAACgkQ4+MsLN6t
# wN7bdQ//SxJYJuQvqTT6s+O0LmP6NbqvhxCXX7YAwK2jCTM+zTgcqqRZCcisLQol
# 3ENu2UhnZmiLKHSOxatOVozbws08/u8Vl+WkW4UTMUb1yo5KPaPtq808Y95RdAJB
# 7D7B5juDGnFRAHXZz38zVk9uIuEkm+Po/pD0JQa+upBtAAgOJTqGavDNSR5+T0Yl
# VjGdwK0b10skPqiF6OABYoy/4IFHVJJFIbARZh+a7hrF0llsbzUts5JiYsOxEEHQ
# t3woUItdMnS1m0+Ty4AQ8m0Yv9y4HZOIzixvsZ+vChj5ariwUhL9/7wC/s/UCYEg
# gKVA5X8R6n/ME6DScK99a+CyR/MXkz70b/rOUZxoutXhV3xdh4X1stL4WN9W/m3z
# D4i4ZrUsDUcKCGWlj49of/dKbOPwk1+e/mT0oDZD6JzG0ODjfdVxvJ/JEV2iHgS3
# WqHuSKzX/20H9j7/MgfbQ0HjBFOQ8tl781vQzhD+y+cF/IiTsHhrE6esIWho4bob
# kfSdVydUWWRnBsnyGoRZXoEMX9tn+pu0nKxEDm2Bo2+jajsa0aZZPokgjxaz4MnD
# Hx+/p1E+8IuOn05JgzQSgTJmKFdSbya203tXIsTo1kL2aJTJ6QfMvgEPP/fkn+lS
# oQyVBFZmb1JDdTM1MxOncnlWLg74rp/CWEc+u5pSdbxMO/M/uac=
# =AV/+
# -----END PGP SIGNATURE-----
# gpg: Signature made Mon 27 Feb 2023 21:34:24 GMT
# gpg: using RSA key FAABE75E12917221DCFD6BB2E3E32C2CDEADC0DE
# gpg: Good signature from "Philippe Mathieu-Daudé (F4BUG) <f4bug@amsat.org>" [unknown]
# gpg: WARNING: This key is not certified with a trusted signature!
# gpg: There is no indication that the signature belongs to the owner.
# Primary key fingerprint: FAAB E75E 1291 7221 DCFD 6BB2 E3E3 2C2C DEAD C0DE
* tag 'buildsys-qom-qdev-ui-20230227' of https://github.com/philmd/qemu: (125 commits)
ui/cocoa: user friendly characters for release mouse
dump: Add create_win_dump() stub for non-x86 targets
dump: Simplify compiling win_dump.o by introducing win_dump_available()
dump: Clean included headers
dump: Replace TARGET_PAGE_SIZE -> qemu_target_page_size()
dump: Replace tswapN() -> cpu_to_dumpN()
hw/ide/pci: Add PCIIDEState::isa_irq[]
hw/ide/via: Replace magic 2 value by ARRAY_SIZE / MAX_IDE_DEVS
hw/ide/piix: Refactor pci_piix_init_ports as pci_piix_init_bus per bus
hw/ide/piix: Pass Error* to pci_piix_init_ports() for better error msg
hw/ide/piix: Remove unused includes
hw/ide/pci: Unexport bmdma_active_if()
hw/ide/ioport: Remove unnecessary includes
hw/ide: Declare ide_get_[geometry/bios_chs_trans] in 'hw/ide/internal.h'
hw/ide: Rename idebus_active_if() -> ide_bus_active_if()
hw/ide: Rename ide_init2() -> ide_bus_init_output_irq()
hw/ide: Rename ide_exec_cmd() -> ide_bus_exec_cmd()
hw/ide: Rename ide_register_restart_cb -> ide_bus_register_restart_cb
hw/ide: Rename ide_create_drive() -> ide_bus_create_drive()
hw/ide: Rename ide_set_irq() -> ide_bus_set_irq()
...
Signed-off-by: Peter Maydell <peter.maydell@linaro.org>
x86_cpu_dump_local_apic_state() is called from monitor.c which
is only compiled for system emulation since commit bf95728400
("monitor: remove target-specific code from monitor.c").
Interestingly this stub was added few weeks later in commit
1f871d49e3 ("hmp: added local apic dump state") and was not
necessary by that time.
Signed-off-by: Philippe Mathieu-Daudé <philmd@linaro.org>
Reviewed-by: Richard Henderson <richard.henderson@linaro.org>
Message-Id: <20221216220158.6317-5-philmd@linaro.org>
The 'hwaddr' type is only available / meaningful on system emulation.
Reviewed-by: Richard Henderson <richard.henderson@linaro.org>
Signed-off-by: Philippe Mathieu-Daudé <philmd@linaro.org>
Message-Id: <20221216215519.5522-5-philmd@linaro.org>
The new CPU model mostly inherits features from Icelake-Server, while
adding new features:
- AMX (Advance Matrix eXtensions)
- Bus Lock Debug Exception
and new instructions:
- AVX VNNI (Vector Neural Network Instruction):
- VPDPBUS: Multiply and Add Unsigned and Signed Bytes
- VPDPBUSDS: Multiply and Add Unsigned and Signed Bytes with Saturation
- VPDPWSSD: Multiply and Add Signed Word Integers
- VPDPWSSDS: Multiply and Add Signed Integers with Saturation
- FP16: Replicates existing AVX512 computational SP (FP32) instructions
using FP16 instead of FP32 for ~2X performance gain
- SERIALIZE: Provide software with a simple way to force the processor to
complete all modifications, faster, allowed in all privilege levels and
not causing an unconditional VM exit
- TSX Suspend Load Address Tracking: Allows programmers to choose which
memory accesses do not need to be tracked in the TSX read set
- AVX512_BF16: Vector Neural Network Instructions supporting BFLOAT16
inputs and conversion instructions from IEEE single precision
- fast zero-length MOVSB (KVM doesn't support yet)
- fast short STOSB (KVM doesn't support yet)
- fast short CMPSB, SCASB (KVM doesn't support yet)
Features that may be added in future versions:
- CET (virtualization support hasn't been merged)
Signed-off-by: Wang, Lei <lei4.wang@intel.com>
Reviewed-by: Robert Hoo <robert.hu@linux.intel.com>
Message-Id: <20220812055751.14553-1-lei4.wang@intel.com>
Reviewed-by: Xiaoyao Li <xiaoyao.li@intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
These are three more markers for string operation optimizations.
They can all be added to TCG, whose string operations are more or
less as fast as they can be for short lengths.
Reviewed-by: Xiaoyao Li <xiaoyao.li@intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
F16C only consists of two instructions, which are a bit peculiar
nevertheless.
First, they access only the low half of an YMM or XMM register for the
packed-half operand; the exact size still depends on the VEX.L flag.
This is similar to the existing avx_movx flag, but not exactly because
avx_movx is hardcoded to affect operand 2. To this end I added a "ph"
format name; it's possible to reuse this approach for the VPMOVSX and
VPMOVZX instructions, though that would also require adding two more
formats for the low-quarter and low-eighth of an operand.
Second, VCVTPS2PH is somewhat weird because it *stores* the result of
the instruction into memory rather than loading it.
Reviewed-by: Richard Henderson <richard.henderson@linaro.org>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Add a new hflag bit to determine whether AVX instructions are allowed
Signed-off-by: Paul Brook <paul@nowt.org>
Message-Id: <20220424220204.2493824-4-paul@nowt.org>
Reviewed-by: Richard Henderson <richard.henderson@linaro.org>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
This will be used for emission and endian adjustments of gvec operations.
Signed-off-by: Richard Henderson <richard.henderson@linaro.org>
Message-Id: <20220822223722.1697758-2-richard.henderson@linaro.org>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Use MMU_NESTED_IDX for each memory access, rather than
just a single translation to physical. Adjust svm_save_seg
and svm_load_seg to pass in mmu_idx.
This removes the last use of get_hphys so remove it.
Signed-off-by: Richard Henderson <richard.henderson@linaro.org>
Message-Id: <20221002172956.265735-7-richard.henderson@linaro.org>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
These new mmu indexes will be helpful for improving
paging and code throughout the target.
Signed-off-by: Richard Henderson <richard.henderson@linaro.org>
Message-Id: <20221002172956.265735-6-richard.henderson@linaro.org>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Resetting a guest that has Hyper-V VMBus support enabled triggers a QEMU
assertion failure:
hw/hyperv/hyperv.c:131: synic_reset: Assertion `QLIST_EMPTY(&synic->sint_routes)' failed.
This happens both on normal guest reboot or when using "system_reset" HMP
command.
The failing assertion was introduced by commit 64ddecc88b ("hyperv: SControl is optional to enable SynIc")
to catch dangling SINT routes on SynIC reset.
The root cause of this problem is that the SynIC itself is reset before
devices using SINT routes have chance to clean up these routes.
Since there seems to be no existing mechanism to force reset callbacks (or
methods) to be executed in specific order let's use a similar method that
is already used to reset another interrupt controller (APIC) after devices
have been reset - by invoking the SynIC reset from the machine reset
handler via a new x86_cpu_after_reset() function co-located with
the existing x86_cpu_reset() in target/i386/cpu.c.
Opportunistically move the APIC reset handler there, too.
Fixes: 64ddecc88b ("hyperv: SControl is optional to enable SynIc") # exposed the bug
Signed-off-by: Maciej S. Szmigiero <maciej.szmigiero@oracle.com>
Message-Id: <cb57cee2e29b20d06f81dce054cbcea8b5d497e8.1664552976.git.maciej.szmigiero@oracle.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Add support for saving/restoring extended save states when signals
are delivered. This allows using AVX, MPX or PKRU registers in
signal handlers.
Reviewed-by: Richard Henderson <richard.henderson@linaro.org>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
For the direct triple faults, i.e. hardware detected and KVM morphed
to VM-Exit, KVM will never lose them. But for triple faults sythesized
by KVM, e.g. the RSM path, if KVM exits to userspace before the request
is serviced, userspace could migrate the VM and lose the triple fault.
A new flag KVM_VCPUEVENT_VALID_TRIPLE_FAULT is defined to signal that
the event.triple_fault_pending field contains a valid state if the
KVM_CAP_X86_TRIPLE_FAULT_EVENT capability is enabled.
Acked-by: Peter Xu <peterx@redhat.com>
Signed-off-by: Chenyi Qiang <chenyi.qiang@intel.com>
Message-Id: <20220929072014.20705-2-chenyi.qiang@intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
It's always better to convey the type of a pointer if at all
possible. So let's add the DumpState typedef to typedefs.h and move
the dump note functions from the opaque pointers to DumpState
pointers.
Signed-off-by: Janosch Frank <frankja@linux.ibm.com>
CC: Peter Maydell <peter.maydell@linaro.org>
CC: Cédric Le Goater <clg@kaod.org>
CC: Daniel Henrique Barboza <danielhb413@gmail.com>
CC: David Gibson <david@gibson.dropbear.id.au>
CC: Greg Kurz <groug@kaod.org>
CC: Palmer Dabbelt <palmer@dabbelt.com>
CC: Alistair Francis <alistair.francis@wdc.com>
CC: Bin Meng <bin.meng@windriver.com>
CC: Cornelia Huck <cohuck@redhat.com>
CC: Thomas Huth <thuth@redhat.com>
CC: Richard Henderson <richard.henderson@linaro.org>
CC: David Hildenbrand <david@redhat.com>
Acked-by: Daniel Henrique Barboza <danielhb413@gmail.com>
Reviewed-by: Marc-André Lureau <marcandre.lureau@redhat.com>
Message-Id: <20220811121111.9878-2-frankja@linux.ibm.com>
Hyper-V TLFS allows for L0 and L1 hypervisors to collaborate on L2's
TLB flush hypercalls handling. With the correct setup, L2's TLB flush
hypercalls can be handled by L0 directly, without the need to exit to
L1.
Signed-off-by: Vitaly Kuznetsov <vkuznets@redhat.com>
Message-Id: <20220525115949.1294004-6-vkuznets@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
KVM kind of supported "extended GVA ranges" (up to 4095 additional GFNs
per hypercall) since the implementation of Hyper-V PV TLB flush feature
(Linux-4.18) as regardless of the request, full TLB flush was always
performed. "Extended GVA ranges for TLB flush hypercalls" feature bit
wasn't exposed then. Now, as KVM gains support for fine-grained TLB
flush handling, exposing this feature starts making sense.
Signed-off-by: Vitaly Kuznetsov <vkuznets@redhat.com>
Message-Id: <20220525115949.1294004-5-vkuznets@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Hyper-V specification allows to pass parameters for certain hypercalls
using XMM registers ("XMM Fast Hypercall Input"). When the feature is
in use, it allows for faster hypercalls processing as KVM can avoid
reading guest's memory.
KVM supports the feature since v5.14.
Rename HV_HYPERCALL_{PARAMS_XMM_AVAILABLE -> XMM_INPUT_AVAILABLE} to
comply with KVM.
Signed-off-by: Vitaly Kuznetsov <vkuznets@redhat.com>
Message-Id: <20220525115949.1294004-4-vkuznets@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
The newly introduced enlightenment allow L0 (KVM) and L1 (Hyper-V)
hypervisors to collaborate to avoid unnecessary updates to L2
MSR-Bitmap upon vmexits.
Signed-off-by: Vitaly Kuznetsov <vkuznets@redhat.com>
Message-Id: <20220525115949.1294004-3-vkuznets@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Previously, HV_CPUID_NESTED_FEATURES.EAX CPUID leaf was handled differently
as it was only used to encode the supported eVMCS version range. In fact,
there are also feature (e.g. Enlightened MSR-Bitmap) bits there. In
preparation to adding these features, move HV_CPUID_NESTED_FEATURES leaf
handling to hv_build_cpuid_leaf() and drop now-unneeded 'hyperv_nested'.
No functional change intended.
Signed-off-by: Vitaly Kuznetsov <vkuznets@redhat.com>
Message-Id: <20220525115949.1294004-2-vkuznets@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
In the first generation of Arch LBR, the max support
Arch LBR depth is 32, both host and guest use the value
to set depth MSR. This can simplify the implementation
of patch given the side-effect of mismatch of host/guest
depth MSR: XRSTORS will reset all recording MSRs to 0s
if the saved depth mismatches MSR_ARCH_LBR_DEPTH.
In most of the cases Arch LBR is not in active status,
so check the control bit before save/restore the big
chunck of Arch LBR MSRs.
Signed-off-by: Yang Weijiang <weijiang.yang@intel.com>
Message-Id: <20220215195258.29149-7-weijiang.yang@intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Define Arch LBR bit in XSS and save/restore structure
for XSAVE area size calculation.
Signed-off-by: Yang Weijiang <weijiang.yang@intel.com>
Message-Id: <20220215195258.29149-6-weijiang.yang@intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
There're some new features, including Arch LBR, depending
on XSAVES/XRSTORS support, the new instructions will
save/restore data based on feature bits enabled in XCR0 | XSS.
This patch adds the basic support for related CPUID enumeration
and meanwhile changes the name from FEAT_XSAVE_COMP_{LO|HI} to
FEAT_XSAVE_XCR0_{LO|HI} to differentiate clearly the feature
bits in XCR0 and those in XSS.
Signed-off-by: Yang Weijiang <weijiang.yang@intel.com>
Message-Id: <20220215195258.29149-5-weijiang.yang@intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
The Last Branch Recording (LBR) is a performance monitor unit (PMU)
feature on Intel processors which records a running trace of the most
recent branches taken by the processor in the LBR stack. This option
indicates the LBR format to enable for guest perf.
The LBR feature is enabled if below conditions are met:
1) KVM is enabled and the PMU is enabled.
2) msr-based-feature IA32_PERF_CAPABILITIES is supporterd on KVM.
3) Supported returned value for lbr_fmt from above msr is non-zero.
4) Guest vcpu model does support FEAT_1_ECX.CPUID_EXT_PDCM.
5) User-provided lbr-fmt value doesn't violate its bitmask (0x3f).
6) Target guest LBR format matches that of host.
Co-developed-by: Like Xu <like.xu@linux.intel.com>
Signed-off-by: Like Xu <like.xu@linux.intel.com>
Signed-off-by: Yang Weijiang <weijiang.yang@intel.com>
Message-Id: <20220215195258.29149-3-weijiang.yang@intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
In commit b7711471f5 in 2014 we refactored the handling of the x86
vector registers so that instead of separate structs XMMReg, YMMReg
and ZMMReg for representing the 16-byte, 32-byte and 64-byte width
vector registers and multiple fields in the CPU state, we have a
single type (XMMReg, later renamed to ZMMReg) and a single struct
field (xmm_regs). However, in 2017 in commit c97d6d2cdf some of
the old struct types and CPU state fields got added back, when we
merged in the hvf support (which had developed in a separate fork
that had presumably not had the refactoring of b7711471f5), as part
of code handling xsave. Commit f585195ec0 then almost immediately
dropped that xsave code again in favour of sharing the xsave handling
with KVM, but forgot to remove the now unused CPU state fields and
struct types.
Delete the unused types and CPUState fields.
Signed-off-by: Peter Maydell <peter.maydell@linaro.org>
Message-Id: <20220412110047.1497190-1-peter.maydell@linaro.org>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
SynDbg commands can come from two different flows:
1. Hypercalls, in this mode the data being sent is fully
encapsulated network packets.
2. SynDbg specific MSRs, in this mode only the data that needs to be
transfered is passed.
Signed-off-by: Jon Doron <arilou@gmail.com>
Reviewed-by: Emanuele Giuseppe Esposito <eesposit@redhat.com>
Message-Id: <20220216102500.692781-4-arilou@gmail.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
The types are no longer used in bswap.h since commit
f930224fff ("bswap.h: Remove unused float-access functions"), there
isn't much sense in keeping it there and having a dependency on fpu/.
Signed-off-by: Marc-André Lureau <marcandre.lureau@redhat.com>
Message-Id: <20220323155743.1585078-29-marcandre.lureau@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Replace a config-time define with a compile time condition
define (compatible with clang and gcc) that must be declared prior to
its usage. This avoids having a global configure time define, but also
prevents from bad usage, if the config header wasn't included before.
This can help to make some code independent from qemu too.
gcc supports __BYTE_ORDER__ from about 4.6 and clang from 3.2.
Signed-off-by: Marc-André Lureau <marcandre.lureau@redhat.com>
[ For the s390x parts I'm involved in ]
Acked-by: Halil Pasic <pasic@linux.ibm.com>
Reviewed-by: Philippe Mathieu-Daudé <f4bug@amsat.org>
Reviewed-by: Richard Henderson <richard.henderson@linaro.org>
Message-Id: <20220323155743.1585078-7-marcandre.lureau@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Some versions of Windows hang on reboot if their TSC value is greater
than 2^54. The calibration of the Hyper-V reference time overflows
and fails; as a result the processors' clock sources are out of sync.
The issue is that the TSC _should_ be reset to 0 on CPU reset and
QEMU tries to do that. However, KVM special cases writing 0 to the
TSC and thinks that QEMU is trying to hot-plug a CPU, which is
correct the first time through but not later. Thwart this valiant
effort and reset the TSC to 1 instead, but only if the CPU has been
run once.
For this to work, env->tsc has to be moved to the part of CPUArchState
that is not zeroed at the beginning of x86_cpu_reset.
Reported-by: Vadim Rozenfeld <vrozenfe@redhat.com>
Supersedes: <20220324082346.72180-1-pbonzini@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Some AMD processors expose the PKRU extended save state even if they do not have
the related PKU feature in CPUID. Worse, when they do they report a size of
64, whereas the expected size of the PKRU extended save state is 8, therefore
the esa->size == eax assertion does not hold.
The state is already ignored by KVM_GET_SUPPORTED_CPUID because it
was not enabled in the host XCR0. However, QEMU kvm_cpu_xsave_init()
runs before QEMU invokes arch_prctl() to enable dynamically-enabled
save states such as XTILEDATA, and KVM_GET_SUPPORTED_CPUID hides save
states that have yet to be enabled. Therefore, kvm_cpu_xsave_init()
needs to consult the host CPUID instead of KVM_GET_SUPPORTED_CPUID,
and dies with an assertion failure.
When setting up the ExtSaveArea array to match the host, ignore features that
KVM does not report as supported. This will cause QEMU to skip the incorrect
CPUID leaf instead of tripping the assertion.
Closes: https://gitlab.com/qemu-project/qemu/-/issues/916
Reported-by: Daniel P. Berrangé <berrange@redhat.com>
Analyzed-by: Yang Zhong <yang.zhong@intel.com>
Reported-by: Peter Krempa <pkrempa@redhat.com>
Tested-by: Daniel P. Berrangé <berrange@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
XFD(eXtended Feature Disable) allows to enable a
feature on xsave state while preventing specific
user threads from using the feature.
Support save and restore XFD MSRs if CPUID.D.1.EAX[4]
enumerate to be valid. Likewise migrate the MSRs and
related xsave state necessarily.
Signed-off-by: Zeng Guang <guang.zeng@intel.com>
Signed-off-by: Wei Wang <wei.w.wang@intel.com>
Signed-off-by: Yang Zhong <yang.zhong@intel.com>
Message-Id: <20220217060434.52460-8-yang.zhong@intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
When dynamic xfeatures (e.g. AMX) are used by the guest, the xsave
area would be larger than 4KB. KVM_GET_XSAVE2 and KVM_SET_XSAVE
under KVM_CAP_XSAVE2 works with a xsave buffer larger than 4KB.
Always use the new ioctls under KVM_CAP_XSAVE2 when KVM supports it.
Signed-off-by: Jing Liu <jing2.liu@intel.com>
Signed-off-by: Zeng Guang <guang.zeng@intel.com>
Signed-off-by: Wei Wang <wei.w.wang@intel.com>
Signed-off-by: Yang Zhong <yang.zhong@intel.com>
Message-Id: <20220217060434.52460-7-yang.zhong@intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Intel introduces XFD faulting mechanism for extended
XSAVE features to dynamically enable the features in
runtime. If CPUID (EAX=0Dh, ECX=n, n>1).ECX[2] is set
as 1, it indicates support for XFD faulting of this
state component.
Signed-off-by: Jing Liu <jing2.liu@intel.com>
Signed-off-by: Yang Zhong <yang.zhong@intel.com>
Message-Id: <20220217060434.52460-5-yang.zhong@intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Kernel allocates 4K xstate buffer by default. For XSAVE features
which require large state component (e.g. AMX), Linux kernel
dynamically expands the xstate buffer only after the process has
acquired the necessary permissions. Those are called dynamically-
enabled XSAVE features (or dynamic xfeatures).
There are separate permissions for native tasks and guests.
Qemu should request the guest permissions for dynamic xfeatures
which will be exposed to the guest. This only needs to be done
once before the first vcpu is created.
KVM implemented one new ARCH_GET_XCOMP_SUPP system attribute API to
get host side supported_xcr0 and Qemu can decide if it can request
dynamically enabled XSAVE features permission.
https://lore.kernel.org/all/20220126152210.3044876-1-pbonzini@redhat.com/
Suggested-by: Paolo Bonzini <pbonzini@redhat.com>
Signed-off-by: Yang Zhong <yang.zhong@intel.com>
Signed-off-by: Jing Liu <jing2.liu@intel.com>
Message-Id: <20220217060434.52460-4-yang.zhong@intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
The AMX TILECFG register and the TMMx tile data registers are
saved/restored via XSAVE, respectively in state component 17
(64 bytes) and state component 18 (8192 bytes).
Add AMX feature bits to x86_ext_save_areas array to set
up AMX components. Add structs that define the layout of
AMX XSAVE areas and use QEMU_BUILD_BUG_ON to validate the
structs sizes.
Signed-off-by: Jing Liu <jing2.liu@intel.com>
Signed-off-by: Yang Zhong <yang.zhong@intel.com>
Message-Id: <20220217060434.52460-3-yang.zhong@intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
The extended state subleaves (EAX=0Dh, ECX=n, n>1).ECX[1]
indicate whether the extended state component locates
on the next 64-byte boundary following the preceding state
component when the compacted format of an XSAVE area is
used.
Right now, they are all zero because no supported component
needed the bit to be set, but the upcoming AMX feature will
use it. Fix the subleaves value according to KVM's supported
cpuid.
Signed-off-by: Jing Liu <jing2.liu@intel.com>
Signed-off-by: Yang Zhong <yang.zhong@intel.com>
Message-Id: <20220217060434.52460-2-yang.zhong@intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
ArchCPU is our interface with target-specific code. Use it as
a forward-declared opaque pointer (abstract type), having its
structure defined by each target.
Reviewed-by: Richard Henderson <richard.henderson@linaro.org>
Signed-off-by: Philippe Mathieu-Daudé <f4bug@amsat.org>
Message-Id: <20220214183144.27402-15-f4bug@amsat.org>
Replace the boilerplate code to declare CPU QOM types
and macros, and forward-declare the CPU instance type.
Reviewed-by: Richard Henderson <richard.henderson@linaro.org>
Signed-off-by: Philippe Mathieu-Daudé <f4bug@amsat.org>
Message-Id: <20220214183144.27402-14-f4bug@amsat.org>
While CPUState is our interface with generic code, CPUArchState is
our interface with target-specific code. Use CPUArchState as an
abstract type, defined by each target.
Reviewed-by: Richard Henderson <richard.henderson@linaro.org>
Signed-off-by: Philippe Mathieu-Daudé <f4bug@amsat.org>
Message-Id: <20220214183144.27402-13-f4bug@amsat.org>
This allows to make PDPTRs part of the migration
stream and thus not reload them after migration which
is against X86 spec.
Signed-off-by: Maxim Levitsky <mlevitsk@redhat.com>
Message-Id: <20211101132300.192584-2-mlevitsk@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Currently, we hardcode Hyper-V version id (CPUID 0x40000002) to
WS2008R2 and it is known that certain tools in Windows check this. It
seems useful to provide some flexibility by making it possible to change
this info at will. CPUID information is defined in TLFS as:
EAX: Build Number
EBX Bits 31-16: Major Version
Bits 15-0: Minor Version
ECX Service Pack
EDX Bits 31-24: Service Branch
Bits 23-0: Service Number
Signed-off-by: Vitaly Kuznetsov <vkuznets@redhat.com>
Message-Id: <20210902093530.345756-8-vkuznets@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
The enlightenment allows to use Hyper-V SynIC with hardware APICv/AVIC
enabled. Normally, Hyper-V SynIC disables these hardware features and
suggests the guest to use paravirtualized AutoEOI feature. Linux-4.15
gains support for conditional APICv/AVIC disablement, the feature
stays on until the guest tries to use AutoEOI feature with SynIC. With
'HV_DEPRECATING_AEOI_RECOMMENDED' bit exposed, modern enough Windows/
Hyper-V versions should follow the recommendation and not use the
(unwanted) feature.
Signed-off-by: Vitaly Kuznetsov <vkuznets@redhat.com>
Message-Id: <20210902093530.345756-7-vkuznets@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>