project64/Source/Project64/N64 System/Recompiler/Recompiler Class.cpp

3498 lines
128 KiB
C++
Raw Normal View History

#include "..\..\N64 System.h"
#include "..\C Core\c core.h"
#include "..\C Core\Recompiler Ops.h"
#include "..\C Core\X86.h"
#include "..\C Core\CPU.h"
#undef PROGRAM_COUNTER
#undef RdramSize
#undef LookUpMode
#undef LinkBlocks
#undef CountPerOp
CRecompiler::CRecompiler(CProfiling & Profile, bool & EndEmulation, bool SyncSystem) :
m_Profile(Profile),
PROGRAM_COUNTER(_Reg->m_PROGRAM_COUNTER),
m_EndEmulation(EndEmulation),
m_SyncSystem(SyncSystem),
m_FunctionsDelaySlot()
{
}
CRecompiler::~CRecompiler()
{
}
void CRecompiler::Run()
{
CoInitialize(NULL);
if (g_LogX86Code)
{
Start_x86_Log();
}
if (!CRecompMemory::AllocateMemory())
{
WriteTrace(TraceError,"CRecompiler::Run: CRecompMemory::AllocateMemory failed");
return;
}
WriteTrace(TraceError,"CRecompiler::Run Fix _MMU->AllocateRecompilerMemory");
#ifdef tofix
if (!_MMU->AllocateRecompilerMemory(LookUpMode() != FuncFind_VirtualLookup && LookUpMode() != FuncFind_ChangeMemory))
{
return;
}
JumpTable = _MMU->GetJumpTable();
RecompCode = _MMU->GetRecompCode();
#endif
ResetRecompCode();
m_EndEmulation = false;
WriteTrace(TraceError,"CRecompiler::Run Fix g_MemoryStack");
#ifdef tofix
*g_MemoryStack = (DWORD)(RDRAM+(_GPR[29].W[0] & 0x1FFFFFFF));
#endif
__try {
if (LookUpMode() == FuncFind_VirtualLookup)
{
if (!CFunctionMap::AllocateMemory())
{
WriteTrace(TraceError,"CRecompiler::Run: CFunctionMap::AllocateMemory failed");
return;
}
if (bSMM_ValidFunc())
{
RecompilerMain_VirtualTable_validate();
} else {
RecompilerMain_VirtualTable();
}
}
else if (LookUpMode() == FuncFind_ChangeMemory)
{
RecompilerMain_ChangeMemory();
}
else
{
RecompilerMain_Lookup();
}
}
__except( _MMU->MemoryFilter( GetExceptionCode(), GetExceptionInformation()) )
{
Notify().DisplayError(MSG_UNKNOWN_MEM_ACTION);
}
}
void CRecompiler::RecompilerMain_VirtualTable ( void )
{
while(!m_EndEmulation)
{
CFunctionMap::PCCompiledFunc_TABLE table = m_FunctionTable[PROGRAM_COUNTER >> 0xC];
if (table)
{
CCompiledFunc * info = table[(PROGRAM_COUNTER & 0xFFF) >> 2];
if (info != NULL)
{
(info->Function())();
continue;
}
}
if (!_TransVaddr->ValidVaddr(PROGRAM_COUNTER))
{
_Notify->BreakPoint(__FILE__,__LINE__);
#ifdef tofix
DoTLBMiss(m_NextInstruction == DELAY_SLOT,PROGRAM_COUNTER);
NextInstruction = NORMAL;
if (!_TransVaddr->ValidVaddr(PROGRAM_COUNTER))
{
DisplayError("Failed to tranlate PC to a PAddr: %X\n\nEmulation stopped",PROGRAM_COUNTER);
return;
}
#endif
continue;
}
CCompiledFunc * info = CompilerCode();
if (info == NULL || m_EndEmulation)
{
break;
}
(info->Function())();
}
}
void CRecompiler::RecompilerMain_VirtualTable_validate ( void )
{
_Notify->BreakPoint(__FILE__,__LINE__);
/* CFunctionMap::PCCompiledFunc_TABLE * m_FunctionTable = m_Functions.GetFunctionTable();
while(!m_EndEmulation)
{
/*if (NextInstruction == DELAY_SLOT)
{
CCompiledFunc * Info = m_FunctionsDelaySlot.FindFunction(PROGRAM_COUNTER);
//Find Block on hash table
if (Info == NULL)
{
_Notify->BreakPoint(__FILE__,__LINE__);
#ifdef tofix
if (!_TLB->ValidVaddr(PROGRAM_COUNTER))
{
DoTLBMiss(NextInstruction == DELAY_SLOT,PROGRAM_COUNTER);
NextInstruction = NORMAL;
if (!_TLB->ValidVaddr(PROGRAM_COUNTER))
{
DisplayError("Failed to tranlate PC to a PAddr: %X\n\nEmulation stopped",PROGRAM_COUNTER);
return;
}
continue;
}
#endif
//Find Block on hash table
Info = CompileDelaySlot(PROGRAM_COUNTER);
if (Info == NULL || EndEmulation())
{
break;
}
}
const BYTE * Block = Info->FunctionAddr();
if ((*Info->MemLocation[0] != Info->MemContents[0]) ||
(*Info->MemLocation[1] != Info->MemContents[1]))
{
ClearRecompCode_Virt((Info->VStartPC() - 0x1000) & ~0xFFF,0x2000,Remove_ValidateFunc);
NextInstruction = DELAY_SLOT;
Info = NULL;
continue;
}
_asm {
pushad
call Block
popad
}
continue;
}*/
/* CFunctionMap::PCCompiledFunc_TABLE table = m_FunctionTable[PROGRAM_COUNTER >> 0xC];
if (table)
{
CCompiledFunc * info = table[(PROGRAM_COUNTER & 0xFFF) >> 2];
if (info != NULL)
{
if ((*info->MemLocation[0] != info->MemContents[0]) ||
(*info->MemLocation[1] != info->MemContents[1]))
{
ClearRecompCode_Virt((info->VStartPC() - 0x1000) & ~0xFFF,0x3000,Remove_ValidateFunc);
info = NULL;
continue;
}
const BYTE * Block = info->FunctionAddr();
_asm {
pushad
call Block
popad
}
continue;
}
}
_Notify->BreakPoint(__FILE__,__LINE__);
#ifdef tofix
if (!_TLB->ValidVaddr(PROGRAM_COUNTER))
{
DoTLBMiss(NextInstruction == DELAY_SLOT,PROGRAM_COUNTER);
NextInstruction = NORMAL;
if (!_TLB->ValidVaddr(PROGRAM_COUNTER))
{
DisplayError("Failed to tranlate PC to a PAddr: %X\n\nEmulation stopped",PROGRAM_COUNTER);
return;
}
}
#endif
CCompiledFunc * info = CompilerCode();
if (info == NULL || EndEmulation())
{
break;
}
}
/*
while(!m_EndEmulation)
{
if (!_MMU->ValidVaddr(PROGRAM_COUNTER))
{
DoTLBMiss(NextInstruction == DELAY_SLOT,PROGRAM_COUNTER);
NextInstruction = NORMAL;
if (!_MMU->ValidVaddr(PROGRAM_COUNTER))
{
DisplayError("Failed to tranlate PC to a PAddr: %X\n\nEmulation stopped",PROGRAM_COUNTER);
return;
}
}
if (NextInstruction == DELAY_SLOT)
{
CCompiledFunc * Info = m_FunctionsDelaySlot.FindFunction(PROGRAM_COUNTER);
//Find Block on hash table
if (Info == NULL)
{
Info = CompileDelaySlot(PROGRAM_COUNTER);
if (Info == NULL || EndEmulation())
{
break;
}
}
if (bSMM_ValidFunc())
{
if ((*Info->MemLocation[0] != Info->MemContents[0]) ||
(*Info->MemLocation[1] != Info->MemContents[1]))
{
ClearRecompCode_Virt((Info->StartPC() - 0x1000) & ~0xFFF,0x2000,Remove_ValidateFunc);
NextInstruction = DELAY_SLOT;
Info = NULL;
continue;
}
}
const BYTE * Block = Info->FunctionAddr();
_asm {
pushad
call Block
popad
}
continue;
}
CCompiledFunc * Info = m_Functions.FindFunction(PROGRAM_COUNTER);
//Find Block on hash table
if (Info == NULL)
{
Info = CompilerCode();
if (Info == NULL || EndEmulation())
{
break;
}
}
if (bSMM_ValidFunc())
{
if ((*Info->MemLocation[0] != Info->MemContents[0]) ||
(*Info->MemLocation[1] != Info->MemContents[1]))
{
ClearRecompCode_Virt((Info->StartPC() - 0x1000) & ~0xFFF,0x3000,Remove_ValidateFunc);
Info = NULL;
continue;
}
}
const BYTE * Block = Info->FunctionAddr();
_asm {
pushad
call Block
popad
}
}
*/
}
void CRecompiler::RecompilerMain_Lookup( void )
{
_Notify->BreakPoint(__FILE__,__LINE__);
/*
DWORD Addr;
CCompiledFunc * Info;
//const BYTE * Block;
while(!m_EndEmulation)
{
/*if (g_UseTlb)
{
_Notify->BreakPoint(__FILE__,__LINE__);
#ifdef tofix
if (!_TLB->TranslateVaddr(PROGRAM_COUNTER, Addr))
{
DoTLBMiss(NextInstruction == DELAY_SLOT,PROGRAM_COUNTER);
NextInstruction = NORMAL;
if (!TranslateVaddr(PROGRAM_COUNTER, &Addr)) {
DisplayError("Failed to tranlate PC to a PAddr: %X\n\nEmulation stopped",PROGRAM_COUNTER);
return;
}
}
#endif
} else {
Addr = PROGRAM_COUNTER & 0x1FFFFFFF;
}*/
/* if (NextInstruction == DELAY_SLOT) {
CCompiledFunc * Info = m_FunctionsDelaySlot.FindFunction(PROGRAM_COUNTER);
//Find Block on hash table
if (Info == NULL)
{
Info = CompileDelaySlot(PROGRAM_COUNTER);
if (Info == NULL || EndEmulation())
{
break;
}
}
if (bSMM_ValidFunc())
{
if ((*Info->MemLocation[0] != Info->MemContents[0]) ||
(*Info->MemLocation[1] != Info->MemContents[1]))
{
ClearRecompCode_Virt((Info->VStartPC() - 0x1000) & ~0xFFF,0x2000,Remove_ValidateFunc);
NextInstruction = DELAY_SLOT;
Info = NULL;
continue;
}
}
const BYTE * Block = Info->FunctionAddr();
_asm {
pushad
call Block
popad
}
continue;
}
__try {
if (Addr > 0x10000000)
{
if (bRomInMemory())
{
if (Addr > 0x20000000)
{
WriteTraceF(TraceDebug,"Executing from non mapped space .1 PC: %X Addr: %X",PROGRAM_COUNTER, Addr);
DisplayError(GS(MSG_NONMAPPED_SPACE));
break;
}
Info = (CCompiledFunc *)*(JumpTable + (Addr >> 2));
} else {
if (PROGRAM_COUNTER >= 0xB0000000 && PROGRAM_COUNTER < (RomFileSize | 0xB0000000)) {
while (PROGRAM_COUNTER >= 0xB0000000 && PROGRAM_COUNTER < (RomFileSize | 0xB0000000)) {
ExecuteInterpreterOpCode();
}
continue;
} else {
WriteTraceF(TraceDebug,"Executing from non mapped space .1 PC: %X Addr: %X",PROGRAM_COUNTER, Addr);
DisplayError(GS(MSG_NONMAPPED_SPACE));
break;
}
}
} else {
Info = (CCompiledFunc *)*(JumpTable + (Addr >> 2));
}
} __except(EXCEPTION_EXECUTE_HANDLER) {
if (PROGRAM_COUNTER >= 0xB0000000 && PROGRAM_COUNTER < (RomFileSize | 0xB0000000)) {
while (PROGRAM_COUNTER >= 0xB0000000 && PROGRAM_COUNTER < (RomFileSize | 0xB0000000)) {
ExecuteInterpreterOpCode();
}
continue;
} else {
WriteTraceF(TraceDebug,"Executing from non mapped space .2 PC: %X Addr: %X",PROGRAM_COUNTER, Addr);
DisplayError(GS(MSG_NONMAPPED_SPACE));
return;
}
}
if (Info == NULL)
{
Info = CompilerCode();
if (Info == NULL || EndEmulation())
{
break;
}
*(JumpTable + (Addr >> 2)) = (void *)Info;
// if (SelfModCheck == ModCode_ProtectedMemory) {
// VirtualProtect(RDRAM + Addr, 4, PAGE_READONLY, &OldProtect);
// }
}
if (bSMM_ValidFunc())
{
if ((*Info->MemLocation[0] != Info->MemContents[0]) ||
(*Info->MemLocation[1] != Info->MemContents[1]))
{
ClearRecompCode_Virt((Info->VStartPC() - 0x1000) & ~0xFFF,0x3000,Remove_ValidateFunc);
Info = NULL;
continue;
}
}
_Notify->BreakPoint(__FILE__,__LINE__);
#ifdef tofix
if (Profiling && IndvidualBlock) {
static DWORD ProfAddress = 0;
if ((PROGRAM_COUNTER & ~0xFFF) != ProfAddress) {
char Label[100];
ProfAddress = PROGRAM_COUNTER & ~0xFFF;
sprintf(Label,"PC: %X to %X",ProfAddress,ProfAddress+ 0xFFC);
// StartTimer(Label);
}
/*if (PROGRAM_COUNTER >= 0x800DD000 && PROGRAM_COUNTER <= 0x800DDFFC) {
char Label[100];
sprintf(Label,"PC: %X Block: %X",PROGRAM_COUNTER,Block);
StartTimer(Label);
}*/
// } else if ((Profiling || ShowCPUPer) && ProfilingLabel[0] == 0) {
// StartTimer("r4300i Running");
/* }
#endif
const BYTE * Block = Info->FunctionAddr();
_asm {
pushad
call Block
popad
}
}*/
}
void CRecompiler::ResetRecompCode()
{
/*
RecompPos() = RecompCode;
m_Functions.Reset();
m_FunctionsDelaySlot.Reset();
if (JumpTable)
{
memset(JumpTable,0,_MMU->RdramSize());
memset(JumpTable + (0x04000000 >> 2),0,0x1000);
memset(JumpTable + (0x04001000 >> 2),0,0x1000);
if (bRomInMemory())
{
memset(JumpTable + (0x10000000 >> 2),0,RomFileSize);
}
}
#ifdef to_clean
DWORD count, OldProtect;
if (SelfModCheck == ModCode_ChangeMemory) {
DWORD count, PAddr, Value;
for (count = 0; count < TargetIndex; count++) {
PAddr = OrigMem[(WORD)(count)].PAddr;
Value = *(DWORD *)(RDRAM + PAddr);
if ( ((Value >> 16) == 0x7C7C) && ((Value & 0xFFFF) == count)) {
*(DWORD *)(RDRAM + PAddr) = OrigMem[(WORD)(count)].OriginalValue;
}
}
}
TargetIndex = 0;
//Jump Table
for (count = 0; count < (RdramSize >> 12); count ++ ) {
if (N64_Blocks.NoOfRDRamBlocks[count] > 0) {
N64_Blocks.NoOfRDRamBlocks[count] = 0;
memset(JumpTable + (count << 10),0,0x1000);
*(DelaySlotTable + count) = NULL;
if (VirtualProtect((RDRAM + (count << 12)), 4, PAGE_READWRITE, &OldProtect) == 0) {
DisplayError("Failed to unprotect %X\n1", (count << 12));
}
}
}
if (N64_Blocks.NoOfDMEMBlocks > 0) {
N64_Blocks.NoOfDMEMBlocks = 0;
memset(JumpTable + (0x04000000 >> 2),0,0x1000);
*(DelaySlotTable + (0x04000000 >> 12)) = NULL;
if (VirtualProtect((RDRAM + 0x04000000), 4, PAGE_READWRITE, &OldProtect) == 0) {
DisplayError("Failed to unprotect %X\n0", 0x04000000);
}
}
if (N64_Blocks.NoOfIMEMBlocks > 0) {
N64_Blocks.NoOfIMEMBlocks = 0;
memset(JumpTable + (0x04001000 >> 2),0,0x1000);
*(DelaySlotTable + (0x04001000 >> 12)) = NULL;
if (VirtualProtect((RDRAM + 0x04001000), 4, PAGE_READWRITE, &OldProtect) == 0) {
DisplayError("Failed to unprotect %X\n4", 0x04001000);
}
}
// if (N64_Blocks.NoOfPifRomBlocks > 0) {
// N64_Blocks.NoOfPifRomBlocks = 0;
// memset(JumpTable + (0x1FC00000 >> 2),0,0x1000);
// }
#endif
*/
}
CCompiledFunc * CRecompiler::CompileDelaySlot(DWORD PC)
{
WriteTraceF(TraceRecompiler,"Compile Delay Slot: %X",PC);
_Notify->BreakPoint(__FILE__,__LINE__);
#ifdef tofix
if ((PC & 0xFFC) != 0) {
DisplayError("Why are you compiling the Delay Slot at %X",PC);
return NULL;
}
if (!_MMU->LW_VAddr(PC, g_Opcode.Hex)) {
DisplayError("TLB Miss in delay slot\nEmulation will know stop");
return NULL;
}
CCompiledFunc * info = m_FunctionsDelaySlot.AddFunctionInfo(PC, _TLB->TranslateVaddr(PC));
CCodeBlock BlockInfo(PROGRAM_COUNTER, RecompPos());
CCodeSection * Section = &BlockInfo.ParentSection;
BYTE * Block = RecompPos();
DWORD StartAddress;
if (!TranslateVaddr(PC, &StartAddress))
{
return NULL;
}
if (StartAddress < RdramSize()) {
CPU_Message("====== RDRAM: Delay Slot ======");
} else if (StartAddress >= 0x04000000 && StartAddress <= 0x04000FFC) {
CPU_Message("====== DMEM: Delay Slot ======");
} else if (StartAddress >= 0x04001000 && StartAddress <= 0x04001FFC) {
CPU_Message("====== IMEM: Delay Slot ======");
} else if (StartAddress >= 0x1FC00000 && StartAddress <= 0x1FC00800) {
CPU_Message("====== PIF ROM: Delay Slot ======");
} else {
CPU_Message("====== Unknown: Delay Slot ======");
}
CPU_Message("x86 code at: %X",Block);
CPU_Message("Delay Slot location: %X",PROGRAM_COUNTER );
CPU_Message("====== recompiled code ======");
Section->AddParent(NULL);
Section->BlockCycleCount() += CountPerOp();
Section->BlockRandomModifier() += 1;
switch (Opcode.op) {
case R4300i_SPECIAL:
switch (Opcode.funct) {
case R4300i_SPECIAL_SLL: Compile_R4300i_SPECIAL_SLL(Section); break;
case R4300i_SPECIAL_SRL: Compile_R4300i_SPECIAL_SRL(Section); break;
case R4300i_SPECIAL_SRA: Compile_R4300i_SPECIAL_SRA(Section); break;
case R4300i_SPECIAL_SLLV: Compile_R4300i_SPECIAL_SLLV(Section); break;
case R4300i_SPECIAL_SRLV: Compile_R4300i_SPECIAL_SRLV(Section); break;
case R4300i_SPECIAL_SRAV: Compile_R4300i_SPECIAL_SRAV(Section); break;
case R4300i_SPECIAL_MFLO: Compile_R4300i_SPECIAL_MFLO(Section); break;
case R4300i_SPECIAL_MTLO: Compile_R4300i_SPECIAL_MTLO(Section); break;
case R4300i_SPECIAL_MFHI: Compile_R4300i_SPECIAL_MFHI(Section); break;
case R4300i_SPECIAL_MTHI: Compile_R4300i_SPECIAL_MTHI(Section); break;
case R4300i_SPECIAL_MULT: Compile_R4300i_SPECIAL_MULT(Section); break;
case R4300i_SPECIAL_DIV: Compile_R4300i_SPECIAL_DIV(Section); break;
case R4300i_SPECIAL_DIVU: Compile_R4300i_SPECIAL_DIVU(Section); break;
case R4300i_SPECIAL_MULTU: Compile_R4300i_SPECIAL_MULTU(Section); break;
case R4300i_SPECIAL_DMULTU: Compile_R4300i_SPECIAL_DMULTU(Section); break;
case R4300i_SPECIAL_DDIVU: Compile_R4300i_SPECIAL_DDIVU(Section); break;
case R4300i_SPECIAL_ADD: Compile_R4300i_SPECIAL_ADD(Section); break;
case R4300i_SPECIAL_ADDU: Compile_R4300i_SPECIAL_ADDU(Section); break;
case R4300i_SPECIAL_SUB: Compile_R4300i_SPECIAL_SUB(Section); break;
case R4300i_SPECIAL_SUBU: Compile_R4300i_SPECIAL_SUBU(Section); break;
case R4300i_SPECIAL_AND: Compile_R4300i_SPECIAL_AND(Section); break;
case R4300i_SPECIAL_OR: Compile_R4300i_SPECIAL_OR(Section); break;
case R4300i_SPECIAL_XOR: Compile_R4300i_SPECIAL_XOR(Section); break;
case R4300i_SPECIAL_SLT: Compile_R4300i_SPECIAL_SLT(Section); break;
case R4300i_SPECIAL_SLTU: Compile_R4300i_SPECIAL_SLTU(Section); break;
case R4300i_SPECIAL_DADD: Compile_R4300i_SPECIAL_DADD(Section); break;
case R4300i_SPECIAL_DADDU: Compile_R4300i_SPECIAL_DADDU(Section); break;
case R4300i_SPECIAL_DSLL32: Compile_R4300i_SPECIAL_DSLL32(Section); break;
case R4300i_SPECIAL_DSRA32: Compile_R4300i_SPECIAL_DSRA32(Section); break;
default:
Compile_R4300i_UnknownOpcode(Section); break;
}
break;
case R4300i_ADDI: Compile_R4300i_ADDI(Section); break;
case R4300i_ADDIU: Compile_R4300i_ADDIU(Section); break;
case R4300i_SLTI: Compile_R4300i_SLTI(Section); break;
case R4300i_SLTIU: Compile_R4300i_SLTIU(Section); break;
case R4300i_ANDI: Compile_R4300i_ANDI(Section); break;
case R4300i_ORI: Compile_R4300i_ORI(Section); break;
case R4300i_XORI: Compile_R4300i_XORI(Section); break;
case R4300i_LUI: Compile_R4300i_LUI(Section); break;
case R4300i_CP1:
switch (Opcode.rs) {
case R4300i_COP1_CF: Compile_R4300i_COP1_CF(Section); break;
case R4300i_COP1_MT: Compile_R4300i_COP1_MT(Section); break;
case R4300i_COP1_CT: Compile_R4300i_COP1_CT(Section); break;
case R4300i_COP1_MF: Compile_R4300i_COP1_MF(Section); break;
case R4300i_COP1_S:
switch (Opcode.funct) {
case R4300i_COP1_FUNCT_ADD: Compile_R4300i_COP1_S_ADD(Section); break;
case R4300i_COP1_FUNCT_SUB: Compile_R4300i_COP1_S_SUB(Section); break;
case R4300i_COP1_FUNCT_MUL: Compile_R4300i_COP1_S_MUL(Section); break;
case R4300i_COP1_FUNCT_DIV: Compile_R4300i_COP1_S_DIV(Section); break;
case R4300i_COP1_FUNCT_ABS: Compile_R4300i_COP1_S_ABS(Section); break;
case R4300i_COP1_FUNCT_NEG: Compile_R4300i_COP1_S_NEG(Section); break;
case R4300i_COP1_FUNCT_SQRT: Compile_R4300i_COP1_S_SQRT(Section); break;
case R4300i_COP1_FUNCT_MOV: Compile_R4300i_COP1_S_MOV(Section); break;
case R4300i_COP1_FUNCT_CVT_D: Compile_R4300i_COP1_S_CVT_D(Section); break;
case R4300i_COP1_FUNCT_ROUND_W: Compile_R4300i_COP1_S_ROUND_W(Section); break;
case R4300i_COP1_FUNCT_TRUNC_W: Compile_R4300i_COP1_S_TRUNC_W(Section); break;
case R4300i_COP1_FUNCT_FLOOR_W: Compile_R4300i_COP1_S_FLOOR_W(Section); break;
case R4300i_COP1_FUNCT_C_F: case R4300i_COP1_FUNCT_C_UN:
case R4300i_COP1_FUNCT_C_EQ: case R4300i_COP1_FUNCT_C_UEQ:
case R4300i_COP1_FUNCT_C_OLT: case R4300i_COP1_FUNCT_C_ULT:
case R4300i_COP1_FUNCT_C_OLE: case R4300i_COP1_FUNCT_C_ULE:
case R4300i_COP1_FUNCT_C_SF: case R4300i_COP1_FUNCT_C_NGLE:
case R4300i_COP1_FUNCT_C_SEQ: case R4300i_COP1_FUNCT_C_NGL:
case R4300i_COP1_FUNCT_C_LT: case R4300i_COP1_FUNCT_C_NGE:
case R4300i_COP1_FUNCT_C_LE: case R4300i_COP1_FUNCT_C_NGT:
Compile_R4300i_COP1_S_CMP(Section); break;
default:
Compile_R4300i_UnknownOpcode(Section); break;
}
break;
case R4300i_COP1_D:
switch (Opcode.funct) {
case R4300i_COP1_FUNCT_ADD: Compile_R4300i_COP1_D_ADD(Section); break;
case R4300i_COP1_FUNCT_SUB: Compile_R4300i_COP1_D_SUB(Section); break;
case R4300i_COP1_FUNCT_MUL: Compile_R4300i_COP1_D_MUL(Section); break;
case R4300i_COP1_FUNCT_DIV: Compile_R4300i_COP1_D_DIV(Section); break;
case R4300i_COP1_FUNCT_ABS: Compile_R4300i_COP1_D_ABS(Section); break;
case R4300i_COP1_FUNCT_NEG: Compile_R4300i_COP1_D_NEG(Section); break;
case R4300i_COP1_FUNCT_SQRT: Compile_R4300i_COP1_D_SQRT(Section); break;
case R4300i_COP1_FUNCT_MOV: Compile_R4300i_COP1_D_MOV(Section); break;
case R4300i_COP1_FUNCT_TRUNC_W: Compile_R4300i_COP1_D_TRUNC_W(Section); break;
case R4300i_COP1_FUNCT_CVT_S: Compile_R4300i_COP1_D_CVT_S(Section); break;
case R4300i_COP1_FUNCT_CVT_W: Compile_R4300i_COP1_D_CVT_W(Section); break;
case R4300i_COP1_FUNCT_C_F: case R4300i_COP1_FUNCT_C_UN:
case R4300i_COP1_FUNCT_C_EQ: case R4300i_COP1_FUNCT_C_UEQ:
case R4300i_COP1_FUNCT_C_OLT: case R4300i_COP1_FUNCT_C_ULT:
case R4300i_COP1_FUNCT_C_OLE: case R4300i_COP1_FUNCT_C_ULE:
case R4300i_COP1_FUNCT_C_SF: case R4300i_COP1_FUNCT_C_NGLE:
case R4300i_COP1_FUNCT_C_SEQ: case R4300i_COP1_FUNCT_C_NGL:
case R4300i_COP1_FUNCT_C_LT: case R4300i_COP1_FUNCT_C_NGE:
case R4300i_COP1_FUNCT_C_LE: case R4300i_COP1_FUNCT_C_NGT:
Compile_R4300i_COP1_D_CMP(Section); break;
default:
Compile_R4300i_UnknownOpcode(Section); break;
}
break;
case R4300i_COP1_W:
switch (Opcode.funct) {
case R4300i_COP1_FUNCT_CVT_S: Compile_R4300i_COP1_W_CVT_S(Section); break;
case R4300i_COP1_FUNCT_CVT_D: Compile_R4300i_COP1_W_CVT_D(Section); break;
default:
Compile_R4300i_UnknownOpcode(Section); break;
}
break;
default:
Compile_R4300i_UnknownOpcode(Section); break;
}
break;
case R4300i_LB: Compile_R4300i_LB(Section); break;
case R4300i_LH: Compile_R4300i_LH(Section); break;
case R4300i_LW: Compile_R4300i_LW(Section); break;
case R4300i_LBU: Compile_R4300i_LBU(Section); break;
case R4300i_LHU: Compile_R4300i_LHU(Section); break;
case R4300i_SB: Compile_R4300i_SB(Section); break;
case R4300i_SH: Compile_R4300i_SH(Section); break;
case R4300i_SW: Compile_R4300i_SW(Section); break;
case R4300i_SWR: Compile_R4300i_SWR(Section); break;
case R4300i_CACHE: Compile_R4300i_CACHE(Section); break;
case R4300i_LWC1: Compile_R4300i_LWC1(Section); break;
case R4300i_LDC1: Compile_R4300i_LDC1(Section); break;
case R4300i_LD: Compile_R4300i_LD(Section); break;
case R4300i_SWC1: Compile_R4300i_SWC1(Section); break;
case R4300i_SDC1: Compile_R4300i_SDC1(Section); break;
case R4300i_SD: Compile_R4300i_SD(Section); break;
default:
Compile_R4300i_UnknownOpcode(Section); break;
}
Section->ResetX86Protection();
WriteBackRegisters(Section);
UpdateCounters(&Section->BlockCycleCount(),&Section->BlockRandomModifier(), FALSE);
int x86Reg = Map_TempReg(Section,x86_Any,-1,FALSE);
MoveVariableToX86reg(&JumpToLocation,"JumpToLocation",x86Reg);
MoveX86regToVariable(x86Reg,&PROGRAM_COUNTER,"PROGRAM_COUNTER");
MoveConstToVariable(NORMAL,&NextInstruction,"NextInstruction");
if (CPU_Type == CPU_SyncCores) { Call_Direct(SyncToPC, "SyncToPC"); }
Ret();
CompileExitCode(BlockInfo);
CPU_Message("====== End of recompiled code ======");
info->SetVEndPC(BlockInfo.EndVAddr);
info->SetFunctionAddr(BlockInfo.CompiledLocation);
_TLB->VAddrToRealAddr(info->VStartPC(),*(reinterpret_cast<void **>(&info->MemLocation[0])));
info->MemLocation[1] = info->MemLocation[0] + 1;
info->MemContents[0] = *info->MemLocation[0];
info->MemContents[1] = *info->MemLocation[1];
NextInstruction = NORMAL;
return info;
#endif
return NULL;
}
bool CRecompiler::AnalyseBlock ( CCodeBlock & BlockInfo)
{
_Notify->BreakPoint(__FILE__,__LINE__);
#ifdef tofix
if (bLinkBlocks())
{
CCodeSection * Section = &BlockInfo.ParentSection;
if (!CreateSectionLinkage (Section)) { return false; }
DetermineLoop(Section,CCodeSection::GetNewTestValue(),CCodeSection::GetNewTestValue(), Section->m_SectionID);
while (FixConstants(Section,CCodeSection::GetNewTestValue())) {}
}
#endif
return true;
}
bool CRecompiler::FixConstants (CCodeSection * Section, DWORD Test)
{
_Notify->BreakPoint(__FILE__,__LINE__);
#ifdef tofix
if (Section == NULL) { return false; }
if (Section->Test == Test) { return false; }
Section->Test = Test;
InheritConstants(Section);
bool Changed = false;
/* BLOCK_SECTION * Parent;
int count, NoOfParents;
REG_INFO Original[2];
*/
CRegInfo Original[2] = { Section->m_Cont.RegSet, Section->m_Jump.RegSet };
if (!Section->ParentSection.empty()) {
for (SECTION_LIST::iterator iter = Section->ParentSection.begin(); iter != Section->ParentSection.end(); iter++)
{
CCodeSection * Parent = *iter;
if (Parent->m_ContinueSection == Section) {
for (int count = 0; count < 32; count++) {
if (Section->RegStart.MipsRegState(count) != Parent->m_Cont.RegSet.MipsRegState(count)) {
Section->RegStart.MipsRegState(count) = CRegInfo::STATE_UNKNOWN;
//*Changed = true;
}
Section->RegStart.MipsRegState(count) = CRegInfo::STATE_UNKNOWN;
}
}
if (Parent->m_JumpSection == Section) {
for (int count = 0; count < 32; count++) {
if (Section->RegStart.MipsRegState(count) != Parent->m_Jump.RegSet.MipsRegState(count)) {
Section->RegStart.MipsRegState(count) = CRegInfo::STATE_UNKNOWN;
//*Changed = true;
}
}
}
Section->RegWorking = Section->RegStart;
}
}
FillSectionInfo(Section, NORMAL);
if (Original[0] != Section->m_Cont.RegSet)
{
Changed = true;
}
if (Original[1] != Section->m_Jump.RegSet)
{
Changed = true;
}
if (Section->m_JumpSection && FixConstants(Section->m_JumpSection,Test)) { Changed = true; }
if (Section->m_ContinueSection && FixConstants(Section->m_ContinueSection,Test)) { Changed = true; }
return Changed;
#endif
return false;
}
void CRecompiler::InheritConstants(CCodeSection * Section)
{
_Notify->BreakPoint(__FILE__,__LINE__);
#ifdef tofix
if (Section->ParentSection.empty())
{
Section->RegStart.Initilize();
Section->RegWorking = Section->RegStart;
return;
}
CCodeSection * Parent = *(Section->ParentSection.begin());
CRegInfo * RegSet = (Section == Parent->m_ContinueSection?&Parent->m_Cont.RegSet:&Parent->m_Jump.RegSet);
Section->RegStart = *RegSet;
Section->RegWorking = *RegSet;
for (SECTION_LIST::iterator iter = Section->ParentSection.begin(); iter != Section->ParentSection.end(); iter++)
{
if (iter == Section->ParentSection.begin()) { continue; }
Parent = *iter;
RegSet = Section == Parent->m_ContinueSection?&Parent->m_Cont.RegSet:&Parent->m_Jump.RegSet;
for (int count = 0; count < 32; count++) {
if (Section->IsConst(count)) {
if (Section->MipsRegState(count) != RegSet->MipsRegState(count)) {
Section->MipsRegState(count) = CRegInfo::STATE_UNKNOWN;
} else if (Section->Is32Bit(count) && Section->MipsRegLo(count) != RegSet->MipsRegLo(count)) {
Section->MipsRegState(count) = CRegInfo::STATE_UNKNOWN;
} else if (Section->Is64Bit(count) && Section->MipsReg(count) != RegSet->MipsReg(count)) {
Section->MipsRegState(count) = CRegInfo::STATE_UNKNOWN;
}
}
}
}
Section->RegStart = Section->RegWorking;
#endif
}
CCodeSection * CRecompiler::ExistingSection(CCodeSection * StartSection, DWORD Addr, DWORD Test)
{
_Notify->BreakPoint(__FILE__,__LINE__);
#ifdef tofix
if (StartSection == NULL) { return NULL; }
if (StartSection->StartPC == Addr && StartSection->LinkAllowed)
{
return StartSection;
}
if (StartSection->Test == Test) { return NULL; }
StartSection->Test = Test;
CCodeSection * Section = ExistingSection(StartSection->m_JumpSection,Addr,Test);
if (Section != NULL) { return Section; }
Section = ExistingSection(StartSection->m_ContinueSection,Addr,Test);
if (Section != NULL) { return Section; }
#endif
return NULL;
}
bool CRecompiler::CreateSectionLinkage (CCodeSection * Section) {
_Notify->BreakPoint(__FILE__,__LINE__);
#ifdef tofix
InheritConstants(Section);
if (!FillSectionInfo(Section,NORMAL))
{
return false;
}
CCodeSection ** TargetSection[2];
CJumpInfo * JumpInfo[2];
if (Section->m_Jump.TargetPC < Section->m_Cont.TargetPC) {
TargetSection[0] = (CCodeSection **)&Section->m_JumpSection;
TargetSection[1] = (CCodeSection **)&Section->m_ContinueSection;
JumpInfo[0] = &Section->m_Jump;
JumpInfo[1] = &Section->m_Cont;
} else {
TargetSection[0] = (CCodeSection **)&Section->m_ContinueSection;
TargetSection[1] = (CCodeSection **)&Section->m_JumpSection;
JumpInfo[0] = &Section->m_Cont;
JumpInfo[1] = &Section->m_Jump;
}
CCodeBlock * BlockInfo = Section->BlockInfo;
for (int count = 0; count < 2; count ++)
{
if (JumpInfo[count]->TargetPC == (DWORD)-1 || *TargetSection[count] != NULL)
{
continue;
}
if (!JumpInfo[count]->DoneDelaySlot)
{
Section->m_Jump.RegSet = Section->RegWorking;
//this is a special delay slot section
BlockInfo->NoOfSections += 1;
*TargetSection[count] = new CCodeSection(BlockInfo,CRecompilerOps::CompilePC() + 4,BlockInfo->NoOfSections);
(*TargetSection[count])->AddParent(Section);
(*TargetSection[count])->LinkAllowed = false;
InheritConstants((*TargetSection[count]));
if (!FillSectionInfo((*TargetSection[count]),END_BLOCK))
{
return false;
}
(*TargetSection[count])->m_Jump.TargetPC = -1;
(*TargetSection[count])->m_Cont.TargetPC = JumpInfo[count]->TargetPC;
(*TargetSection[count])->m_Cont.FallThrough = true;
(*TargetSection[count])->m_Cont.RegSet = (*TargetSection[count])->RegWorking;
JumpInfo[count]->TargetPC = CRecompilerOps::CompilePC() + 4;
//Create the section that joins with that block
(*TargetSection[count])->m_ContinueSection = ExistingSection(&BlockInfo->ParentSection,(*TargetSection[count])->m_Cont.TargetPC,CCodeSection::GetNewTestValue());
if ((*TargetSection[count])->m_ContinueSection == NULL) {
BlockInfo->NoOfSections += 1;
(*TargetSection[count])->m_ContinueSection = new CCodeSection(BlockInfo,(*TargetSection[count])->m_Cont.TargetPC,BlockInfo->NoOfSections);
(*TargetSection[count])->m_ContinueSection->AddParent((*TargetSection[count]));
CreateSectionLinkage((*TargetSection[count])->m_ContinueSection);
} else {
(*TargetSection[count])->m_ContinueSection->AddParent((*TargetSection[count]));
}
} else {
*TargetSection[count] = ExistingSection(&BlockInfo->ParentSection,JumpInfo[count]->TargetPC,CCodeSection::GetNewTestValue());
if (*TargetSection[count] == NULL) {
BlockInfo->NoOfSections += 1;
*TargetSection[count] = new CCodeSection(BlockInfo,JumpInfo[count]->TargetPC,BlockInfo->NoOfSections);
(*TargetSection[count])->AddParent(Section);
CreateSectionLinkage(*TargetSection[count]);
} else {
(*TargetSection[count])->AddParent(Section);
}
}
}
#endif
return true;
}
bool CRecompiler::FillSectionInfo(CCodeSection * Section, STEP_TYPE StartStepType)
{
_Notify->BreakPoint(__FILE__,__LINE__);
#ifdef tofix
OPCODE Command;
if (Section->CompiledLocation != NULL) { return true; }
CRecompilerOps::CompilePC() = Section->StartPC;
Section->RegWorking = Section->RegStart;
NextInstruction = StartStepType;
do {
if (!_MMU->LW_VAddr(CRecompilerOps::CompilePC(), Command.Hex)) {
DisplayError(GS(MSG_FAIL_LOAD_WORD));
return false;
}
switch (Command.op) {
case R4300i_SPECIAL:
switch (Command.funct) {
case R4300i_SPECIAL_SLL:
if (Command.rd == 0) { break; }
if (Section->InLoop && Command.rt == Command.rd) {
Section->MipsRegState(Command.rd) = CRegInfo::STATE_UNKNOWN;
}
if (Section->IsConst(Command.rt)) {
Section->MipsRegState(Command.rd) = CRegInfo::STATE_CONST_32;
Section->MipsRegLo(Command.rd) = Section->MipsRegLo(Command.rt) << Command.sa;
} else {
Section->MipsRegState(Command.rd) = CRegInfo::STATE_UNKNOWN;
}
break;
case R4300i_SPECIAL_SRL:
if (Command.rd == 0) { break; }
if (Section->InLoop && Command.rt == Command.rd) {
Section->MipsRegState(Command.rd) = CRegInfo::STATE_UNKNOWN;
}
if (Section->IsConst(Command.rt)) {
Section->MipsRegState(Command.rd) = CRegInfo::STATE_CONST_32;
Section->MipsRegLo(Command.rd) = Section->MipsRegLo(Command.rt) >> Command.sa;
} else {
Section->MipsRegState(Command.rd) = CRegInfo::STATE_UNKNOWN;
}
break;
case R4300i_SPECIAL_SRA:
if (Command.rd == 0) { break; }
if (Section->InLoop && Command.rt == Command.rd) {
Section->MipsRegState(Command.rd) = CRegInfo::STATE_UNKNOWN;
}
if (Section->IsConst(Command.rt)) {
Section->MipsRegState(Command.rd) = CRegInfo::STATE_CONST_32;
Section->MipsRegLo(Command.rd) = Section->MipsRegLo_S(Command.rt) >> Command.sa;
} else {
Section->MipsRegState(Command.rd) = CRegInfo::STATE_UNKNOWN;
}
break;
case R4300i_SPECIAL_SLLV:
if (Command.rd == 0) { break; }
if (Section->InLoop && (Command.rt == Command.rd || Command.rs == Command.rd)) {
Section->MipsRegState(Command.rd) = CRegInfo::STATE_UNKNOWN;
}
if (Section->IsConst(Command.rt) && Section->IsConst(Command.rs)) {
Section->MipsRegState(Command.rd) = CRegInfo::STATE_CONST_32;
Section->MipsRegLo(Command.rd) = Section->MipsRegLo(Command.rt) << (Section->MipsRegLo(Command.rs) & 0x1F);
} else {
Section->MipsRegState(Command.rd) = CRegInfo::STATE_UNKNOWN;
}
break;
case R4300i_SPECIAL_SRLV:
if (Command.rd == 0) { break; }
if (Section->InLoop && (Command.rt == Command.rd || Command.rs == Command.rd)) {
Section->MipsRegState(Command.rd) = CRegInfo::STATE_UNKNOWN;
}
if (Section->IsConst(Command.rt) && Section->IsConst(Command.rs)) {
Section->MipsRegState(Command.rd) = CRegInfo::STATE_CONST_32;
Section->MipsRegLo(Command.rd) = Section->MipsRegLo(Command.rt) >> (Section->MipsRegLo(Command.rs) & 0x1F);
} else {
Section->MipsRegState(Command.rd) = CRegInfo::STATE_UNKNOWN;
}
break;
case R4300i_SPECIAL_SRAV:
if (Command.rd == 0) { break; }
if (Section->InLoop && (Command.rt == Command.rd || Command.rs == Command.rd)) {
Section->MipsRegState(Command.rd) = CRegInfo::STATE_UNKNOWN;
}
if (Section->IsConst(Command.rt) && Section->IsConst(Command.rs)) {
Section->MipsRegState(Command.rd) = CRegInfo::STATE_CONST_32;
Section->MipsRegLo(Command.rd) = Section->MipsRegLo_S(Command.rt) >> (Section->MipsRegLo(Command.rs) & 0x1F);
} else {
Section->MipsRegState(Command.rd) = CRegInfo::STATE_UNKNOWN;
}
break;
case R4300i_SPECIAL_JR:
if (Section->IsConst(Command.rs)) {
Section->m_Jump.TargetPC = Section->MipsRegLo(Command.rs);
} else {
Section->m_Jump.TargetPC = (DWORD)-1;
}
NextInstruction = DELAY_SLOT;
break;
case R4300i_SPECIAL_JALR:
Section->MipsRegLo(Opcode.rd) = CRecompilerOps::CompilePC() + 8;
Section->MipsRegState(Opcode.rd) = CRegInfo::STATE_CONST_32;
if (Section->IsConst(Command.rs)) {
Section->m_Jump.TargetPC = Section->MipsRegLo(Command.rs);
} else {
Section->m_Jump.TargetPC = (DWORD)-1;
}
NextInstruction = DELAY_SLOT;
break;
case R4300i_SPECIAL_SYSCALL:
case R4300i_SPECIAL_BREAK:
NextInstruction = END_BLOCK;
CRecompilerOps::CompilePC() -= 4;
break;
case R4300i_SPECIAL_MFHI: Section->MipsRegState(Command.rd) = CRegInfo::STATE_UNKNOWN; break;
case R4300i_SPECIAL_MTHI: break;
case R4300i_SPECIAL_MFLO: Section->MipsRegState(Command.rd) = CRegInfo::STATE_UNKNOWN; break;
case R4300i_SPECIAL_MTLO: break;
case R4300i_SPECIAL_DSLLV:
if (Command.rd == 0) { break; }
if (Section->InLoop && (Command.rt == Command.rd || Command.rs == Command.rd)) {
Section->MipsRegState(Command.rd) = CRegInfo::STATE_UNKNOWN;
}
if (Section->IsConst(Command.rt) && Section->IsConst(Command.rs)) {
Section->MipsRegState(Command.rd) = CRegInfo::STATE_CONST_64;
Section->MipsReg(Command.rd) = Section->Is64Bit(Command.rt)?Section->MipsReg(Command.rt):(QWORD)Section->MipsRegLo_S(Command.rt) << (Section->MipsRegLo(Command.rs) & 0x3F);
} else {
Section->MipsRegState(Command.rd) = CRegInfo::STATE_UNKNOWN;
}
break;
case R4300i_SPECIAL_DSRLV:
if (Command.rd == 0) { break; }
if (Section->InLoop && (Command.rt == Command.rd || Command.rs == Command.rd)) {
Section->MipsRegState(Command.rd) = CRegInfo::STATE_UNKNOWN;
}
if (Section->IsConst(Command.rt) && Section->IsConst(Command.rs)) {
Section->MipsRegState(Command.rd) = CRegInfo::STATE_CONST_64;
Section->MipsReg(Command.rd) = Section->Is64Bit(Command.rt)?Section->MipsReg(Command.rt):(QWORD)Section->MipsRegLo_S(Command.rt) >> (Section->MipsRegLo(Command.rs) & 0x3F);
} else {
Section->MipsRegState(Command.rd) = CRegInfo::STATE_UNKNOWN;
}
break;
case R4300i_SPECIAL_DSRAV:
if (Command.rd == 0) { break; }
if (Section->InLoop && (Command.rt == Command.rd || Command.rs == Command.rd)) {
Section->MipsRegState(Command.rd) = CRegInfo::STATE_UNKNOWN;
}
if (Section->IsConst(Command.rt) && Section->IsConst(Command.rs)) {
Section->MipsRegState(Command.rd) = CRegInfo::STATE_CONST_64;
Section->MipsReg(Command.rd) = Section->Is64Bit(Command.rt)?Section->MipsReg_S(Command.rt):(_int64)Section->MipsRegLo_S(Command.rt) >> (Section->MipsRegLo(Command.rs) & 0x3F);
} else {
Section->MipsRegState(Command.rd) = CRegInfo::STATE_UNKNOWN;
}
break;
case R4300i_SPECIAL_MULT: break;
case R4300i_SPECIAL_MULTU: break;
case R4300i_SPECIAL_DIV: break;
case R4300i_SPECIAL_DIVU: break;
case R4300i_SPECIAL_DMULT: break;
case R4300i_SPECIAL_DMULTU: break;
case R4300i_SPECIAL_DDIV: break;
case R4300i_SPECIAL_DDIVU: break;
case R4300i_SPECIAL_ADD:
case R4300i_SPECIAL_ADDU:
if (Command.rd == 0) { break; }
if (Section->InLoop && (Command.rt == Command.rd || Command.rs == Command.rd)) {
Section->MipsRegState(Command.rd) = CRegInfo::STATE_UNKNOWN;
}
if (Section->IsConst(Command.rt) && Section->IsConst(Command.rs)) {
Section->MipsRegLo(Command.rd) = Section->MipsRegLo(Command.rs) + Section->MipsRegLo(Command.rt);
Section->MipsRegState(Command.rd) = CRegInfo::STATE_CONST_32;
} else {
Section->MipsRegState(Command.rd) = CRegInfo::STATE_UNKNOWN;
}
break;
case R4300i_SPECIAL_SUB:
case R4300i_SPECIAL_SUBU:
if (Command.rd == 0) { break; }
if (Section->InLoop && (Command.rt == Command.rd || Command.rs == Command.rd)) {
Section->MipsRegState(Command.rd) = CRegInfo::STATE_UNKNOWN;
}
if (Section->IsConst(Command.rt) && Section->IsConst(Command.rs)) {
Section->MipsRegLo(Command.rd) = Section->MipsRegLo(Command.rs) - Section->MipsRegLo(Command.rt);
Section->MipsRegState(Command.rd) = CRegInfo::STATE_CONST_32;
} else {
Section->MipsRegState(Command.rd) = CRegInfo::STATE_UNKNOWN;
}
break;
case R4300i_SPECIAL_AND:
if (Command.rd == 0) { break; }
if (Section->InLoop && (Command.rt == Command.rd || Command.rs == Command.rd)) {
Section->MipsRegState(Command.rd) = CRegInfo::STATE_UNKNOWN;
}
if (Section->IsConst(Command.rt) && Section->IsConst(Command.rs)) {
if (Section->Is64Bit(Command.rt) && Section->Is64Bit(Command.rs)) {
Section->MipsReg(Command.rd) = Section->MipsReg(Command.rt) & Section->MipsReg(Command.rs);
Section->MipsRegState(Command.rd) = CRegInfo::STATE_CONST_64;
} else if (Section->Is64Bit(Command.rt) || Section->Is64Bit(Command.rs)) {
if (Section->Is64Bit(Command.rt)) {
Section->MipsReg(Command.rd) = Section->MipsReg(Command.rt) & Section->MipsRegLo(Command.rs);
} else {
Section->MipsReg(Command.rd) = Section->MipsRegLo(Command.rt) & Section->MipsReg(Command.rs);
}
Section->MipsRegState(Command.rd) = CRegInfo::ConstantsType(Section->MipsReg(Command.rd));
} else {
Section->MipsRegLo(Command.rd) = Section->MipsRegLo(Command.rt) & Section->MipsRegLo(Command.rs);
Section->MipsRegState(Command.rd) = CRegInfo::STATE_CONST_32;
}
} else {
Section->MipsRegState(Command.rd) = CRegInfo::STATE_UNKNOWN;
}
break;
case R4300i_SPECIAL_OR:
if (Command.rd == 0) { break; }
if (Section->InLoop && (Command.rt == Command.rd || Command.rs == Command.rd)) {
Section->MipsRegState(Command.rd) = CRegInfo::STATE_UNKNOWN;
}
if (Section->IsConst(Command.rt) && Section->IsConst(Command.rs)) {
if (Section->Is64Bit(Command.rt) && Section->Is64Bit(Command.rs)) {
Section->MipsReg(Command.rd) = Section->MipsReg(Command.rt) | Section->MipsReg(Command.rs);
Section->MipsRegState(Command.rd) = CRegInfo::STATE_CONST_64;
} else if (Section->Is64Bit(Command.rt) || Section->Is64Bit(Command.rs)) {
if (Section->Is64Bit(Command.rt)) {
Section->MipsReg(Command.rd) = Section->MipsReg(Command.rt) | Section->MipsRegLo(Command.rs);
} else {
Section->MipsReg(Command.rd) = Section->MipsRegLo(Command.rt) | Section->MipsReg(Command.rs);
}
Section->MipsRegState(Command.rd) = CRegInfo::STATE_CONST_64;
} else {
Section->MipsRegLo(Command.rd) = Section->MipsRegLo(Command.rt) | Section->MipsRegLo(Command.rs);
Section->MipsRegState(Command.rd) = CRegInfo::STATE_CONST_32;
}
} else {
Section->MipsRegState(Command.rd) = CRegInfo::STATE_UNKNOWN;
}
break;
case R4300i_SPECIAL_XOR:
if (Command.rd == 0) { break; }
if (Section->InLoop && (Command.rt == Command.rd || Command.rs == Command.rd)) {
Section->MipsRegState(Command.rd) = CRegInfo::STATE_UNKNOWN;
}
if (Section->IsConst(Command.rt) && Section->IsConst(Command.rs)) {
if (Section->Is64Bit(Command.rt) && Section->Is64Bit(Command.rs)) {
Section->MipsReg(Command.rd) = Section->MipsReg(Command.rt) ^ Section->MipsReg(Command.rs);
Section->MipsRegState(Command.rd) = CRegInfo::STATE_CONST_64;
} else if (Section->Is64Bit(Command.rt) || Section->Is64Bit(Command.rs)) {
if (Section->Is64Bit(Command.rt)) {
Section->MipsReg(Command.rd) = Section->MipsReg(Command.rt) ^ Section->MipsRegLo(Command.rs);
} else {
Section->MipsReg(Command.rd) = Section->MipsRegLo(Command.rt) ^ Section->MipsReg(Command.rs);
}
Section->MipsRegState(Command.rd) = CRegInfo::STATE_CONST_64;
} else {
Section->MipsRegLo(Command.rd) = Section->MipsRegLo(Command.rt) ^ Section->MipsRegLo(Command.rs);
Section->MipsRegState(Command.rd) = CRegInfo::STATE_CONST_32;
}
} else {
Section->MipsRegState(Command.rd) = CRegInfo::STATE_UNKNOWN;
}
break;
case R4300i_SPECIAL_NOR:
if (Command.rd == 0) { break; }
if (Section->InLoop && (Command.rt == Command.rd || Command.rs == Command.rd)) {
Section->MipsRegState(Command.rd) = CRegInfo::STATE_UNKNOWN;
}
if (Section->IsConst(Command.rt) && Section->IsConst(Command.rs)) {
if (Section->Is64Bit(Command.rt) && Section->Is64Bit(Command.rs)) {
Section->MipsReg(Command.rd) = ~(Section->MipsReg(Command.rt) | Section->MipsReg(Command.rs));
Section->MipsRegState(Command.rd) = CRegInfo::STATE_CONST_64;
} else if (Section->Is64Bit(Command.rt) || Section->Is64Bit(Command.rs)) {
if (Section->Is64Bit(Command.rt)) {
Section->MipsReg(Command.rd) = ~(Section->MipsReg(Command.rt) | Section->MipsRegLo(Command.rs));
} else {
Section->MipsReg(Command.rd) = ~(Section->MipsRegLo(Command.rt) | Section->MipsReg(Command.rs));
}
Section->MipsRegState(Command.rd) = CRegInfo::STATE_CONST_64;
} else {
Section->MipsRegLo(Command.rd) = ~(Section->MipsRegLo(Command.rt) | Section->MipsRegLo(Command.rs));
Section->MipsRegState(Command.rd) = CRegInfo::STATE_CONST_32;
}
} else {
Section->MipsRegState(Command.rd) = CRegInfo::STATE_UNKNOWN;
}
break;
case R4300i_SPECIAL_SLT:
if (Command.rd == 0) { break; }
if (Section->IsConst(Command.rt) && Section->IsConst(Command.rs)) {
if (Section->Is64Bit(Command.rt) || Section->Is64Bit(Command.rs)) {
if (Section->Is64Bit(Command.rt)) {
Section->MipsRegLo(Command.rd) = (Section->MipsRegLo_S(Command.rs) < Section->MipsReg_S(Command.rt))?1:0;
} else {
Section->MipsRegLo(Command.rd) = (Section->MipsReg_S(Command.rs) < Section->MipsRegLo_S(Command.rt))?1:0;
}
} else {
Section->MipsRegLo(Command.rd) = (Section->MipsRegLo_S(Command.rs) < Section->MipsRegLo_S(Command.rt))?1:0;
}
Section->MipsRegState(Command.rd) = CRegInfo::STATE_CONST_32;
} else {
Section->MipsRegState(Command.rd) = CRegInfo::STATE_UNKNOWN;
}
break;
case R4300i_SPECIAL_SLTU:
if (Command.rd == 0) { break; }
if (Section->IsConst(Command.rt) && Section->IsConst(Command.rs)) {
if (Section->Is64Bit(Command.rt) || Section->Is64Bit(Command.rs)) {
if (Section->Is64Bit(Command.rt)) {
Section->MipsRegLo(Command.rd) = (Section->MipsRegLo(Command.rs) < Section->MipsReg(Command.rt))?1:0;
} else {
Section->MipsRegLo(Command.rd) = (Section->MipsReg(Command.rs) < Section->MipsRegLo(Command.rt))?1:0;
}
} else {
Section->MipsRegLo(Command.rd) = (Section->MipsRegLo(Command.rs) < Section->MipsRegLo(Command.rt))?1:0;
}
Section->MipsRegState(Command.rd) = CRegInfo::STATE_CONST_32;
} else {
Section->MipsRegState(Command.rd) = CRegInfo::STATE_UNKNOWN;
}
break;
case R4300i_SPECIAL_DADD:
case R4300i_SPECIAL_DADDU:
if (Command.rd == 0) { break; }
if (Section->InLoop && (Command.rt == Command.rd || Command.rs == Command.rd)) {
Section->MipsRegState(Command.rd) = CRegInfo::STATE_UNKNOWN;
}
if (Section->IsConst(Command.rt) && Section->IsConst(Command.rs)) {
Section->MipsReg(Command.rd) =
Section->Is64Bit(Command.rs)?Section->MipsReg(Command.rs):(_int64)Section->MipsRegLo_S(Command.rs) +
Section->Is64Bit(Command.rt)?Section->MipsReg(Command.rt):(_int64)Section->MipsRegLo_S(Command.rt);
Section->MipsRegState(Command.rd) = CRegInfo::STATE_CONST_64;
} else {
Section->MipsRegState(Command.rd) = CRegInfo::STATE_UNKNOWN;
}
break;
case R4300i_SPECIAL_DSUB:
case R4300i_SPECIAL_DSUBU:
if (Command.rd == 0) { break; }
if (Section->InLoop && (Command.rt == Command.rd || Command.rs == Command.rd)) {
Section->MipsRegState(Command.rd) = CRegInfo::STATE_UNKNOWN;
}
if (Section->IsConst(Command.rt) && Section->IsConst(Command.rs)) {
Section->MipsReg(Command.rd) =
Section->Is64Bit(Command.rs)?Section->MipsReg(Command.rs):(_int64)Section->MipsRegLo_S(Command.rs) -
Section->Is64Bit(Command.rt)?Section->MipsReg(Command.rt):(_int64)Section->MipsRegLo_S(Command.rt);
Section->MipsRegState(Command.rd) = CRegInfo::STATE_CONST_64;
} else {
Section->MipsRegState(Command.rd) = CRegInfo::STATE_UNKNOWN;
}
break;
case R4300i_SPECIAL_DSLL:
if (Command.rd == 0) { break; }
if (Section->InLoop && Command.rt == Command.rd) {
Section->MipsRegState(Command.rd) = CRegInfo::STATE_UNKNOWN;
}
if (Section->IsConst(Command.rt)) {
Section->MipsRegState(Command.rd) = CRegInfo::STATE_CONST_64;
Section->MipsReg(Command.rd) = Section->Is64Bit(Command.rt)?Section->MipsReg(Command.rt):(_int64)Section->MipsRegLo_S(Command.rt) << Command.sa;
} else {
Section->MipsRegState(Command.rd) = CRegInfo::STATE_UNKNOWN;
}
break;
case R4300i_SPECIAL_DSRL:
if (Command.rd == 0) { break; }
if (Section->InLoop && Command.rt == Command.rd) {
Section->MipsRegState(Command.rd) = CRegInfo::STATE_UNKNOWN;
}
if (Section->IsConst(Command.rt)) {
Section->MipsRegState(Command.rd) = CRegInfo::STATE_CONST_64;
Section->MipsReg(Command.rd) = Section->Is64Bit(Command.rt)?Section->MipsReg(Command.rt):(QWORD)Section->MipsRegLo_S(Command.rt) >> Command.sa;
} else {
Section->MipsRegState(Command.rd) = CRegInfo::STATE_UNKNOWN;
}
break;
case R4300i_SPECIAL_DSRA:
if (Command.rd == 0) { break; }
if (Section->InLoop && Command.rt == Command.rd) {
Section->MipsRegState(Command.rd) = CRegInfo::STATE_UNKNOWN;
}
if (Section->IsConst(Command.rt)) {
Section->MipsRegState(Command.rd) = CRegInfo::STATE_CONST_64;
Section->MipsReg_S(Command.rd) = Section->Is64Bit(Command.rt)?Section->MipsReg_S(Command.rt):(_int64)Section->MipsRegLo_S(Command.rt) >> Command.sa;
} else {
Section->MipsRegState(Command.rd) = CRegInfo::STATE_UNKNOWN;
}
break;
case R4300i_SPECIAL_DSLL32:
if (Command.rd == 0) { break; }
if (Section->InLoop && Command.rt == Command.rd) {
Section->MipsRegState(Command.rd) = CRegInfo::STATE_UNKNOWN;
}
if (Section->IsConst(Command.rt)) {
Section->MipsRegState(Command.rd) = CRegInfo::STATE_CONST_64;
Section->MipsReg(Command.rd) = Section->MipsRegLo(Command.rt) << (Command.sa + 32);
} else {
Section->MipsRegState(Command.rd) = CRegInfo::STATE_UNKNOWN;
}
break;
case R4300i_SPECIAL_DSRL32:
if (Command.rd == 0) { break; }
if (Section->InLoop && Command.rt == Command.rd) {
Section->MipsRegState(Command.rd) = CRegInfo::STATE_UNKNOWN;
}
if (Section->IsConst(Command.rt)) {
Section->MipsRegState(Command.rd) = CRegInfo::STATE_CONST_32;
Section->MipsRegLo(Command.rd) = (DWORD)(Section->MipsReg(Command.rt) >> (Command.sa + 32));
} else {
Section->MipsRegState(Command.rd) = CRegInfo::STATE_UNKNOWN;
}
break;
case R4300i_SPECIAL_DSRA32:
if (Command.rd == 0) { break; }
if (Section->InLoop && Command.rt == Command.rd) {
Section->MipsRegState(Command.rd) = CRegInfo::STATE_UNKNOWN;
}
if (Section->IsConst(Command.rt)) {
Section->MipsRegState(Command.rd) = CRegInfo::STATE_CONST_32;
Section->MipsRegLo(Command.rd) = (DWORD)(Section->MipsReg_S(Command.rt) >> (Command.sa + 32));
} else {
Section->MipsRegState(Command.rd) = CRegInfo::STATE_UNKNOWN;
}
break;
default:
#ifndef EXTERNAL_RELEASE
if (Command.Hex == 0x00000001) { break; }
DisplayError("Unhandled R4300i OpCode in FillSectionInfo 5\n%s",
R4300iOpcodeName(Command.Hex,CRecompilerOps::CompilePC()));
#endif
NextInstruction = END_BLOCK;
CRecompilerOps::CompilePC() -= 4;
}
break;
case R4300i_REGIMM:
switch (Command.rt) {
case R4300i_REGIMM_BLTZ:
case R4300i_REGIMM_BGEZ:
NextInstruction = DELAY_SLOT;
Section->m_Cont.TargetPC = CRecompilerOps::CompilePC() + 8;
Section->m_Jump.TargetPC = CRecompilerOps::CompilePC() + ((short)Command.offset << 2) + 4;
if (CRecompilerOps::CompilePC() == Section->m_Jump.TargetPC) {
if (!DelaySlotEffectsCompare(CRecompilerOps::CompilePC(),Command.rs,0)) {
Section->m_Jump.PermLoop = true;
}
}
break;
case R4300i_REGIMM_BLTZL:
case R4300i_REGIMM_BGEZL:
NextInstruction = LIKELY_DELAY_SLOT;
Section->m_Cont.TargetPC = CRecompilerOps::CompilePC() + 8;
Section->m_Jump.TargetPC = CRecompilerOps::CompilePC() + ((short)Command.offset << 2) + 4;
if (CRecompilerOps::CompilePC() == Section->m_Jump.TargetPC) {
if (!DelaySlotEffectsCompare(CRecompilerOps::CompilePC(),Command.rs,0)) {
Section->m_Jump.PermLoop = true;
}
}
break;
case R4300i_REGIMM_BLTZAL:
Section->MipsRegLo(31) = CRecompilerOps::CompilePC() + 8;
Section->MipsRegState(31) = CRegInfo::STATE_CONST_32;
Section->m_Cont.TargetPC = CRecompilerOps::CompilePC() + 8;
Section->m_Jump.TargetPC = CRecompilerOps::CompilePC() + ((short)Command.offset << 2) + 4;
if (CRecompilerOps::CompilePC() == Section->m_Jump.TargetPC) {
if (!DelaySlotEffectsCompare(CRecompilerOps::CompilePC(),Command.rs,0)) {
Section->m_Jump.PermLoop = true;
}
}
break;
case R4300i_REGIMM_BGEZAL:
NextInstruction = DELAY_SLOT;
if (Section->IsConst(Command.rs))
{
__int64 Value;
if (Section->Is32Bit(Command.rs))
{
Value = Section->MipsRegLo_S(Command.rs);
} else {
Value = Section->MipsReg_S(Command.rs);
}
if (Value >= 0) {
Section->MipsRegLo(31) = CRecompilerOps::CompilePC() + 8;
Section->MipsRegState(31) = CRegInfo::STATE_CONST_32;
Section->m_Jump.TargetPC = CRecompilerOps::CompilePC() + ((short)Command.offset << 2) + 4;
if (CRecompilerOps::CompilePC() == Section->m_Jump.TargetPC) {
if (!DelaySlotEffectsCompare(CRecompilerOps::CompilePC(),31,0)) {
Section->m_Jump.PermLoop = true;
}
}
break;
}
}
Section->MipsRegLo(31) = CRecompilerOps::CompilePC() + 8;
Section->MipsRegState(31) = CRegInfo::STATE_CONST_32;
Section->m_Cont.TargetPC = CRecompilerOps::CompilePC() + 8;
Section->m_Jump.TargetPC = CRecompilerOps::CompilePC() + ((short)Command.offset << 2) + 4;
if (CRecompilerOps::CompilePC() == Section->m_Jump.TargetPC) {
if (!DelaySlotEffectsCompare(CRecompilerOps::CompilePC(),Command.rs,0)) {
Section->m_Jump.PermLoop = true;
}
}
break;
default:
#ifndef EXTERNAL_RELEASE
if (Command.Hex == 0x0407000D) { break; }
DisplayError("Unhandled R4300i OpCode in FillSectionInfo 4\n%s",
R4300iOpcodeName(Command.Hex,CRecompilerOps::CompilePC()));
#endif
NextInstruction = END_BLOCK;
CRecompilerOps::CompilePC() -= 4;
}
break;
case R4300i_JAL:
NextInstruction = DELAY_SLOT;
Section->MipsRegLo(31) = CRecompilerOps::CompilePC() + 8;
Section->MipsRegState(31) = CRegInfo::STATE_CONST_32;
Section->m_Jump.TargetPC = (CRecompilerOps::CompilePC() & 0xF0000000) + (Command.target << 2);
if (CRecompilerOps::CompilePC() == Section->m_Jump.TargetPC) {
if (!DelaySlotEffectsCompare(CRecompilerOps::CompilePC(),31,0)) {
Section->m_Jump.PermLoop = true;
}
}
break;
case R4300i_J:
NextInstruction = DELAY_SLOT;
Section->m_Jump.TargetPC = (CRecompilerOps::CompilePC() & 0xF0000000) + (Command.target << 2);
if (CRecompilerOps::CompilePC() == Section->m_Jump.TargetPC) { Section->m_Jump.PermLoop = true; }
break;
case R4300i_BEQ:
NextInstruction = DELAY_SLOT;
Section->m_Cont.TargetPC = CRecompilerOps::CompilePC() + 8;
Section->m_Jump.TargetPC = CRecompilerOps::CompilePC() + ((short)Command.offset << 2) + 4;
if (CRecompilerOps::CompilePC() == Section->m_Jump.TargetPC) {
if (!DelaySlotEffectsCompare(CRecompilerOps::CompilePC(),Command.rs,Command.rt)) {
Section->m_Jump.PermLoop = true;
}
}
if (Section->IsConst(Command.rs) && Section->IsConst(Command.rt))
{
__int64 Value1, Value2;
if (Section->Is32Bit(Command.rs))
{
Value1 = Section->MipsRegLo_S(Command.rs);
} else {
Value1 = Section->MipsReg_S(Command.rs);
}
if (Section->Is32Bit(Command.rt))
{
Value2 = Section->MipsRegLo_S(Command.rt);
} else {
Value2 = Section->MipsReg_S(Command.rt);
}
if (Value1 == Value2)
{
Section->m_Cont.TargetPC = -1;
}
}
break;
case R4300i_BNE:
case R4300i_BLEZ:
case R4300i_BGTZ:
NextInstruction = DELAY_SLOT;
Section->m_Cont.TargetPC = CRecompilerOps::CompilePC() + 8;
Section->m_Jump.TargetPC = CRecompilerOps::CompilePC() + ((short)Command.offset << 2) + 4;
if (CRecompilerOps::CompilePC() == Section->m_Jump.TargetPC) {
if (!DelaySlotEffectsCompare(CRecompilerOps::CompilePC(),Command.rs,Command.rt)) {
Section->m_Jump.PermLoop = true;
}
}
break;
case R4300i_ADDI:
case R4300i_ADDIU:
if (Command.rt == 0) { break; }
if (Section->InLoop && Command.rs == Command.rt) {
Section->MipsRegState(Command.rt) = CRegInfo::STATE_UNKNOWN;
}
if (Section->IsConst(Command.rs)) {
Section->MipsRegLo(Command.rt) = Section->MipsRegLo(Command.rs) + (short)Command.immediate;
Section->MipsRegState(Command.rt) = CRegInfo::STATE_CONST_32;
} else {
Section->MipsRegState(Command.rt) = CRegInfo::STATE_UNKNOWN;
}
break;
case R4300i_SLTI:
if (Command.rt == 0) { break; }
if (Section->IsConst(Command.rs)) {
if (Section->Is64Bit(Command.rs)) {
Section->MipsRegLo(Command.rt) = (Section->MipsReg_S(Command.rs) < (_int64)((short)Command.immediate))?1:0;
} else {
Section->MipsRegLo(Command.rt) = (Section->MipsRegLo_S(Command.rs) < (int)((short)Command.immediate))?1:0;
}
Section->MipsRegState(Command.rt) = CRegInfo::STATE_CONST_32;
} else {
Section->MipsRegState(Command.rt) = CRegInfo::STATE_UNKNOWN;
}
break;
case R4300i_SLTIU:
if (Command.rt == 0) { break; }
if (Section->IsConst(Command.rs)) {
if (Section->Is64Bit(Command.rs)) {
Section->MipsRegLo(Command.rt) = (Section->MipsReg(Command.rs) < (unsigned _int64)((short)Command.immediate))?1:0;
} else {
Section->MipsRegLo(Command.rt) = (Section->MipsRegLo(Command.rs) < (DWORD)((short)Command.immediate))?1:0;
}
Section->MipsRegState(Command.rt) = CRegInfo::STATE_CONST_32;
} else {
Section->MipsRegState(Command.rt) = CRegInfo::STATE_UNKNOWN;
}
break;
case R4300i_LUI:
if (Command.rt == 0) { break; }
Section->MipsRegLo(Command.rt) = ((short)Command.offset << 16);
Section->MipsRegState(Command.rt) = CRegInfo::STATE_CONST_32;
break;
case R4300i_ANDI:
if (Command.rt == 0) { break; }
if (Section->InLoop && Command.rs == Command.rt) {
Section->MipsRegState(Command.rt) = CRegInfo::STATE_UNKNOWN;
}
if (Section->IsConst(Command.rs)) {
Section->MipsRegState(Command.rt) = CRegInfo::STATE_CONST_32;
Section->MipsRegLo(Command.rt) = Section->MipsRegLo(Command.rs) & Command.immediate;
} else {
Section->MipsRegState(Command.rt) = CRegInfo::STATE_UNKNOWN;
}
break;
case R4300i_ORI:
if (Command.rt == 0) { break; }
if (Section->InLoop && Command.rs == Command.rt) {
Section->MipsRegState(Command.rt) = CRegInfo::STATE_UNKNOWN;
}
if (Section->IsConst(Command.rs)) {
Section->MipsRegState(Command.rt) = CRegInfo::STATE_CONST_32;
Section->MipsRegLo(Command.rt) = Section->MipsRegLo(Command.rs) | Command.immediate;
} else {
Section->MipsRegState(Command.rt) = CRegInfo::STATE_UNKNOWN;
}
break;
case R4300i_XORI:
if (Command.rt == 0) { break; }
if (Section->InLoop && Command.rs == Command.rt) {
Section->MipsRegState(Command.rt) = CRegInfo::STATE_UNKNOWN;
}
if (Section->IsConst(Command.rs)) {
Section->MipsRegState(Command.rt) = CRegInfo::STATE_CONST_32;
Section->MipsRegLo(Command.rt) = Section->MipsRegLo(Command.rs) ^ Command.immediate;
} else {
Section->MipsRegState(Command.rt) = CRegInfo::STATE_UNKNOWN;
}
break;
case R4300i_CP0:
switch (Command.rs) {
case R4300i_COP0_MF:
if (Command.rt == 0) { break; }
Section->MipsRegState(Command.rt) = CRegInfo::STATE_UNKNOWN;
break;
case R4300i_COP0_MT: break;
default:
if ( (Command.rs & 0x10 ) != 0 ) {
switch( Command.funct ) {
case R4300i_COP0_CO_TLBR: break;
case R4300i_COP0_CO_TLBWI: break;
case R4300i_COP0_CO_TLBWR: break;
case R4300i_COP0_CO_TLBP: break;
case R4300i_COP0_CO_ERET: NextInstruction = END_BLOCK; break;
default:
#ifndef EXTERNAL_RELEASE
DisplayError("Unhandled R4300i OpCode in FillSectionInfo\n%s",
R4300iOpcodeName(Command.Hex,CRecompilerOps::CompilePC()));
#endif
NextInstruction = END_BLOCK;
CRecompilerOps::CompilePC() -= 4;
}
} else {
#ifndef EXTERNAL_RELEASE
DisplayError("Unhandled R4300i OpCode in FillSectionInfo 3\n%s",
R4300iOpcodeName(Command.Hex,CRecompilerOps::CompilePC()));
#endif
NextInstruction = END_BLOCK;
CRecompilerOps::CompilePC() -= 4;
}
}
break;
case R4300i_CP1:
switch (Command.fmt) {
case R4300i_COP1_CF:
case R4300i_COP1_MF:
case R4300i_COP1_DMF:
if (Command.rt == 0) { break; }
Section->MipsRegState(Command.rt) = CRegInfo::STATE_UNKNOWN;
break;
case R4300i_COP1_BC:
switch (Command.ft) {
case R4300i_COP1_BC_BCFL:
case R4300i_COP1_BC_BCTL:
NextInstruction = LIKELY_DELAY_SLOT;
Section->m_Cont.TargetPC = CRecompilerOps::CompilePC() + 8;
Section->m_Jump.TargetPC = CRecompilerOps::CompilePC() + ((short)Command.offset << 2) + 4;
if (CRecompilerOps::CompilePC() == Section->m_Jump.TargetPC) {
int EffectDelaySlot;
OPCODE NewCommand;
if (!_MMU->LW_VAddr(CRecompilerOps::CompilePC() + 4, NewCommand.Hex)) {
DisplayError(GS(MSG_FAIL_LOAD_WORD));
ExitThread(0);
}
EffectDelaySlot = false;
if (NewCommand.op == R4300i_CP1) {
if (NewCommand.fmt == R4300i_COP1_S && (NewCommand.funct & 0x30) == 0x30 ) {
EffectDelaySlot = true;
}
if (NewCommand.fmt == R4300i_COP1_D && (NewCommand.funct & 0x30) == 0x30 ) {
EffectDelaySlot = true;
}
}
if (!EffectDelaySlot) {
Section->m_Jump.PermLoop = true;
}
}
break;
case R4300i_COP1_BC_BCF:
case R4300i_COP1_BC_BCT:
NextInstruction = DELAY_SLOT;
Section->m_Cont.TargetPC = CRecompilerOps::CompilePC() + 8;
Section->m_Jump.TargetPC = CRecompilerOps::CompilePC() + ((short)Command.offset << 2) + 4;
if (CRecompilerOps::CompilePC() == Section->m_Jump.TargetPC) {
int EffectDelaySlot;
OPCODE NewCommand;
if (!_MMU->LW_VAddr(CRecompilerOps::CompilePC() + 4, NewCommand.Hex)) {
DisplayError(GS(MSG_FAIL_LOAD_WORD));
ExitThread(0);
}
EffectDelaySlot = false;
if (NewCommand.op == R4300i_CP1) {
if (NewCommand.fmt == R4300i_COP1_S && (NewCommand.funct & 0x30) == 0x30 ) {
EffectDelaySlot = true;
}
if (NewCommand.fmt == R4300i_COP1_D && (NewCommand.funct & 0x30) == 0x30 ) {
EffectDelaySlot = true;
}
}
if (!EffectDelaySlot) {
Section->m_Jump.PermLoop = true;
}
}
break;
}
break;
case R4300i_COP1_MT: break;
case R4300i_COP1_DMT: break;
case R4300i_COP1_CT: break;
case R4300i_COP1_S: break;
case R4300i_COP1_D: break;
case R4300i_COP1_W: break;
case R4300i_COP1_L: break;
default:
#ifndef EXTERNAL_RELEASE
DisplayError("Unhandled R4300i OpCode in FillSectionInfo 2\n%s",
R4300iOpcodeName(Command.Hex,CRecompilerOps::CompilePC()));
#endif
NextInstruction = END_BLOCK;
CRecompilerOps::CompilePC() -= 4;
}
break;
case R4300i_BEQL:
case R4300i_BNEL:
case R4300i_BLEZL:
case R4300i_BGTZL:
NextInstruction = LIKELY_DELAY_SLOT;
Section->m_Cont.TargetPC = CRecompilerOps::CompilePC() + 8;
Section->m_Jump.TargetPC = CRecompilerOps::CompilePC() + ((short)Command.offset << 2) + 4;
if (CRecompilerOps::CompilePC() == Section->m_Jump.TargetPC) {
if (!DelaySlotEffectsCompare(CRecompilerOps::CompilePC(),Command.rs,Command.rt)) {
Section->m_Jump.PermLoop = true;
}
}
break;
case R4300i_DADDI:
case R4300i_DADDIU:
if (Command.rt == 0) { break; }
if (Section->InLoop && Command.rs == Command.rt) {
Section->MipsRegState(Command.rt) = CRegInfo::STATE_UNKNOWN;
}
if (Section->IsConst(Command.rs)) {
if (Section->Is64Bit(Command.rs)) {
int imm32 = (short)Opcode.immediate;
__int64 imm64 = imm32;
Section->MipsReg_S(Command.rt) = Section->MipsRegLo_S(Command.rs) + imm64;
} else {
Section->MipsReg_S(Command.rt) = Section->MipsRegLo_S(Command.rs) + (short)Command.immediate;
}
Section->MipsRegState(Command.rt) = CRegInfo::STATE_CONST_64;
} else {
Section->MipsRegState(Command.rt) = CRegInfo::STATE_UNKNOWN;
}
break;
case R4300i_LDR:
case R4300i_LDL:
case R4300i_LB:
case R4300i_LH:
case R4300i_LWL:
case R4300i_LW:
case R4300i_LWU:
case R4300i_LL:
case R4300i_LBU:
case R4300i_LHU:
case R4300i_LWR:
case R4300i_SC:
if (Command.rt == 0) { break; }
Section->MipsRegState(Command.rt) = CRegInfo::STATE_UNKNOWN;
break;
case R4300i_SB: break;
case R4300i_SH: break;
case R4300i_SWL: break;
case R4300i_SW: break;
case R4300i_SWR: break;
case R4300i_SDL: break;
case R4300i_SDR: break;
case R4300i_CACHE: break;
case R4300i_LWC1: break;
case R4300i_SWC1: break;
case R4300i_LDC1: break;
case R4300i_LD:
if (Command.rt == 0) { break; }
Section->MipsRegState(Command.rt) = CRegInfo::STATE_UNKNOWN;
break;
case R4300i_SDC1: break;
case R4300i_SD: break;
default:
NextInstruction = END_BLOCK;
CRecompilerOps::CompilePC() -= 4;
if (Command.Hex == 0x7C1C97C0) { break; }
if (Command.Hex == 0x7FFFFFFF) { break; }
if (Command.Hex == 0xF1F3F5F7) { break; }
if (Command.Hex == 0xC1200000) { break; }
if (Command.Hex == 0x4C5A5353) { break; }
#ifndef EXTERNAL_RELEASE
DisplayError("Unhandled R4300i OpCode in FillSectionInfo 1\n%s\n%X",
R4300iOpcodeName(Command.Hex,CRecompilerOps::CompilePC()),Command.Hex);
#endif
}
// if (CRecompilerOps::CompilePC() == 0x8005E4B8) {
//CPU_Message("%X: %s %s = %d",CRecompilerOps::CompilePC(),R4300iOpcodeName(Command.Hex,CRecompilerOps::CompilePC()),
// CRegName::GPR[8],Section->MipsRegState(8));
//_asm int 3
// }
switch (NextInstruction) {
case NORMAL:
CRecompilerOps::CompilePC() += 4;
break;
case DELAY_SLOT:
NextInstruction = DELAY_SLOT_DONE;
CRecompilerOps::CompilePC() += 4;
break;
case LIKELY_DELAY_SLOT:
if (Section->m_Cont.TargetPC == Section->m_Jump.TargetPC)
{
Section->m_Jump.RegSet = Section->RegWorking;
Section->m_Cont.DoneDelaySlot = false;
Section->m_Cont.RegSet = Section->RegWorking;
Section->m_Cont.DoneDelaySlot = true;
NextInstruction = END_BLOCK;
} else {
Section->m_Cont.RegSet = Section->RegWorking;
Section->m_Cont.DoneDelaySlot = true;
NextInstruction = LIKELY_DELAY_SLOT_DONE;
CRecompilerOps::CompilePC() += 4;
}
break;
case DELAY_SLOT_DONE:
Section->m_Cont.RegSet = Section->RegWorking;
Section->m_Jump.RegSet = Section->RegWorking;
Section->m_Cont.DoneDelaySlot = true;
Section->m_Jump.DoneDelaySlot = true;
NextInstruction = END_BLOCK;
break;
case LIKELY_DELAY_SLOT_DONE:
Section->m_Jump.RegSet = Section->RegWorking;
Section->m_Jump.DoneDelaySlot = true;
NextInstruction = END_BLOCK;
break;
}
if ((CRecompilerOps::CompilePC() & 0xFFFFF000) != (Section->StartPC & 0xFFFFF000)) {
if (NextInstruction != END_BLOCK && NextInstruction != NORMAL) {
// DisplayError("Branch running over delay slot ???\nNextInstruction == %d",NextInstruction);
Section->m_Cont.TargetPC = (DWORD)-1;
Section->m_Jump.TargetPC = (DWORD)-1;
}
NextInstruction = END_BLOCK;
CRecompilerOps::CompilePC() -= 4;
}
} while (NextInstruction != END_BLOCK);
if (Section->m_Cont.TargetPC != (DWORD)-1) {
if ((Section->m_Cont.TargetPC & 0xFFFFF000) != (Section->StartPC & 0xFFFFF000)) {
Section->m_Cont.TargetPC = (DWORD)-1;
}
}
if (Section->m_Jump.TargetPC != (DWORD)-1) {
if (Section->m_Jump.TargetPC < Section->BlockInfo->StartVAddr)
{
Section->m_Jump.TargetPC = (DWORD)-1;
}
if ((Section->m_Jump.TargetPC & 0xFFFFF000) != (Section->StartPC & 0xFFFFF000)) {
Section->m_Jump.TargetPC = (DWORD)-1;
}
}
#endif
return true;
}
void CRecompiler::CompileExitCode ( CCodeBlock & BlockInfo )
{
_Notify->BreakPoint(__FILE__,__LINE__);
#ifdef tofix
for (EXIT_LIST::iterator ExitIter = BlockInfo.ExitInfo.begin(); ExitIter != BlockInfo.ExitInfo.end(); ExitIter++)
{
CPU_Message("");
CPU_Message(" $Exit_%d",ExitIter->ID);
SetJump32(ExitIter->m_JumpLoc,RecompPos());
NextInstruction = ExitIter->NextInstruction;
CompileExit(&BlockInfo.ParentSection, -1, ExitIter->TargetPC,ExitIter->ExitRegSet,ExitIter->reason,true,NULL);
}
#endif
}
void CRecompiler::RecompilerMain_ChangeMemory ( void )
{
_Notify->BreakPoint(__FILE__,__LINE__);
#ifdef tofix
DWORD Value, Addr;
BYTE * Block;
while(!EndEmulation()) {
if (UseTlb) {
if (!TranslateVaddr(PROGRAM_COUNTER, &Addr)) {
DoTLBMiss(NextInstruction == DELAY_SLOT,PROGRAM_COUNTER);
NextInstruction = NORMAL;
if (!TranslateVaddr(PROGRAM_COUNTER, &Addr)) {
#ifndef EXTERNAL_RELEASE
DisplayError("Failed to tranlate PC to a PAddr: %X\n\nEmulation stopped",PROGRAM_COUNTER);
#endif
ExitThread(0);
}
}
} else {
Addr = PROGRAM_COUNTER & 0x1FFFFFFF;
}
if (NextInstruction == DELAY_SLOT) {
__try {
Value = (DWORD)(*(DelaySlotTable + (Addr >> 12)));
} __except(EXCEPTION_EXECUTE_HANDLER) {
#ifndef EXTERNAL_RELEASE
DisplayError("Executing Delay Slot from non maped space\nPROGRAM_COUNTER = 0x%X",PROGRAM_COUNTER);
#endif
ExitThread(0);
}
if ( (Value >> 16) == 0x7C7C) {
DWORD Index = (Value & 0xFFFF);
Block = (BYTE *)OrigMem[Index].CompiledLocation;
if (OrigMem[Index].PAddr != Addr) { Block = NULL; }
if (OrigMem[Index].VAddr != PROGRAM_COUNTER) { Block = NULL; }
if (Index >= TargetIndex) { Block = NULL; }
} else {
Block = NULL;
}
if (Block == NULL) {
DWORD MemValue;
Block = CompileDelaySlot();
Value = 0x7C7C0000;
Value += (WORD)(TargetIndex);
MemValue = *(DWORD *)(RDRAM + Addr);
if ( (MemValue >> 16) == 0x7C7C) {
MemValue = OrigMem[(MemValue & 0xFFFF)].OriginalValue;
}
OrigMem[(WORD)(TargetIndex)].OriginalValue = MemValue;
OrigMem[(WORD)(TargetIndex)].CompiledLocation = Block;
OrigMem[(WORD)(TargetIndex)].PAddr = Addr;
OrigMem[(WORD)(TargetIndex)].VAddr = PROGRAM_COUNTER;
TargetIndex += 1;
*(DelaySlotTable + (Addr >> 12)) = (void *)Value;
NextInstruction = NORMAL;
}
_asm {
pushad
call Block
popad
}
continue;
}
__try {
Value = *(DWORD *)(RDRAM + Addr);
if ( (Value >> 16) == 0x7C7C) {
DWORD Index = (Value & 0xFFFF);
Block = (BYTE *)OrigMem[Index].CompiledLocation;
if (OrigMem[Index].PAddr != Addr) { Block = NULL; }
if (OrigMem[Index].VAddr != PROGRAM_COUNTER) { Block = NULL; }
if (Index >= TargetIndex) { Block = NULL; }
} else {
Block = NULL;
}
} __except(EXCEPTION_EXECUTE_HANDLER) {
DisplayError(GS(MSG_NONMAPPED_SPACE));
ExitThread(0);
}
if (Block == NULL) {
DWORD MemValue;
__try {
Block = Compiler4300iBlock();
} __except(EXCEPTION_EXECUTE_HANDLER) {
ResetRecompCode();
Block = Compiler4300iBlock();
}
if (EndEmulation())
{
continue;
}
if (TargetIndex == MaxOrigMem) {
ResetRecompCode();
continue;
}
Value = 0x7C7C0000;
Value += (WORD)(TargetIndex);
MemValue = *(DWORD *)(RDRAM + Addr);
if ( (MemValue >> 16) == 0x7C7C) {
MemValue = OrigMem[(MemValue & 0xFFFF)].OriginalValue;
}
OrigMem[(WORD)(TargetIndex)].OriginalValue = MemValue;
OrigMem[(WORD)(TargetIndex)].CompiledLocation = Block;
OrigMem[(WORD)(TargetIndex)].PAddr = Addr;
OrigMem[(WORD)(TargetIndex)].VAddr = PROGRAM_COUNTER;
TargetIndex += 1;
*(DWORD *)(RDRAM + Addr) = Value;
NextInstruction = NORMAL;
}
if (Profiling && IndvidualBlock) {
static DWORD ProfAddress = 0;
/*if ((PROGRAM_COUNTER & ~0xFFF) != ProfAddress) {
char Label[100];
ProfAddress = PROGRAM_COUNTER & ~0xFFF;
sprintf(Label,"PC: %X to %X",ProfAddress,ProfAddress+ 0xFFC);
StartTimer(Label);
}*/
/*if (PROGRAM_COUNTER >= 0x800DD000 && PROGRAM_COUNTER <= 0x800DDFFC) {
char Label[100];
sprintf(Label,"PC: %X Block: %X",PROGRAM_COUNTER,Block);
StartTimer(Label);
}*/
// } else if ((Profiling || ShowCPUPer) && ProfilingLabel[0] == 0) {
// StartTimer("r4300i Running");
}
_asm {
pushad
call Block
popad
}
} // end for(;;)
#endif
}
CCompiledFunc * CRecompiler::CompilerCode ( void )
{
CheckRecompMem();
DWORD pAddr;
if (!_TransVaddr->TranslateVaddr(*_PROGRAM_COUNTER,pAddr))
{
WriteTraceF(TraceError,"CRecompiler::CompilerCode: Failed to translate %X",*_PROGRAM_COUNTER);
return NULL;
}
DWORD StartTime = timeGetTime();
WriteTraceF(TraceRecompiler,"Compile Block-Start: Program Counter: %X pAddr: %X",*_PROGRAM_COUNTER,pAddr);
CCodeBlock CodeBlock(*_PROGRAM_COUNTER, RecompPos());
if (!CodeBlock.Compile())
{
return NULL;
}
CCompiledFunc * info = new CCompiledFunc(CodeBlock);
//if block linking then analysis
//
/*CCompiledFunc * info = new CCompiledFunc(PROGRAM_COUNTER,pAddr);
if (info == NULL)
{
WriteTrace(TraceError,"CRecompiler::CompilerCode: Failed to allocate CCompiledFunc");
return NULL;
}
if (!info->CompilerCodeBlock())
{
WriteTrace(TraceError,"CRecompiler::CompilerCode: Failed to compile code block");
return NULL;
}
#ifdef tofix
CCompiledFunc * Info = m_Functions.AddFunctionInfo(PROGRAM_COUNTER,_TLB->TranslateVaddr(PROGRAM_COUNTER));
__try {
if (!Compiler4300iBlock(Info))
{
return NULL;
}
return Info;
} __except(EXCEPTION_EXECUTE_HANDLER) {
ResetRecompCode();
Info = m_Functions.AddFunctionInfo(PROGRAM_COUNTER,_TLB->TranslateVaddr(PROGRAM_COUNTER));
if (!Compiler4300iBlock(Info))
{
return NULL;
}
return Info;
}
#endif
*/
return info;
}
#ifdef tofix
void CRecompiler::DetermineLoop(CCodeSection * Section, DWORD Test, DWORD Test2, DWORD TestID)
{
if (Section == NULL) { return; }
if (Section->m_SectionID != TestID) {
if (Section->Test2 == Test2) {
return;
}
Section->Test2 = Test2;
DetermineLoop(Section->m_ContinueSection,Test,Test2,TestID);
DetermineLoop(Section->m_JumpSection,Test,Test2,TestID);
return;
}
if (Section->Test2 == Test2) {
Section->InLoop = true;
return;
}
Section->Test2 = Test2;
DetermineLoop(Section->m_ContinueSection,Test,Test2,TestID);
DetermineLoop(Section->m_JumpSection,Test,Test2,TestID);
if (Section->Test == Test) { return; }
Section->Test = Test;
if (Section->m_ContinueSection != NULL) {
DetermineLoop(Section->m_ContinueSection,Test,CCodeSection::GetNewTestValue(),Section->m_ContinueSection->m_SectionID);
}
if (Section->m_JumpSection != NULL) {
DetermineLoop(Section->m_JumpSection,Test,CCodeSection::GetNewTestValue(),Section->m_JumpSection->m_SectionID);
}
}
bool CRecompiler::DisplaySectionInformation (CCodeSection * Section, DWORD ID, DWORD Test)
{
if (!IsX86Logging())
{
return false;
}
if (Section == NULL) { return false; }
if (Section->Test == Test) { return false; }
Section->Test = Test;
if (Section->m_SectionID != ID) {
if (DisplaySectionInformation(Section->m_ContinueSection,ID,Test)) { return true; }
if (DisplaySectionInformation(Section->m_JumpSection,ID,Test)) { return true; }
return false;
}
CPU_Message("====== Section %d ======",Section->m_SectionID);
CPU_Message("Start PC: %X",Section->StartPC);
CPU_Message("CompiledLocation: %X",RecompPos());
if (!Section->ParentSection.empty())
{
stdstr ParentList;
for (SECTION_LIST::iterator iter = Section->ParentSection.begin(); iter != Section->ParentSection.end(); iter++)
{
CCodeSection * Parent = *iter;
if (!ParentList.empty())
{
ParentList += ", ";
}
ParentList += stdstr_f("%d",Parent->m_SectionID);
}
CPU_Message("Number of parents: %d (%s)",Section->ParentSection.size(),ParentList.c_str());
}
if (Section->m_JumpSection != NULL) {
CPU_Message("Jump Section: %d",Section->m_JumpSection->m_SectionID);
} else {
CPU_Message("Jump Section: None");
}
if (Section->m_ContinueSection != NULL) {
CPU_Message("Continue Section: %d",Section->m_ContinueSection->m_SectionID);
} else {
CPU_Message("Continue Section: None");
}
CPU_Message("=======================",Section->m_SectionID);
return true;
}
bool CRecompiler::InheritParentInfo (CCodeSection * Section)
{
/* int count, start, NoOfParents, NoOfCompiledParents, FirstParent,CurrentParent;
BLOCK_PARENT * SectionParents;
BLOCK_SECTION * Parent;
JUMP_INFO * JumpInfo;
char Label[100];
BOOL NeedSync;
*/
DisplaySectionInformation(Section,Section->m_SectionID,CCodeSection::GetNewTestValue());
if (Section->ParentSection.empty())
{
Section->RegStart.Initilize();
Section->RegWorking = Section->RegStart;
return true;
}
if (Section->ParentSection.size() == 1)
{
CCodeSection * Parent = *(Section->ParentSection.begin());
CJumpInfo * JumpInfo = Section == Parent->m_ContinueSection ? &Parent->m_Cont : &Parent->m_Jump;
Section->RegStart = JumpInfo->RegSet;
if (JumpInfo->LinkLocation != NULL) {
CPU_Message(" Section_%d:",Section->m_SectionID);
SetJump32(JumpInfo->LinkLocation,RecompPos());
if (JumpInfo->LinkLocation2 != NULL) {
SetJump32(JumpInfo->LinkLocation2,RecompPos());
}
}
Section->RegWorking = Section->RegStart;
return true;
}
//Multiple Parents
BLOCK_PARENT_LIST ParentList;
SECTION_LIST::iterator iter;
for (iter = Section->ParentSection.begin(); iter != Section->ParentSection.end(); iter++)
{
CCodeSection * Parent = *iter;
BLOCK_PARENT BlockParent;
if (Parent->CompiledLocation == NULL) { continue; }
if (Parent->m_JumpSection != Parent->m_ContinueSection) {
BlockParent.Parent = Parent;
BlockParent.JumpInfo = Section == Parent->m_ContinueSection?&Parent->m_Cont:&Parent->m_Jump;
ParentList.push_back(BlockParent);
} else {
BlockParent.Parent = Parent;
BlockParent.JumpInfo = &Parent->m_Cont;
ParentList.push_back(BlockParent);
BlockParent.Parent = Parent;
BlockParent.JumpInfo = &Parent->m_Jump;
ParentList.push_back(BlockParent);
}
}
int NoOfCompiledParents = ParentList.size();
if (NoOfCompiledParents == 0)
{
DisplayError("No Parent has been compiled ????");
return false;
}
// Add all the uncompiled blocks to the end of the list
for (iter = Section->ParentSection.begin(); iter != Section->ParentSection.end(); iter++)
{
CCodeSection * Parent = *iter;
BLOCK_PARENT BlockParent;
if (Parent->CompiledLocation != NULL) { continue; }
if (Parent->m_JumpSection != Parent->m_ContinueSection) {
BlockParent.Parent = Parent;
BlockParent.JumpInfo = Section == Parent->m_ContinueSection?&Parent->m_Cont:&Parent->m_Jump;
ParentList.push_back(BlockParent);
} else {
BlockParent.Parent = Parent;
BlockParent.JumpInfo = &Parent->m_Cont;
ParentList.push_back(BlockParent);
BlockParent.Parent = Parent;
BlockParent.JumpInfo = &Parent->m_Jump;
ParentList.push_back(BlockParent);
}
}
int FirstParent = 0;
for (int count = 1;count < NoOfCompiledParents;count++) {
if (ParentList[count].JumpInfo->FallThrough) {
FirstParent = count; break;
}
}
//Link First Parent to start
CCodeSection * Parent = ParentList[FirstParent].Parent;
CJumpInfo * JumpInfo = ParentList[FirstParent].JumpInfo;
Section->RegWorking = JumpInfo->RegSet;
if (JumpInfo->LinkLocation != NULL) {
CPU_Message(" Section_%d (from %d):",Section->m_SectionID,Parent->m_SectionID);
SetJump32(JumpInfo->LinkLocation,RecompPos());
JumpInfo->LinkLocation = NULL;
if (JumpInfo->LinkLocation2 != NULL) {
SetJump32(JumpInfo->LinkLocation2,RecompPos());
JumpInfo->LinkLocation2 = NULL;
}
}
if (Section->StartPC < Parent->m_CompilePC )
{
UpdateCounters(&JumpInfo->RegSet.BlockCycleCount(),&JumpInfo->RegSet.BlockRandomModifier(),true);
CompileSystemCheck(Section->StartPC,JumpInfo->RegSet);
} else {
UpdateCounters(&JumpInfo->RegSet.BlockCycleCount(),&JumpInfo->RegSet.BlockRandomModifier(),false);
}
JumpInfo->FallThrough = false;
//Fix up initial state
UnMap_AllFPRs(Section);
for (count = 0;count < ParentList.size();count++) {
int count2, MemoryStackPos;
if (count == FirstParent) { continue; }
Parent = ParentList[count].Parent;
CRegInfo * RegSet = &ParentList[count].JumpInfo->RegSet;
if (Section->CurrentRoundingModel() != RegSet->CurrentRoundingModel()) { Section->CurrentRoundingModel() = CRegInfo::RoundUnknown; }
if (ParentList.size() != NoOfCompiledParents) { Section->CurrentRoundingModel() = CRegInfo::RoundUnknown; }
//Find Parent MapRegState
MemoryStackPos = -1;
for (count2 = 1; count2 < 10; count2++) {
if (RegSet->x86Mapped(count2) == CRegInfo::Stack_Mapped) {
MemoryStackPos = count2;
break;
}
}
if (MemoryStackPos < 0) {
// if the memory stack position is not mapped then unmap it
int MemStackReg = Map_MemoryStack(Section,x86_Any,false);
if (MemStackReg > 0)
{
UnMap_X86reg(Section,MemStackReg);
}
}
for (count2 = 1; count2 < 32; count2++) {
if (Section->Is32BitMapped(count2)) {
switch (RegSet->MipsRegState(count2)) {
case CRegInfo::STATE_MAPPED_64: Map_GPR_64bit(Section,count2,count2); break;
case CRegInfo::STATE_MAPPED_32_ZERO: break;
case CRegInfo::STATE_MAPPED_32_SIGN:
if (Section->IsUnsigned(count2)) {
Section->MipsRegState(count2) = CRegInfo::STATE_MAPPED_32_SIGN;
}
break;
case CRegInfo::STATE_CONST_64: Map_GPR_64bit(Section,count2,count2); break;
case CRegInfo::STATE_CONST_32:
if ((RegSet->MipsRegLo_S(count2) < 0) && Section->IsUnsigned(count2)) {
Section->MipsRegState(count2) = CRegInfo::STATE_MAPPED_32_SIGN;
}
break;
case CRegInfo::STATE_UNKNOWN:
//Map_GPR_32bit(Section,count2,true,count2);
Map_GPR_64bit(Section,count2,count2); //??
//UnMap_GPR(Section,count2,true); ??
break;
#ifndef EXTERNAL_RELEASE
default:
DisplayError("Unknown CPU State(%d) in InheritParentInfo",RegSet->MipsRegState(count2));
#endif
}
}
if (Section->IsConst(count2)) {
if (Section->MipsRegState(count2) != RegSet->MipsRegState(count2)) {
if (Section->Is32Bit(count2)) {
Map_GPR_32bit(Section,count2,true,count2);
} else {
Map_GPR_32bit(Section,count2,true,count2);
}
} else if (Section->Is32Bit(count2) && Section->MipsRegLo(count2) != RegSet->MipsRegLo(count2)) {
Map_GPR_32bit(Section,count2,true,count2);
} else if (Section->Is64Bit(count2) && Section->MipsReg(count2) != RegSet->MipsReg(count2)) {
Map_GPR_32bit(Section,count2,true,count2);
}
}
Section->ResetX86Protection();
}
if (MemoryStackPos > 0)
{
Map_MemoryStack(Section,MemoryStackPos,true);
}
}
Section->RegStart = Section->RegWorking;
//Sync registers for different blocks
char Label[100];
sprintf(Label,"Section_%d",Section->m_SectionID);
int CurrentParent = FirstParent;
bool NeedSync = false;
for (count = 0;count < NoOfCompiledParents;count++) {
CRegInfo * RegSet;
int count2;
if (count == FirstParent) { continue; }
Parent = ParentList[count].Parent;
JumpInfo = ParentList[count].JumpInfo;
RegSet = &ParentList[count].JumpInfo->RegSet;
if (JumpInfo->RegSet.BlockCycleCount() != 0) { NeedSync = true; }
if (JumpInfo->RegSet.BlockRandomModifier() != 0) { NeedSync = true; }
for (count2 = 0; count2 < 8; count2++) {
if (Section->FpuMappedTo(count2) == (DWORD)-1) {
NeedSync = true;
}
}
for (count2 = 1; count2 < 10; count2++) {
if (Section->x86Mapped(count2) == CRegInfo::Stack_Mapped) {
if (Section->x86Mapped(count2) != RegSet->x86Mapped(count2)) {
NeedSync = true;
}
break;
}
}
for (count2 = 0; count2 < 32; count2++) {
if (NeedSync == true) { break; }
if (Section->MipsRegState(count2) != RegSet->MipsRegState(count2)) {
NeedSync = true;
continue;
}
switch (Section->MipsRegState(count2)) {
case CRegInfo::STATE_UNKNOWN: break;
case CRegInfo::STATE_MAPPED_64:
if (Section->MipsReg(count2) != RegSet->MipsReg(count2)) {
NeedSync = true;
}
break;
case CRegInfo::STATE_MAPPED_32_ZERO:
case CRegInfo::STATE_MAPPED_32_SIGN:
if (Section->MipsRegLo(count2) != RegSet->MipsRegLo(count2)) {
//DisplayError("Parent: %d",Parent->m_SectionID);
NeedSync = true;
}
break;
case CRegInfo::STATE_CONST_32:
if (Section->MipsRegLo(count2) != RegSet->MipsRegLo(count2)) {
#if (!defined(EXTERNAL_RELEASE))
DisplayError("Umm.. how ???");
#endif
NeedSync = true;
}
break;
#ifndef EXTERNAL_RELEASE
default:
DisplayError("Unhandled Reg state %d\nin InheritParentInfo",Section->MipsRegState(count2));
#endif
}
}
if (NeedSync == false) { continue; }
Parent = ParentList[CurrentParent].Parent;
JumpInfo = ParentList[CurrentParent].JumpInfo;
JmpLabel32(Label,0);
JumpInfo->LinkLocation = RecompPos() - 4;
JumpInfo->LinkLocation2 = NULL;
CurrentParent = count;
Parent = ParentList[CurrentParent].Parent;
JumpInfo = ParentList[CurrentParent].JumpInfo;
CPU_Message(" Section_%d (from %d):",Section->m_SectionID,Parent->m_SectionID);
if (JumpInfo->LinkLocation != NULL) {
SetJump32(JumpInfo->LinkLocation,RecompPos());
JumpInfo->LinkLocation = NULL;
if (JumpInfo->LinkLocation2 != NULL) {
SetJump32(JumpInfo->LinkLocation2,RecompPos());
JumpInfo->LinkLocation2 = NULL;
}
}
Section->RegWorking = JumpInfo->RegSet;
if (Section->StartPC < Parent->m_CompilePC )
{
UpdateCounters(&Section->BlockCycleCount(),&Section->BlockRandomModifier(),true);
CompileSystemCheck(Section->StartPC,Section->RegWorking);
} else {
UpdateCounters(&Section->BlockCycleCount(),&Section->BlockRandomModifier(),false);
}
SyncRegState(Section,&Section->RegStart); //Sync
Section->RegStart = Section->RegWorking;
}
for (count = 0;count < NoOfCompiledParents;count++) {
Parent = ParentList[count].Parent;
JumpInfo = ParentList[count].JumpInfo;
if (JumpInfo->LinkLocation != NULL) {
SetJump32(JumpInfo->LinkLocation,RecompPos());
JumpInfo->LinkLocation = NULL;
if (JumpInfo->LinkLocation2 != NULL) {
SetJump32(JumpInfo->LinkLocation2,RecompPos());
JumpInfo->LinkLocation2 = NULL;
}
}
}
CPU_Message(" Section_%d:",Section->m_SectionID);
Section->BlockCycleCount() = 0;
Section->BlockRandomModifier() = 0;
return true;
}
bool CRecompiler::GenerateX86Code(CCodeBlock & BlockInfo, CCodeSection * Section, DWORD Test )
{
_Notify->BreakPoint(__FILE__,__LINE__);
#ifdef tofix
if (Section == NULL) { return false; }
if (Section->CompiledLocation != NULL) {
if (Section->Test == Test) { return false; }
Section->Test = Test;
if (GenerateX86Code(BlockInfo,Section->m_ContinueSection,Test)) { return true; }
if (GenerateX86Code(BlockInfo,Section->m_JumpSection,Test)) { return true; }
return false;
}
if (Section->ParentSection.size() > 0)
{
for (SECTION_LIST::iterator iter = Section->ParentSection.begin(); iter != Section->ParentSection.end(); iter++)
{
CCodeSection * Parent = *iter;
if (Parent->CompiledLocation != NULL) { continue; }
if (Section->IsAllParentLoops(Parent,true,CCodeSection::GetNewTestValue())) { continue; }
return false;
}
}
if (!InheritParentInfo(Section)) { return false; }
Section->CompiledLocation = RecompPos();
CRecompilerOps::CompilePC() = Section->StartPC;
NextInstruction = NORMAL;
/*if (m_SyncSystem) {
//if (m_SyncSystem && (DWORD)RecompPos() > 0x6094C283) {
MoveConstToVariable(Section->StartPC,&PROGRAM_COUNTER,"PROGRAM_COUNTER");
if (BlockCycleCount != 0) {
AddConstToVariable(BlockCycleCount,&_CP0[9],CRegName::Cop0[9]);
SubConstFromVariable(BlockCycleCount,&Timers.Timer,"Timer");
}
if (BlockRandomModifier != 0) { SubConstFromVariable(BlockRandomModifier,&_CP0[1],CRegName::Cop0[1]); }
BlockCycleCount = 0;
BlockRandomModifier = 0;
Call_Direct(SyncToPC, "SyncToPC");
MoveConstToVariable((DWORD)RecompPos(),&CurrentBlock,"CurrentBlock");
}*/
do {
__try {
if (!_MMU->LW_VAddr(CRecompilerOps::CompilePC(), g_Opcode.Hex)) {
DisplayError(GS(MSG_FAIL_LOAD_WORD));
ExitThread(0);
}
} __except( _MMU->MemoryFilter( GetExceptionCode(), GetExceptionInformation()) ) {
DisplayError(GS(MSG_UNKNOWN_MEM_ACTION));
ExitThread(0);
}
//if (CRecompilerOps::CompilePC() == 0x800AA51C && NextInstruction == NORMAL) { _asm int 3 }
// if (CRecompilerOps::CompilePC() == 0xF000044 && NextInstruction == NORMAL)
// {
// WriteBackRegisters(Section);
// UpdateCounters(&Section->BlockCycleCount(),&Section->BlockRandomModifier(),false);
//
// CompConstToVariable(0x26D5BB0,&_CP0[9],CRegName::Cop0[9]);
// JlLabel8("blah",0);
// BYTE * Jump = RecompPos() - 1;
// // BreakPoint(__FILE__,__LINE__);
// X86BreakPoint(__FILE__,__LINE__);
// *((BYTE *)(Jump))=(BYTE)(RecompPos() - Jump - 1);
// }
/*if (CRecompilerOps::CompilePC() >= 0x800C4024 && CRecompilerOps::CompilePC() < 0x800C4030) {
CurrentRoundingModel = RoundUnknown;
}*/
// if (CRecompilerOps::CompilePC() >= 0x800017A8 && CRecompilerOps::CompilePC() < 0x800017DC && NextInstruction == NORMAL) {
// WriteBackRegisters(Section);
// UpdateCounters(&Section->BlockCycleCount(),&Section->BlockRandomModifier(),false);
// MoveConstToVariable(CRecompilerOps::CompilePC(),&PROGRAM_COUNTER,"PROGRAM_COUNTER");
// //MoveConstToVariable((DWORD)RecompPos(),&CurrentBlock,"CurrentBlock");
// if (m_SyncSystem) { Call_Direct(SyncToPC, "SyncToPC"); }
// }
// if (CRecompilerOps::CompilePC() >= 0x8005E984 && CRecompilerOps::CompilePC() < 0x8005EA84 && NextInstruction == NORMAL) {
// WriteBackRegisters(Section);
// UpdateCounters(&Section->BlockCycleCount(),&Section->BlockRandomModifier(),false);
// MoveConstToVariable(CRecompilerOps::CompilePC(),&PROGRAM_COUNTER,"PROGRAM_COUNTER");
// //MoveConstToVariable((DWORD)RecompPos(),&CurrentBlock,"CurrentBlock");
// if (m_SyncSystem) { Call_Direct(SyncToPC, "SyncToPC"); }
// }
// if (CRecompilerOps::CompilePC() >= 0xF000000 && CRecompilerOps::CompilePC() < 0xF000500 && NextInstruction == NORMAL) {
// WriteBackRegisters(Section);
// UpdateCounters(&Section->BlockCycleCount(),&Section->BlockRandomModifier(),false);
// MoveConstToVariable(CRecompilerOps::CompilePC(),&PROGRAM_COUNTER,"PROGRAM_COUNTER");
// //MoveConstToVariable((DWORD)RecompPos(),&CurrentBlock,"CurrentBlock");
// if (m_SyncSystem) { Call_Direct(SyncToPC, "SyncToPC"); }
// }
/*if (CRecompilerOps::CompilePC() == 0x802000D0 && NextInstruction == NORMAL) {
CPU_Message("%s = %d",CRegName::GPR[14],Section->MipsRegState(14));
}*/
/*if (CRecompilerOps::CompilePC() == 0x150A1514 && NextInstruction == NORMAL) {
CPU_Message("%s = %d",CRegName::GPR[14],Section->MipsRegState(14));
}
if (CRecompilerOps::CompilePC() == 0x150A1454 && NextInstruction == NORMAL) {
CPU_Message("%s = %d",CRegName::GPR[14],Section->MipsRegState(14));
}*/
if (CRecompilerOps::CompilePC() > Section->BlockInfo->EndVAddr)
{
Section->BlockInfo->EndVAddr = CRecompilerOps::CompilePC();
}
Section->BlockCycleCount() += CountPerOp();
//CPU_Message("BlockCycleCount = %d",BlockCycleCount);
Section->BlockRandomModifier() += 1;
//CPU_Message("BlockRandomModifier = %d",BlockRandomModifier);
Section->ResetX86Protection();
switch (g_Opcode.op) {
case R4300i_SPECIAL:
switch (g_Opcode.funct) {
case R4300i_SPECIAL_SLL: Compile_R4300i_SPECIAL_SLL(Section); break;
case R4300i_SPECIAL_SRL: Compile_R4300i_SPECIAL_SRL(Section); break;
case R4300i_SPECIAL_SRA: Compile_R4300i_SPECIAL_SRA(Section); break;
case R4300i_SPECIAL_SLLV: Compile_R4300i_SPECIAL_SLLV(Section); break;
case R4300i_SPECIAL_SRLV: Compile_R4300i_SPECIAL_SRLV(Section); break;
case R4300i_SPECIAL_SRAV: Compile_R4300i_SPECIAL_SRAV(Section); break;
case R4300i_SPECIAL_JR: Compile_R4300i_SPECIAL_JR(Section); break;
case R4300i_SPECIAL_JALR: Compile_R4300i_SPECIAL_JALR(Section); break;
case R4300i_SPECIAL_MFLO: Compile_R4300i_SPECIAL_MFLO(Section); break;
case R4300i_SPECIAL_SYSCALL: Compile_R4300i_SPECIAL_SYSCALL(Section); break;
case R4300i_SPECIAL_MTLO: Compile_R4300i_SPECIAL_MTLO(Section); break;
case R4300i_SPECIAL_MFHI: Compile_R4300i_SPECIAL_MFHI(Section); break;
case R4300i_SPECIAL_MTHI: Compile_R4300i_SPECIAL_MTHI(Section); break;
case R4300i_SPECIAL_DSLLV: Compile_R4300i_SPECIAL_DSLLV(Section); break;
case R4300i_SPECIAL_DSRLV: Compile_R4300i_SPECIAL_DSRLV(Section); break;
case R4300i_SPECIAL_DSRAV: Compile_R4300i_SPECIAL_DSRAV(Section); break;
case R4300i_SPECIAL_MULT: Compile_R4300i_SPECIAL_MULT(Section); break;
case R4300i_SPECIAL_DIV: Compile_R4300i_SPECIAL_DIV(Section); break;
case R4300i_SPECIAL_DIVU: Compile_R4300i_SPECIAL_DIVU(Section); break;
case R4300i_SPECIAL_MULTU: Compile_R4300i_SPECIAL_MULTU(Section); break;
case R4300i_SPECIAL_DMULT: Compile_R4300i_SPECIAL_DMULT(Section); break;
case R4300i_SPECIAL_DMULTU: Compile_R4300i_SPECIAL_DMULTU(Section); break;
case R4300i_SPECIAL_DDIV: Compile_R4300i_SPECIAL_DDIV(Section); break;
case R4300i_SPECIAL_DDIVU: Compile_R4300i_SPECIAL_DDIVU(Section); break;
case R4300i_SPECIAL_ADD: Compile_R4300i_SPECIAL_ADD(Section); break;
case R4300i_SPECIAL_ADDU: Compile_R4300i_SPECIAL_ADDU(Section); break;
case R4300i_SPECIAL_SUB: Compile_R4300i_SPECIAL_SUB(Section); break;
case R4300i_SPECIAL_SUBU: Compile_R4300i_SPECIAL_SUBU(Section); break;
case R4300i_SPECIAL_AND: Compile_R4300i_SPECIAL_AND(Section); break;
case R4300i_SPECIAL_OR: Compile_R4300i_SPECIAL_OR(Section); break;
case R4300i_SPECIAL_XOR: Compile_R4300i_SPECIAL_XOR(Section); break;
case R4300i_SPECIAL_NOR: Compile_R4300i_SPECIAL_NOR(Section); break;
case R4300i_SPECIAL_SLT: Compile_R4300i_SPECIAL_SLT(Section); break;
case R4300i_SPECIAL_SLTU: Compile_R4300i_SPECIAL_SLTU(Section); break;
case R4300i_SPECIAL_DADD: Compile_R4300i_SPECIAL_DADD(Section); break;
case R4300i_SPECIAL_DADDU: Compile_R4300i_SPECIAL_DADDU(Section); break;
case R4300i_SPECIAL_DSUB: Compile_R4300i_SPECIAL_DSUB(Section); break;
case R4300i_SPECIAL_DSUBU: Compile_R4300i_SPECIAL_DSUBU(Section); break;
case R4300i_SPECIAL_DSLL: Compile_R4300i_SPECIAL_DSLL(Section); break;
case R4300i_SPECIAL_DSRL: Compile_R4300i_SPECIAL_DSRL(Section); break;
case R4300i_SPECIAL_DSRA: Compile_R4300i_SPECIAL_DSRA(Section); break;
case R4300i_SPECIAL_DSLL32: Compile_R4300i_SPECIAL_DSLL32(Section); break;
case R4300i_SPECIAL_DSRL32: Compile_R4300i_SPECIAL_DSRL32(Section); break;
case R4300i_SPECIAL_DSRA32: Compile_R4300i_SPECIAL_DSRA32(Section); break;
default:
Compile_R4300i_UnknownOpcode(Section); break;
}
break;
case R4300i_REGIMM:
switch (g_Opcode.rt) {
case R4300i_REGIMM_BLTZ:Compile_R4300i_Branch(Section,BLTZ_Compare,BranchTypeRs, false); break;
case R4300i_REGIMM_BGEZ:Compile_R4300i_Branch(Section,BGEZ_Compare,BranchTypeRs, false); break;
case R4300i_REGIMM_BLTZL:Compile_R4300i_BranchLikely(Section,BLTZ_Compare, false); break;
case R4300i_REGIMM_BGEZL:Compile_R4300i_BranchLikely(Section,BGEZ_Compare, false); break;
case R4300i_REGIMM_BLTZAL:Compile_R4300i_Branch(Section,BLTZ_Compare,BranchTypeRs, true); break;
case R4300i_REGIMM_BGEZAL:Compile_R4300i_Branch(Section,BGEZ_Compare,BranchTypeRs, true); break;
default:
Compile_R4300i_UnknownOpcode(Section); break;
}
break;
case R4300i_BEQ: Compile_R4300i_Branch(Section,BEQ_Compare,BranchTypeRsRt,false); break;
case R4300i_BNE: Compile_R4300i_Branch(Section,BNE_Compare,BranchTypeRsRt,false); break;
case R4300i_BGTZ:Compile_R4300i_Branch(Section,BGTZ_Compare,BranchTypeRs,false); break;
case R4300i_BLEZ:Compile_R4300i_Branch(Section,BLEZ_Compare,BranchTypeRs,false); break;
case R4300i_J: Compile_R4300i_J(Section); break;
case R4300i_JAL: Compile_R4300i_JAL(Section); break;
case R4300i_ADDI: Compile_R4300i_ADDI(Section); break;
case R4300i_ADDIU: Compile_R4300i_ADDIU(Section); break;
case R4300i_SLTI: Compile_R4300i_SLTI(Section); break;
case R4300i_SLTIU: Compile_R4300i_SLTIU(Section); break;
case R4300i_ANDI: Compile_R4300i_ANDI(Section); break;
case R4300i_ORI: Compile_R4300i_ORI(Section); break;
case R4300i_XORI: Compile_R4300i_XORI(Section); break;
case R4300i_LUI: Compile_R4300i_LUI(Section); break;
case R4300i_CP0:
switch (g_Opcode.rs) {
case R4300i_COP0_MF: Compile_R4300i_COP0_MF(Section); break;
case R4300i_COP0_MT: Compile_R4300i_COP0_MT(Section); break;
default:
if ( (g_Opcode.rs & 0x10 ) != 0 ) {
switch( g_Opcode.funct ) {
case R4300i_COP0_CO_TLBR: Compile_R4300i_COP0_CO_TLBR(Section); break;
case R4300i_COP0_CO_TLBWI: Compile_R4300i_COP0_CO_TLBWI(Section); break;
case R4300i_COP0_CO_TLBWR: Compile_R4300i_COP0_CO_TLBWR(Section); break;
case R4300i_COP0_CO_TLBP: Compile_R4300i_COP0_CO_TLBP(Section); break;
case R4300i_COP0_CO_ERET: Compile_R4300i_COP0_CO_ERET(Section); break;
default: Compile_R4300i_UnknownOpcode(Section); break;
}
} else {
Compile_R4300i_UnknownOpcode(Section);
}
}
break;
case R4300i_CP1:
switch (g_Opcode.rs) {
case R4300i_COP1_MF: Compile_R4300i_COP1_MF(Section); break;
case R4300i_COP1_DMF: Compile_R4300i_COP1_DMF(Section); break;
case R4300i_COP1_CF: Compile_R4300i_COP1_CF(Section); break;
case R4300i_COP1_MT: Compile_R4300i_COP1_MT(Section); break;
case R4300i_COP1_DMT: Compile_R4300i_COP1_DMT(Section); break;
case R4300i_COP1_CT: Compile_R4300i_COP1_CT(Section); break;
case R4300i_COP1_BC:
switch (g_Opcode.ft) {
case R4300i_COP1_BC_BCF: Compile_R4300i_Branch(Section,COP1_BCF_Compare,BranchTypeCop1,false); break;
case R4300i_COP1_BC_BCT: Compile_R4300i_Branch(Section,COP1_BCT_Compare,BranchTypeCop1,false); break;
case R4300i_COP1_BC_BCFL: Compile_R4300i_BranchLikely(Section,COP1_BCF_Compare,false); break;
case R4300i_COP1_BC_BCTL: Compile_R4300i_BranchLikely(Section,COP1_BCT_Compare,false); break;
default:
Compile_R4300i_UnknownOpcode(Section); break;
}
break;
case R4300i_COP1_S:
switch (g_Opcode.funct) {
case R4300i_COP1_FUNCT_ADD: Compile_R4300i_COP1_S_ADD(Section); break;
case R4300i_COP1_FUNCT_SUB: Compile_R4300i_COP1_S_SUB(Section); break;
case R4300i_COP1_FUNCT_MUL: Compile_R4300i_COP1_S_MUL(Section); break;
case R4300i_COP1_FUNCT_DIV: Compile_R4300i_COP1_S_DIV(Section); break;
case R4300i_COP1_FUNCT_ABS: Compile_R4300i_COP1_S_ABS(Section); break;
case R4300i_COP1_FUNCT_NEG: Compile_R4300i_COP1_S_NEG(Section); break;
case R4300i_COP1_FUNCT_SQRT: Compile_R4300i_COP1_S_SQRT(Section); break;
case R4300i_COP1_FUNCT_MOV: Compile_R4300i_COP1_S_MOV(Section); break;
case R4300i_COP1_FUNCT_TRUNC_L: Compile_R4300i_COP1_S_TRUNC_L(Section); break;
case R4300i_COP1_FUNCT_CEIL_L: Compile_R4300i_COP1_S_CEIL_L(Section); break; //added by Witten
case R4300i_COP1_FUNCT_FLOOR_L: Compile_R4300i_COP1_S_FLOOR_L(Section); break; //added by Witten
case R4300i_COP1_FUNCT_ROUND_W: Compile_R4300i_COP1_S_ROUND_W(Section); break;
case R4300i_COP1_FUNCT_TRUNC_W: Compile_R4300i_COP1_S_TRUNC_W(Section); break;
case R4300i_COP1_FUNCT_CEIL_W: Compile_R4300i_COP1_S_CEIL_W(Section); break; //added by Witten
case R4300i_COP1_FUNCT_FLOOR_W: Compile_R4300i_COP1_S_FLOOR_W(Section); break;
case R4300i_COP1_FUNCT_CVT_D: Compile_R4300i_COP1_S_CVT_D(Section); break;
case R4300i_COP1_FUNCT_CVT_W: Compile_R4300i_COP1_S_CVT_W(Section); break;
case R4300i_COP1_FUNCT_CVT_L: Compile_R4300i_COP1_S_CVT_L(Section); break;
case R4300i_COP1_FUNCT_C_F: case R4300i_COP1_FUNCT_C_UN:
case R4300i_COP1_FUNCT_C_EQ: case R4300i_COP1_FUNCT_C_UEQ:
case R4300i_COP1_FUNCT_C_OLT: case R4300i_COP1_FUNCT_C_ULT:
case R4300i_COP1_FUNCT_C_OLE: case R4300i_COP1_FUNCT_C_ULE:
case R4300i_COP1_FUNCT_C_SF: case R4300i_COP1_FUNCT_C_NGLE:
case R4300i_COP1_FUNCT_C_SEQ: case R4300i_COP1_FUNCT_C_NGL:
case R4300i_COP1_FUNCT_C_LT: case R4300i_COP1_FUNCT_C_NGE:
case R4300i_COP1_FUNCT_C_LE: case R4300i_COP1_FUNCT_C_NGT:
Compile_R4300i_COP1_S_CMP(Section); break;
default:
Compile_R4300i_UnknownOpcode(Section); break;
}
break;
case R4300i_COP1_D:
switch (g_Opcode.funct) {
case R4300i_COP1_FUNCT_ADD: Compile_R4300i_COP1_D_ADD(Section); break;
case R4300i_COP1_FUNCT_SUB: Compile_R4300i_COP1_D_SUB(Section); break;
case R4300i_COP1_FUNCT_MUL: Compile_R4300i_COP1_D_MUL(Section); break;
case R4300i_COP1_FUNCT_DIV: Compile_R4300i_COP1_D_DIV(Section); break;
case R4300i_COP1_FUNCT_ABS: Compile_R4300i_COP1_D_ABS(Section); break;
case R4300i_COP1_FUNCT_NEG: Compile_R4300i_COP1_D_NEG(Section); break;
case R4300i_COP1_FUNCT_SQRT: Compile_R4300i_COP1_D_SQRT(Section); break;
case R4300i_COP1_FUNCT_MOV: Compile_R4300i_COP1_D_MOV(Section); break;
case R4300i_COP1_FUNCT_TRUNC_L: Compile_R4300i_COP1_D_TRUNC_L(Section); break; //added by Witten
case R4300i_COP1_FUNCT_CEIL_L: Compile_R4300i_COP1_D_CEIL_L(Section); break; //added by Witten
case R4300i_COP1_FUNCT_FLOOR_L: Compile_R4300i_COP1_D_FLOOR_L(Section); break; //added by Witten
case R4300i_COP1_FUNCT_ROUND_W: Compile_R4300i_COP1_D_ROUND_W(Section); break;
case R4300i_COP1_FUNCT_TRUNC_W: Compile_R4300i_COP1_D_TRUNC_W(Section); break;
case R4300i_COP1_FUNCT_CEIL_W: Compile_R4300i_COP1_D_CEIL_W(Section); break; //added by Witten
case R4300i_COP1_FUNCT_FLOOR_W: Compile_R4300i_COP1_D_FLOOR_W(Section); break; //added by Witten
case R4300i_COP1_FUNCT_CVT_S: Compile_R4300i_COP1_D_CVT_S(Section); break;
case R4300i_COP1_FUNCT_CVT_W: Compile_R4300i_COP1_D_CVT_W(Section); break;
case R4300i_COP1_FUNCT_CVT_L: Compile_R4300i_COP1_D_CVT_L(Section); break;
case R4300i_COP1_FUNCT_C_F: case R4300i_COP1_FUNCT_C_UN:
case R4300i_COP1_FUNCT_C_EQ: case R4300i_COP1_FUNCT_C_UEQ:
case R4300i_COP1_FUNCT_C_OLT: case R4300i_COP1_FUNCT_C_ULT:
case R4300i_COP1_FUNCT_C_OLE: case R4300i_COP1_FUNCT_C_ULE:
case R4300i_COP1_FUNCT_C_SF: case R4300i_COP1_FUNCT_C_NGLE:
case R4300i_COP1_FUNCT_C_SEQ: case R4300i_COP1_FUNCT_C_NGL:
case R4300i_COP1_FUNCT_C_LT: case R4300i_COP1_FUNCT_C_NGE:
case R4300i_COP1_FUNCT_C_LE: case R4300i_COP1_FUNCT_C_NGT:
Compile_R4300i_COP1_D_CMP(Section); break;
default:
Compile_R4300i_UnknownOpcode(Section); break;
}
break;
case R4300i_COP1_W:
switch (g_Opcode.funct) {
case R4300i_COP1_FUNCT_CVT_S: Compile_R4300i_COP1_W_CVT_S(Section); break;
case R4300i_COP1_FUNCT_CVT_D: Compile_R4300i_COP1_W_CVT_D(Section); break;
default:
Compile_R4300i_UnknownOpcode(Section); break;
}
break;
case R4300i_COP1_L:
switch (g_Opcode.funct) {
case R4300i_COP1_FUNCT_CVT_S: Compile_R4300i_COP1_L_CVT_S(Section); break;
case R4300i_COP1_FUNCT_CVT_D: Compile_R4300i_COP1_L_CVT_D(Section); break;
default:
Compile_R4300i_UnknownOpcode(Section); break;
}
break;
default:
Compile_R4300i_UnknownOpcode(Section); break;
}
break;
case R4300i_BEQL: Compile_R4300i_BranchLikely(Section,BEQ_Compare,false); break;
case R4300i_BNEL: Compile_R4300i_BranchLikely(Section,BNE_Compare,false); break;
case R4300i_BGTZL:Compile_R4300i_BranchLikely(Section,BGTZ_Compare,false); break;
case R4300i_BLEZL:Compile_R4300i_BranchLikely(Section,BLEZ_Compare,false); break;
case R4300i_DADDIU: Compile_R4300i_DADDIU(Section); break;
case R4300i_LDL: Compile_R4300i_LDL(Section); break;
case R4300i_LDR: Compile_R4300i_LDR(Section); break;
case R4300i_LB: Compile_R4300i_LB(Section); break;
case R4300i_LH: Compile_R4300i_LH(Section); break;
case R4300i_LWL: Compile_R4300i_LWL(Section); break;
case R4300i_LW: Compile_R4300i_LW(Section); break;
case R4300i_LBU: Compile_R4300i_LBU(Section); break;
case R4300i_LHU: Compile_R4300i_LHU(Section); break;
case R4300i_LWR: Compile_R4300i_LWR(Section); break;
case R4300i_LWU: Compile_R4300i_LWU(Section); break; //added by Witten
case R4300i_SB: Compile_R4300i_SB(Section); break;
case R4300i_SH: Compile_R4300i_SH(Section); break;
case R4300i_SWL: Compile_R4300i_SWL(Section); break;
case R4300i_SW: Compile_R4300i_SW(Section); break;
case R4300i_SWR: Compile_R4300i_SWR(Section); break;
case R4300i_SDL: Compile_R4300i_SDL(Section); break;
case R4300i_SDR: Compile_R4300i_SDR(Section); break;
case R4300i_CACHE: Compile_R4300i_CACHE(Section); break;
case R4300i_LL: Compile_R4300i_LL(Section); break;
case R4300i_LWC1: Compile_R4300i_LWC1(Section); break;
case R4300i_LDC1: Compile_R4300i_LDC1(Section); break;
case R4300i_SC: Compile_R4300i_SC(Section); break;
case R4300i_LD: Compile_R4300i_LD(Section); break;
case R4300i_SWC1: Compile_R4300i_SWC1(Section); break;
case R4300i_SDC1: Compile_R4300i_SDC1(Section); break;
case R4300i_SD: Compile_R4300i_SD(Section); break;
default:
Compile_R4300i_UnknownOpcode(Section); break;
}
if (!bRegCaching()) { WriteBackRegisters(Section); }
Section->ResetX86Protection();
/*if ((DWORD)RecompPos() > 0x60B452E6) {
if (CRecompilerOps::CompilePC() == 0x8002D9B8 && CRecompilerOps::CompilePC() < 0x8002DA20) {
CurrentRoundingModel = RoundUnknown;
}
}*/
UnMap_AllFPRs(Section);
/*if ((DWORD)RecompPos() > 0x60AD0BD3) {
if (CRecompilerOps::CompilePC() >= 0x8008B804 && CRecompilerOps::CompilePC() < 0x800496D8) {
CPU_Message("Blah *");
WriteBackRegisters(Section);
}
/*if (CRecompilerOps::CompilePC() >= 0x80000180 && CRecompilerOps::CompilePC() < 0x80000190) {
CPU_Message("Blah *");
//WriteBackRegisters(Section);
}*/
//}
/*for (count = 1; count < 10; count ++) {
if (Section->x86Mapped(count) == CRegInfo::Stack_Mapped) {
UnMap_X86reg (Section, count);
}
}*/
//CPU_Message("MemoryStack = %s",Map_MemoryStack(Section, false) > 0?x86_Name(Map_MemoryStack(Section, false)):"Not Mapped");
if ((CRecompilerOps::CompilePC() &0xFFC) == 0xFFC) {
if (NextInstruction == DO_DELAY_SLOT) {
#ifndef EXTERNAL_RELEASE
DisplayError("Wanting to do delay slot over end of block");
#endif
}
if (NextInstruction == NORMAL) {
CompileExit (Section,CRecompilerOps::CompilePC(), CRecompilerOps::CompilePC() + 4,Section->RegWorking,CExitInfo::Normal,true,NULL);
NextInstruction = END_BLOCK;
}
}
if (Section->DelaySlotSection)
{
Section->m_Cont.RegSet = Section->RegWorking;
GenerateSectionLinkage(Section);
NextInstruction = END_BLOCK;
}
switch (NextInstruction) {
case NORMAL:
CRecompilerOps::CompilePC() += 4;
break;
case DO_DELAY_SLOT:
NextInstruction = DELAY_SLOT;
CRecompilerOps::CompilePC() += 4;
break;
case DELAY_SLOT:
NextInstruction = DELAY_SLOT_DONE;
Section->BlockCycleCount() -= CountPerOp();
Section->BlockRandomModifier() -= 1;
CRecompilerOps::CompilePC() -= 4;
break;
}
} while (NextInstruction != END_BLOCK);
#endif
return true;
}
void CRecompiler::UpdateCounters ( DWORD * Cycles, DWORD * RandomMod, BOOL CheckTimer)
{
if (Cycles == NULL || RandomMod == NULL)
{
BreakPoint(__FILE__,__LINE__);
}
if (*RandomMod != 0 || *Cycles != 0) {
WriteX86Comment("Update Counters");
}
if (*RandomMod != 0) { SubConstFromVariable(*RandomMod,&_CP0[1],CRegName::Cop0[1]); }
if (*Cycles != 0) {
if (m_SyncSystem) {
char text[100];
WriteX86Comment("Sync CPU after update of cycles");
Pushad();
sprintf(text,"%d",(DWORD)*Cycles);
PushImm32(text,(DWORD)*Cycles);
Call_Direct(UpdateSyncCPU,"UpdateSyncCPU");
Popad();
}
_Notify->BreakPoint(__FILE__,__LINE__);
#ifdef tofix
AddConstToVariable(*Cycles,&_CP0[9],CRegName::Cop0[9]);
SubConstFromVariable(*Cycles,_Timer,"Timer");
#endif
}
*Cycles = 0;
*RandomMod = 0;
if (CheckTimer)
{
BYTE * Jump;
// Timer
if (*Cycles == 0) {
_Notify->BreakPoint(__FILE__,__LINE__);
#ifdef tofix
CompConstToVariable(0,_Timer,"Timer");
#endif
//} else{
// uses SubConstFromVariable(Cycles,_Timer,"Timer"); for compare flag
}
JnsLabel8("Continue_From_Timer_Test",0);
Jump = RecompPos() - 1;
Pushad();
X86BreakPoint(__FILE__,__LINE__);
MoveConstToX86reg((DWORD)_SystemTimer,x86_ECX);
Call_Direct(AddressOf(CSystemTimer::TimerDone),"CSystemTimer::TimerDone");
Popad();
CPU_Message("");
CPU_Message(" $Continue_From_Timer_Test:");
SetJump8(Jump,RecompPos());
}
/* if (CheckTimer)
{
x86ops.CompConstToVariable(0,(DWORD *)&_Reg->Timer,"_Reg->Timer");
x86ops.JgLabel8("Timer_Fine",0); BYTE * Jump = x86ops.RecompPos().WritePos() - 1;
Section->SaveX86Registers();
x86ops.Call_NonStatic_Direct((CSystemTimer *)_Reg,AddressOf(CSystemTimer::CheckTimer),"CSystemTimer::CheckTimer");
Section->RestoreX86Registers();
x86ops.WriteLabel("Timer_Fine"); x86ops.SetJump8(Jump, x86ops.RecompPos().WritePos());
}*/
}
void SyncRegState (CCodeSection * Section, CRegInfo * SyncTo) {
int count, x86Reg,x86RegHi, changed;
changed = false;
UnMap_AllFPRs(Section);
if (Section->CurrentRoundingModel() != SyncTo->CurrentRoundingModel()) { Section->CurrentRoundingModel() = CRegInfo::RoundUnknown; }
x86Reg = Map_MemoryStack(Section, x86_Any, false);
//CPU_Message("MemoryStack for Original State = %s",x86Reg > 0?x86_Name(x86Reg):"Not Mapped");
for (x86Reg = 1; x86Reg < 10; x86Reg ++) {
if (Section->x86Mapped(x86Reg) != CRegInfo::Stack_Mapped) { continue; }
if (SyncTo->x86Mapped(x86Reg) != CRegInfo::Stack_Mapped) {
UnMap_X86reg(Section,x86Reg);
for (count = 1; count < 10; count ++) {
if (SyncTo->x86Mapped(count) == CRegInfo::Stack_Mapped) {
MoveX86RegToX86Reg(count,x86Reg);
changed = true;
}
}
if (!changed) {
_Notify->BreakPoint(__FILE__,__LINE__);
#ifdef tofix
MoveVariableToX86reg(g_MemoryStack,"MemoryStack",x86Reg);
#endif
}
changed = true;
}
}
for (x86Reg = 1; x86Reg < 10; x86Reg ++) {
if (SyncTo->x86Mapped(x86Reg) != CRegInfo::Stack_Mapped) { continue; }
//CPU_Message("MemoryStack for Sync State = %s",x86Reg > 0?x86_Name(x86Reg):"Not Mapped");
if (Section->x86Mapped(x86Reg) == CRegInfo::Stack_Mapped) { break; }
UnMap_X86reg(Section,x86Reg);
}
for (count = 1; count < 32; count ++) {
if (Section->MipsRegState(count) == SyncTo->MipsRegState(count)) {
switch (Section->MipsRegState(count)) {
case CRegInfo::STATE_UNKNOWN: continue;
case CRegInfo::STATE_MAPPED_64:
if (Section->MipsReg(count) == SyncTo->MipsReg(count)) {
continue;
}
break;
case CRegInfo::STATE_MAPPED_32_ZERO:
case CRegInfo::STATE_MAPPED_32_SIGN:
if (Section->MipsRegLo(count) == SyncTo->MipsRegLo(count)) {
continue;
}
break;
case CRegInfo::STATE_CONST_64:
if (Section->MipsReg(count) != SyncTo->MipsReg(count)) {
#if (!defined(EXTERNAL_RELEASE))
DisplayError("Umm.. how ???");
#endif
}
continue;
case CRegInfo::STATE_CONST_32:
if (Section->MipsRegLo(count) != SyncTo->MipsRegLo(count)) {
#if (!defined(EXTERNAL_RELEASE))
DisplayError("Umm.. how ???");
#endif
}
continue;
#ifndef EXTERNAL_RELEASE
default:
DisplayError("Unhandled Reg state %d\nin SyncRegState",Section->MipsRegState(count));
#endif
}
}
changed = true;
switch (SyncTo->MipsRegState(count)) {
case CRegInfo::STATE_UNKNOWN: UnMap_GPR(Section,count,true); break;
case CRegInfo::STATE_MAPPED_64:
x86Reg = SyncTo->MipsRegLo(count);
x86RegHi = SyncTo->MipsRegHi(count);
UnMap_X86reg(Section,x86Reg);
UnMap_X86reg(Section,x86RegHi);
switch (Section->MipsRegState(count)) {
case CRegInfo::STATE_UNKNOWN:
MoveVariableToX86reg(&_GPR[count].UW[0],CRegName::GPR_Lo[count],x86Reg);
MoveVariableToX86reg(&_GPR[count].UW[1],CRegName::GPR_Hi[count],x86RegHi);
break;
case CRegInfo::STATE_MAPPED_64:
MoveX86RegToX86Reg(Section->MipsRegLo(count),x86Reg);
Section->x86Mapped(Section->MipsRegLo(count)) = CRegInfo::NotMapped;
MoveX86RegToX86Reg(Section->MipsRegHi(count),x86RegHi);
Section->x86Mapped(Section->MipsRegHi(count)) = CRegInfo::NotMapped;
break;
case CRegInfo::STATE_MAPPED_32_SIGN:
MoveX86RegToX86Reg(Section->MipsRegLo(count),x86RegHi);
ShiftRightSignImmed(x86RegHi,31);
MoveX86RegToX86Reg(Section->MipsRegLo(count),x86Reg);
Section->x86Mapped(Section->MipsRegLo(count)) = CRegInfo::NotMapped;
break;
case CRegInfo::STATE_MAPPED_32_ZERO:
XorX86RegToX86Reg(x86RegHi,x86RegHi);
MoveX86RegToX86Reg(Section->MipsRegLo(count),x86Reg);
Section->x86Mapped(Section->MipsRegLo(count)) = CRegInfo::NotMapped;
break;
case CRegInfo::STATE_CONST_64:
MoveConstToX86reg(Section->MipsRegHi(count),x86RegHi);
MoveConstToX86reg(Section->MipsRegLo(count),x86Reg);
break;
case CRegInfo::STATE_CONST_32:
MoveConstToX86reg(Section->MipsRegLo_S(count) >> 31,x86RegHi);
MoveConstToX86reg(Section->MipsRegLo(count),x86Reg);
break;
default:
#ifndef EXTERNAL_RELEASE
CPU_Message("Do something with states in SyncRegState\nSTATE_MAPPED_64\n%d",Section->MipsRegState(count));
DisplayError("Do something with states in SyncRegState\nSTATE_MAPPED_64\n%d",Section->MipsRegState(count));
#endif
continue;
}
Section->MipsRegLo(count) = x86Reg;
Section->MipsRegHi(count) = x86RegHi;
Section->MipsRegState(count) = CRegInfo::STATE_MAPPED_64;
Section->x86Mapped(x86Reg) = CRegInfo::GPR_Mapped;
Section->x86Mapped(x86RegHi) = CRegInfo::GPR_Mapped;
Section->x86MapOrder(x86Reg) = 1;
Section->x86MapOrder(x86RegHi) = 1;
break;
case CRegInfo::STATE_MAPPED_32_SIGN:
x86Reg = SyncTo->MipsRegLo(count);
UnMap_X86reg(Section,x86Reg);
switch (Section->MipsRegState(count)) {
case CRegInfo::STATE_UNKNOWN: MoveVariableToX86reg(&_GPR[count].UW[0],CRegName::GPR_Lo[count],x86Reg); break;
case CRegInfo::STATE_CONST_32: MoveConstToX86reg(Section->MipsRegLo(count),x86Reg); break;
case CRegInfo::STATE_MAPPED_32_SIGN:
MoveX86RegToX86Reg(Section->MipsRegLo(count),x86Reg);
Section->x86Mapped(Section->MipsRegLo(count)) = CRegInfo::NotMapped;
break;
case CRegInfo::STATE_MAPPED_32_ZERO:
if (Section->MipsRegLo(count) != (DWORD)x86Reg) {
MoveX86RegToX86Reg(Section->MipsRegLo(count),x86Reg);
Section->x86Mapped(Section->MipsRegLo(count)) = CRegInfo::NotMapped;
}
break;
case CRegInfo::STATE_MAPPED_64:
MoveX86RegToX86Reg(Section->MipsRegLo(count),x86Reg);
Section->x86Mapped(Section->MipsRegLo(count)) = CRegInfo::NotMapped;
Section->x86Mapped(Section->MipsRegHi(count)) = CRegInfo::NotMapped;
break;
#ifndef EXTERNAL_RELEASE
case CRegInfo::STATE_CONST_64:
DisplayError("hi %X\nLo %X",Section->MipsRegHi(count),Section->MipsRegLo(count));
default:
CPU_Message("Do something with states in SyncRegState\nSTATE_MAPPED_32_SIGN\n%d",Section->MipsRegState(count));
DisplayError("Do something with states in SyncRegState\nSTATE_MAPPED_32_SIGN\n%d",Section->MipsRegState(count));
#endif
}
Section->MipsRegLo(count) = x86Reg;
Section->MipsRegState(count) = CRegInfo::STATE_MAPPED_32_SIGN;
Section->x86Mapped(x86Reg) = CRegInfo::GPR_Mapped;
Section->x86MapOrder(x86Reg) = 1;
break;
case CRegInfo::STATE_MAPPED_32_ZERO:
x86Reg = SyncTo->MipsRegLo(count);
UnMap_X86reg(Section,x86Reg);
switch (Section->MipsRegState(count)) {
case CRegInfo::STATE_MAPPED_64:
case CRegInfo::STATE_UNKNOWN:
MoveVariableToX86reg(&_GPR[count].UW[0],CRegName::GPR_Lo[count],x86Reg);
break;
case CRegInfo::STATE_MAPPED_32_ZERO:
MoveX86RegToX86Reg(Section->MipsRegLo(count),x86Reg);
Section->x86Mapped(Section->MipsRegLo(count)) = CRegInfo::NotMapped;
break;
case CRegInfo::STATE_CONST_32:
if (Section->MipsRegLo_S(count) < 0) {
CPU_Message("Sign Problems in SyncRegState\nSTATE_MAPPED_32_ZERO");
CPU_Message("%s: %X",CRegName::GPR[count],Section->MipsRegLo_S(count));
#ifndef EXTERNAL_RELEASE
DisplayError("Sign Problems in SyncRegState\nSTATE_MAPPED_32_ZERO");
#endif
}
MoveConstToX86reg(Section->MipsRegLo(count),x86Reg);
break;
#ifndef EXTERNAL_RELEASE
default:
CPU_Message("Do something with states in SyncRegState\nSTATE_MAPPED_32_ZERO\n%d",Section->MipsRegState(count));
DisplayError("Do something with states in SyncRegState\nSTATE_MAPPED_32_ZERO\n%d",Section->MipsRegState(count));
#endif
}
Section->MipsRegLo(count) = x86Reg;
Section->MipsRegState(count) = SyncTo->MipsRegState(count);
Section->x86Mapped(x86Reg) = CRegInfo::GPR_Mapped;
Section->x86MapOrder(x86Reg) = 1;
break;
default:
#if (!defined(EXTERNAL_RELEASE))
CPU_Message("%d\n%d\nreg: %s (%d)",SyncTo->MipsRegState(count),Section->MipsRegState(count),CRegName::GPR[count],count);
DisplayError("%d\n%d\nreg: %s (%d)",SyncTo->MipsRegState(count),Section->MipsRegState(count),CRegName::GPR[count],count);
DisplayError("Do something with states in SyncRegState");
#endif
changed = false;
}
}
}
#endif
#ifdef tofix
void CRecompiler::RemoveFunction (CCompiledFunc * FunInfo, bool DelaySlot, REMOVE_REASON Reason )
{
_Notify->BreakPoint(__FILE__,__LINE__);
#ifdef tofix
LPCSTR lpReason = "Unknown";
switch (Reason)
{
case Remove_InitialCode: lpReason = "Remove_InitialCode"; break;
case Remove_Cache: lpReason = "Remove_Cache"; break;
case Remove_ProtectedMem: lpReason = "Remove_ProtectedMem"; break;
case Remove_ValidateFunc: lpReason = "Remove_ValidateFunc"; break;
case Remove_TLB: lpReason = "Remove_TLB"; break;
case Remove_DMA: lpReason = "Remove_DMA"; break;
}
WriteTraceF(TraceRecompiler,"Remove Func (%s): %X-%X",lpReason, FunInfo->VStartPC(), FunInfo->VEndPC());
if (JumpTable && !DelaySlot)
{
CCompiledFunc * Info = FunInfo;
while (Info)
{
if (*(JumpTable + (Info->PStartPC() >> 2)) == Info)
{
*(JumpTable + (Info->PStartPC() >> 2)) = NULL;
}
Info = Info->Next;
}
}
#endif
/*
TlbLog.Log("Clear %X",FunInfo->StartPC());
//Remove from the list of called functions
FunInfo->RemoveFromCallList();
//remove all functions that call this
if (_Settings->LoadDword(SMM_Linked)) {
for (FUNCTION_PTR_MAP::iterator item = FunInfo->CallingList().begin();
FunInfo->CallingList().begin() != FunInfo->CallingList().end();
item = FunInfo->CallingList().begin())
{
RemoveFunction(m_Functions.find(item->first));
}
} else {
//Remove from the list of called functions
FunInfo->RemoveFromCallingList();
}
*/
/* DWORD StartBlock = FunInfo->VStartPC() & ~0xFFF;
DWORD EndBlock = FunInfo->VEndPC() & ~0xFFF;
//Remove this item from the main list
if (DelaySlot)
{
m_FunctionsDelaySlot.Remove(FunInfo);
} else {
m_Functions.Remove(FunInfo);
}
//if no more functions in this block then unprotect the memory
if (bSMM_Protect())
{
for (DWORD Addr = StartBlock; Addr <= EndBlock; Addr += 0x1000 ){
CCompiledFunc * info = m_Functions.FindFunction(Addr,0xFFF);
if (info == NULL)
{
_Notify->BreakPoint(__FILE__,__LINE__);
#ifdef tofix
_MMU->UnProtectMemory(Addr,Addr + 0xFFC);
#endif
}
}
}*/
}
bool CRecompiler::ClearRecompCode_Phys(DWORD Address, int length, REMOVE_REASON Reason ) {
bool Result = true;
if (!ClearRecompCode_Virt(Address + 0x80000000,length,Reason)) { Result = false; }
if (!ClearRecompCode_Virt(Address + 0xA0000000,length,Reason)) { Result = false; }
if (g_UseTlb)
{
_Notify->BreakPoint(__FILE__,__LINE__);
#ifdef tofix
DWORD VAddr, Index = 0;
while (_TLB->PAddrToVAddr(Address,VAddr,Index))
{
WriteTraceF(TraceRecompiler,"ClearRecompCode Vaddr %X len: %d",VAddr,length);
if (!ClearRecompCode_Virt(VAddr,length,Reason))
{
Result = false;
}
}
#endif
}
if (LookUpMode() == FuncFind_PhysicalLookup)
{
WriteTraceF(TraceRecompiler,"Reseting Jump Table, Addr: %X len: %d",Address,((length + 3) & ~3));
memset((BYTE *)JumpTable + Address,0,((length + 3) & ~3));
}
return Result;
}
bool CRecompiler::ClearRecompCode_Virt(DWORD Address, int length,REMOVE_REASON Reason )
{
/* CCompiledFunc * info;
do
{
info = m_Functions.FindFunction(Address,length);
if (info)
{
RemoveFunction(info,false,Reason);
}
} while (info != NULL);
do
{
info = m_FunctionsDelaySlot.FindFunction(Address,length);
if (info)
{
RemoveFunction(info,true,Reason);
}
} while (info != NULL);
if (bSMM_Protect())
{
DWORD Start = Address & ~0xFFF;
info = m_Functions.FindFunction(Start,0xFFF);
if (info)
{
WriteTraceF(TraceDebug,"Function exists at %X End: %X",info->VStartPC(),info->VEndPC());
return false;
}
info = m_FunctionsDelaySlot.FindFunction(Start,0xFFF);
if (info)
{
WriteTraceF(TraceDebug,"Delay function exists at %X End: %X",info->VStartPC(),info->VEndPC());
return false;
}
return true;
}*/
return true;
}
void CRecompiler::SyncRegState (CCodeSection * Section, CRegInfo * SyncTo)
{
int count, x86Reg,x86RegHi;
bool changed = FALSE;
UnMap_AllFPRs(Section);
if (Section->CurrentRoundingModel() != SyncTo->CurrentRoundingModel()) { Section->CurrentRoundingModel() = CRegInfo::RoundUnknown; }
//x86Reg = Map_MemoryStack(Section, x86_Any, FALSE);
//CPU_Message("MemoryStack for Original State = %s",x86Reg > 0?x86_Name(x86Reg):"Not Mapped");
for (x86Reg = 1; x86Reg < 10; x86Reg ++) {
if (Section->x86Mapped(x86Reg) != CRegInfo::Stack_Mapped) { continue; }
if (SyncTo->x86Mapped(x86Reg) != CRegInfo::Stack_Mapped) {
UnMap_X86reg(Section,x86Reg);
for (count = 1; count < 10; count ++) {
if (SyncTo->x86Mapped(count) == CRegInfo::Stack_Mapped) {
MoveX86RegToX86Reg(count,x86Reg);
changed = TRUE;
}
}
if (!changed) {
_Notify->BreakPoint(__FILE__,__LINE__);
#ifdef tofix
MoveVariableToX86reg(g_MemoryStack,"MemoryStack",x86Reg);
#endif
}
changed = TRUE;
}
}
for (x86Reg = 1; x86Reg < 10; x86Reg ++) {
if (SyncTo->x86Mapped(x86Reg) != CRegInfo::Stack_Mapped) { continue; }
//CPU_Message("MemoryStack for Sync State = %s",x86Reg > 0?x86_Name(x86Reg):"Not Mapped");
if (Section->x86Mapped(x86Reg) == CRegInfo::Stack_Mapped) { break; }
UnMap_X86reg(Section,x86Reg);
}
for (count = 1; count < 32; count ++) {
if (Section->MipsRegState(count) == SyncTo->MipsRegState(count)) {
switch (Section->MipsRegState(count)) {
case CRegInfo::STATE_UNKNOWN: continue;
case CRegInfo::STATE_MAPPED_64:
if (Section->MipsReg(count) == SyncTo->MipsReg(count)) {
continue;
}
break;
case CRegInfo::STATE_MAPPED_32_ZERO:
case CRegInfo::STATE_MAPPED_32_SIGN:
if (Section->MipsRegLo(count) == SyncTo->MipsRegLo(count)) {
continue;
}
break;
case CRegInfo::STATE_CONST_64:
if (Section->MipsReg(count) != SyncTo->MipsReg(count)) {
#if (!defined(EXTERNAL_RELEASE))
DisplayError("Umm.. how ???");
#endif
}
continue;
case CRegInfo::STATE_CONST_32:
if (Section->MipsRegLo(count) != SyncTo->MipsRegLo(count)) {
#if (!defined(EXTERNAL_RELEASE))
DisplayError("Umm.. how ???");
#endif
}
continue;
#ifndef EXTERNAL_RELEASE
default:
DisplayError("Unhandled Reg state %d\nin SyncRegState",Section->MipsRegState(count));
#endif
}
}
changed = TRUE;
switch (SyncTo->MipsRegState(count)) {
case CRegInfo::STATE_UNKNOWN: UnMap_GPR(Section,count,TRUE); break;
case CRegInfo::STATE_MAPPED_64:
x86Reg = SyncTo->MipsRegLo(count);
x86RegHi = SyncTo->MipsRegHi(count);
UnMap_X86reg(Section,x86Reg);
UnMap_X86reg(Section,x86RegHi);
switch (Section->MipsRegState(count)) {
case CRegInfo::STATE_UNKNOWN:
MoveVariableToX86reg(&_GPR[count].UW[0],CRegName::GPR_Lo[count],x86Reg);
MoveVariableToX86reg(&_GPR[count].UW[1],CRegName::GPR_Hi[count],x86RegHi);
break;
case CRegInfo::STATE_MAPPED_64:
MoveX86RegToX86Reg(Section->MipsRegLo(count),x86Reg);
Section->x86Mapped(Section->MipsRegLo(count)) = CRegInfo::NotMapped;
MoveX86RegToX86Reg(Section->MipsRegHi(count),x86RegHi);
Section->x86Mapped(Section->MipsRegHi(count)) = CRegInfo::NotMapped;
break;
case CRegInfo::STATE_MAPPED_32_SIGN:
MoveX86RegToX86Reg(Section->MipsRegLo(count),x86RegHi);
ShiftRightSignImmed(x86RegHi,31);
MoveX86RegToX86Reg(Section->MipsRegLo(count),x86Reg);
Section->x86Mapped(Section->MipsRegLo(count)) = CRegInfo::NotMapped;
break;
case CRegInfo::STATE_MAPPED_32_ZERO:
XorX86RegToX86Reg(x86RegHi,x86RegHi);
MoveX86RegToX86Reg(Section->MipsRegLo(count),x86Reg);
Section->x86Mapped(Section->MipsRegLo(count)) = CRegInfo::NotMapped;
break;
case CRegInfo::STATE_CONST_64:
MoveConstToX86reg(Section->MipsRegHi(count),x86RegHi);
MoveConstToX86reg(Section->MipsRegLo(count),x86Reg);
break;
case CRegInfo::STATE_CONST_32:
MoveConstToX86reg(Section->MipsRegLo_S(count) >> 31,x86RegHi);
MoveConstToX86reg(Section->MipsRegLo(count),x86Reg);
break;
default:
#ifndef EXTERNAL_RELEASE
CPU_Message("Do something with states in SyncRegState\nSTATE_MAPPED_64\n%d",Section->MipsRegState(count));
DisplayError("Do something with states in SyncRegState\nSTATE_MAPPED_64\n%d",Section->MipsRegState(count));
#endif
continue;
}
Section->MipsRegLo(count) = x86Reg;
Section->MipsRegHi(count) = x86RegHi;
Section->MipsRegState(count) = CRegInfo::STATE_MAPPED_64;
Section->x86Mapped(x86Reg) = CRegInfo::GPR_Mapped;
Section->x86Mapped(x86RegHi) = CRegInfo::GPR_Mapped;
Section->x86MapOrder(x86Reg) = 1;
Section->x86MapOrder(x86RegHi) = 1;
break;
case CRegInfo::STATE_MAPPED_32_SIGN:
x86Reg = SyncTo->MipsRegLo(count);
UnMap_X86reg(Section,x86Reg);
switch (Section->MipsRegState(count)) {
case CRegInfo::STATE_UNKNOWN: MoveVariableToX86reg(&_GPR[count].UW[0],CRegName::GPR_Lo[count],x86Reg); break;
case CRegInfo::STATE_CONST_32: MoveConstToX86reg(Section->MipsRegLo(count),x86Reg); break;
case CRegInfo::STATE_MAPPED_32_SIGN:
MoveX86RegToX86Reg(Section->MipsRegLo(count),x86Reg);
Section->x86Mapped(Section->MipsRegLo(count)) = CRegInfo::NotMapped;
break;
case CRegInfo::STATE_MAPPED_32_ZERO:
if (Section->MipsRegLo(count) != (DWORD)x86Reg) {
MoveX86RegToX86Reg(Section->MipsRegLo(count),x86Reg);
Section->x86Mapped(Section->MipsRegLo(count)) = CRegInfo::NotMapped;
}
break;
case CRegInfo::STATE_MAPPED_64:
MoveX86RegToX86Reg(Section->MipsRegLo(count),x86Reg);
Section->x86Mapped(Section->MipsRegLo(count)) = CRegInfo::NotMapped;
Section->x86Mapped(Section->MipsRegHi(count)) = CRegInfo::NotMapped;
break;
#ifndef EXTERNAL_RELEASE
case CRegInfo::STATE_CONST_64:
DisplayError("hi %X\nLo %X",Section->MipsRegHi(count),Section->MipsRegLo(count));
default:
CPU_Message("Do something with states in SyncRegState\nSTATE_MAPPED_32_SIGN\n%d",Section->MipsRegState(count));
DisplayError("Do something with states in SyncRegState\nSTATE_MAPPED_32_SIGN\n%d",Section->MipsRegState(count));
#endif
}
Section->MipsRegLo(count) = x86Reg;
Section->MipsRegState(count) = CRegInfo::STATE_MAPPED_32_SIGN;
Section->x86Mapped(x86Reg) = CRegInfo::GPR_Mapped;
Section->x86MapOrder(x86Reg) = 1;
break;
case CRegInfo::STATE_MAPPED_32_ZERO:
x86Reg = SyncTo->MipsRegLo(count);
UnMap_X86reg(Section,x86Reg);
switch (Section->MipsRegState(count)) {
case CRegInfo::STATE_MAPPED_64:
case CRegInfo::STATE_UNKNOWN:
MoveVariableToX86reg(&_GPR[count].UW[0],CRegName::GPR_Lo[count],x86Reg);
break;
case CRegInfo::STATE_MAPPED_32_ZERO:
MoveX86RegToX86Reg(Section->MipsRegLo(count),x86Reg);
Section->x86Mapped(Section->MipsRegLo(count)) = CRegInfo::NotMapped;
break;
case CRegInfo::STATE_CONST_32:
if (Section->MipsRegLo_S(count) < 0) {
CPU_Message("Sign Problems in SyncRegState\nSTATE_MAPPED_32_ZERO");
CPU_Message("%s: %X",CRegName::GPR[count],Section->MipsRegLo_S(count));
#ifndef EXTERNAL_RELEASE
DisplayError("Sign Problems in SyncRegState\nSTATE_MAPPED_32_ZERO");
#endif
}
MoveConstToX86reg(Section->MipsRegLo(count),x86Reg);
break;
#ifndef EXTERNAL_RELEASE
default:
CPU_Message("Do something with states in SyncRegState\nSTATE_MAPPED_32_ZERO\n%d",Section->MipsRegState(count));
DisplayError("Do something with states in SyncRegState\nSTATE_MAPPED_32_ZERO\n%d",Section->MipsRegState(count));
#endif
}
Section->MipsRegLo(count) = x86Reg;
Section->MipsRegState(count) = SyncTo->MipsRegState(count);
Section->x86Mapped(x86Reg) = CRegInfo::GPR_Mapped;
Section->x86MapOrder(x86Reg) = 1;
break;
default:
#if (!defined(EXTERNAL_RELEASE))
CPU_Message("%d\n%d\nreg: %s (%d)",SyncTo->MipsRegState(count),Section->MipsRegState(count),CRegName::GPR[count],count);
DisplayError("%d\n%d\nreg: %s (%d)",SyncTo->MipsRegState(count),Section->MipsRegState(count),CRegName::GPR[count],count);
DisplayError("Do something with states in SyncRegState");
#endif
changed = FALSE;
}
}
}
#endif