#include "..\..\N64 System.h" #include "..\C Core\c core.h" #include "..\C Core\Recompiler Ops.h" #include "..\C Core\X86.h" #include "..\C Core\CPU.h" #undef PROGRAM_COUNTER #undef RdramSize #undef LookUpMode #undef LinkBlocks #undef CountPerOp CRecompiler::CRecompiler(CProfiling & Profile, bool & EndEmulation, bool SyncSystem) : m_Profile(Profile), PROGRAM_COUNTER(_Reg->m_PROGRAM_COUNTER), m_EndEmulation(EndEmulation), m_SyncSystem(SyncSystem), m_FunctionsDelaySlot() { } CRecompiler::~CRecompiler() { } void CRecompiler::Run() { CoInitialize(NULL); if (g_LogX86Code) { Start_x86_Log(); } if (!CRecompMemory::AllocateMemory()) { WriteTrace(TraceError,"CRecompiler::Run: CRecompMemory::AllocateMemory failed"); return; } WriteTrace(TraceError,"CRecompiler::Run Fix _MMU->AllocateRecompilerMemory"); #ifdef tofix if (!_MMU->AllocateRecompilerMemory(LookUpMode() != FuncFind_VirtualLookup && LookUpMode() != FuncFind_ChangeMemory)) { return; } JumpTable = _MMU->GetJumpTable(); RecompCode = _MMU->GetRecompCode(); #endif ResetRecompCode(); m_EndEmulation = false; WriteTrace(TraceError,"CRecompiler::Run Fix g_MemoryStack"); #ifdef tofix *g_MemoryStack = (DWORD)(RDRAM+(_GPR[29].W[0] & 0x1FFFFFFF)); #endif __try { if (LookUpMode() == FuncFind_VirtualLookup) { if (!CFunctionMap::AllocateMemory()) { WriteTrace(TraceError,"CRecompiler::Run: CFunctionMap::AllocateMemory failed"); return; } if (bSMM_ValidFunc()) { RecompilerMain_VirtualTable_validate(); } else { RecompilerMain_VirtualTable(); } } else if (LookUpMode() == FuncFind_ChangeMemory) { RecompilerMain_ChangeMemory(); } else { RecompilerMain_Lookup(); } } __except( _MMU->MemoryFilter( GetExceptionCode(), GetExceptionInformation()) ) { Notify().DisplayError(MSG_UNKNOWN_MEM_ACTION); } } void CRecompiler::RecompilerMain_VirtualTable ( void ) { while(!m_EndEmulation) { CFunctionMap::PCCompiledFunc_TABLE table = m_FunctionTable[PROGRAM_COUNTER >> 0xC]; if (table) { CCompiledFunc * info = table[(PROGRAM_COUNTER & 0xFFF) >> 2]; if (info != NULL) { (info->Function())(); continue; } } if (!_TransVaddr->ValidVaddr(PROGRAM_COUNTER)) { _Notify->BreakPoint(__FILE__,__LINE__); #ifdef tofix DoTLBMiss(m_NextInstruction == DELAY_SLOT,PROGRAM_COUNTER); NextInstruction = NORMAL; if (!_TransVaddr->ValidVaddr(PROGRAM_COUNTER)) { DisplayError("Failed to tranlate PC to a PAddr: %X\n\nEmulation stopped",PROGRAM_COUNTER); return; } #endif continue; } CCompiledFunc * info = CompilerCode(); if (info == NULL || m_EndEmulation) { break; } (info->Function())(); } } void CRecompiler::RecompilerMain_VirtualTable_validate ( void ) { _Notify->BreakPoint(__FILE__,__LINE__); /* CFunctionMap::PCCompiledFunc_TABLE * m_FunctionTable = m_Functions.GetFunctionTable(); while(!m_EndEmulation) { /*if (NextInstruction == DELAY_SLOT) { CCompiledFunc * Info = m_FunctionsDelaySlot.FindFunction(PROGRAM_COUNTER); //Find Block on hash table if (Info == NULL) { _Notify->BreakPoint(__FILE__,__LINE__); #ifdef tofix if (!_TLB->ValidVaddr(PROGRAM_COUNTER)) { DoTLBMiss(NextInstruction == DELAY_SLOT,PROGRAM_COUNTER); NextInstruction = NORMAL; if (!_TLB->ValidVaddr(PROGRAM_COUNTER)) { DisplayError("Failed to tranlate PC to a PAddr: %X\n\nEmulation stopped",PROGRAM_COUNTER); return; } continue; } #endif //Find Block on hash table Info = CompileDelaySlot(PROGRAM_COUNTER); if (Info == NULL || EndEmulation()) { break; } } const BYTE * Block = Info->FunctionAddr(); if ((*Info->MemLocation[0] != Info->MemContents[0]) || (*Info->MemLocation[1] != Info->MemContents[1])) { ClearRecompCode_Virt((Info->VStartPC() - 0x1000) & ~0xFFF,0x2000,Remove_ValidateFunc); NextInstruction = DELAY_SLOT; Info = NULL; continue; } _asm { pushad call Block popad } continue; }*/ /* CFunctionMap::PCCompiledFunc_TABLE table = m_FunctionTable[PROGRAM_COUNTER >> 0xC]; if (table) { CCompiledFunc * info = table[(PROGRAM_COUNTER & 0xFFF) >> 2]; if (info != NULL) { if ((*info->MemLocation[0] != info->MemContents[0]) || (*info->MemLocation[1] != info->MemContents[1])) { ClearRecompCode_Virt((info->VStartPC() - 0x1000) & ~0xFFF,0x3000,Remove_ValidateFunc); info = NULL; continue; } const BYTE * Block = info->FunctionAddr(); _asm { pushad call Block popad } continue; } } _Notify->BreakPoint(__FILE__,__LINE__); #ifdef tofix if (!_TLB->ValidVaddr(PROGRAM_COUNTER)) { DoTLBMiss(NextInstruction == DELAY_SLOT,PROGRAM_COUNTER); NextInstruction = NORMAL; if (!_TLB->ValidVaddr(PROGRAM_COUNTER)) { DisplayError("Failed to tranlate PC to a PAddr: %X\n\nEmulation stopped",PROGRAM_COUNTER); return; } } #endif CCompiledFunc * info = CompilerCode(); if (info == NULL || EndEmulation()) { break; } } /* while(!m_EndEmulation) { if (!_MMU->ValidVaddr(PROGRAM_COUNTER)) { DoTLBMiss(NextInstruction == DELAY_SLOT,PROGRAM_COUNTER); NextInstruction = NORMAL; if (!_MMU->ValidVaddr(PROGRAM_COUNTER)) { DisplayError("Failed to tranlate PC to a PAddr: %X\n\nEmulation stopped",PROGRAM_COUNTER); return; } } if (NextInstruction == DELAY_SLOT) { CCompiledFunc * Info = m_FunctionsDelaySlot.FindFunction(PROGRAM_COUNTER); //Find Block on hash table if (Info == NULL) { Info = CompileDelaySlot(PROGRAM_COUNTER); if (Info == NULL || EndEmulation()) { break; } } if (bSMM_ValidFunc()) { if ((*Info->MemLocation[0] != Info->MemContents[0]) || (*Info->MemLocation[1] != Info->MemContents[1])) { ClearRecompCode_Virt((Info->StartPC() - 0x1000) & ~0xFFF,0x2000,Remove_ValidateFunc); NextInstruction = DELAY_SLOT; Info = NULL; continue; } } const BYTE * Block = Info->FunctionAddr(); _asm { pushad call Block popad } continue; } CCompiledFunc * Info = m_Functions.FindFunction(PROGRAM_COUNTER); //Find Block on hash table if (Info == NULL) { Info = CompilerCode(); if (Info == NULL || EndEmulation()) { break; } } if (bSMM_ValidFunc()) { if ((*Info->MemLocation[0] != Info->MemContents[0]) || (*Info->MemLocation[1] != Info->MemContents[1])) { ClearRecompCode_Virt((Info->StartPC() - 0x1000) & ~0xFFF,0x3000,Remove_ValidateFunc); Info = NULL; continue; } } const BYTE * Block = Info->FunctionAddr(); _asm { pushad call Block popad } } */ } void CRecompiler::RecompilerMain_Lookup( void ) { _Notify->BreakPoint(__FILE__,__LINE__); /* DWORD Addr; CCompiledFunc * Info; //const BYTE * Block; while(!m_EndEmulation) { /*if (g_UseTlb) { _Notify->BreakPoint(__FILE__,__LINE__); #ifdef tofix if (!_TLB->TranslateVaddr(PROGRAM_COUNTER, Addr)) { DoTLBMiss(NextInstruction == DELAY_SLOT,PROGRAM_COUNTER); NextInstruction = NORMAL; if (!TranslateVaddr(PROGRAM_COUNTER, &Addr)) { DisplayError("Failed to tranlate PC to a PAddr: %X\n\nEmulation stopped",PROGRAM_COUNTER); return; } } #endif } else { Addr = PROGRAM_COUNTER & 0x1FFFFFFF; }*/ /* if (NextInstruction == DELAY_SLOT) { CCompiledFunc * Info = m_FunctionsDelaySlot.FindFunction(PROGRAM_COUNTER); //Find Block on hash table if (Info == NULL) { Info = CompileDelaySlot(PROGRAM_COUNTER); if (Info == NULL || EndEmulation()) { break; } } if (bSMM_ValidFunc()) { if ((*Info->MemLocation[0] != Info->MemContents[0]) || (*Info->MemLocation[1] != Info->MemContents[1])) { ClearRecompCode_Virt((Info->VStartPC() - 0x1000) & ~0xFFF,0x2000,Remove_ValidateFunc); NextInstruction = DELAY_SLOT; Info = NULL; continue; } } const BYTE * Block = Info->FunctionAddr(); _asm { pushad call Block popad } continue; } __try { if (Addr > 0x10000000) { if (bRomInMemory()) { if (Addr > 0x20000000) { WriteTraceF(TraceDebug,"Executing from non mapped space .1 PC: %X Addr: %X",PROGRAM_COUNTER, Addr); DisplayError(GS(MSG_NONMAPPED_SPACE)); break; } Info = (CCompiledFunc *)*(JumpTable + (Addr >> 2)); } else { if (PROGRAM_COUNTER >= 0xB0000000 && PROGRAM_COUNTER < (RomFileSize | 0xB0000000)) { while (PROGRAM_COUNTER >= 0xB0000000 && PROGRAM_COUNTER < (RomFileSize | 0xB0000000)) { ExecuteInterpreterOpCode(); } continue; } else { WriteTraceF(TraceDebug,"Executing from non mapped space .1 PC: %X Addr: %X",PROGRAM_COUNTER, Addr); DisplayError(GS(MSG_NONMAPPED_SPACE)); break; } } } else { Info = (CCompiledFunc *)*(JumpTable + (Addr >> 2)); } } __except(EXCEPTION_EXECUTE_HANDLER) { if (PROGRAM_COUNTER >= 0xB0000000 && PROGRAM_COUNTER < (RomFileSize | 0xB0000000)) { while (PROGRAM_COUNTER >= 0xB0000000 && PROGRAM_COUNTER < (RomFileSize | 0xB0000000)) { ExecuteInterpreterOpCode(); } continue; } else { WriteTraceF(TraceDebug,"Executing from non mapped space .2 PC: %X Addr: %X",PROGRAM_COUNTER, Addr); DisplayError(GS(MSG_NONMAPPED_SPACE)); return; } } if (Info == NULL) { Info = CompilerCode(); if (Info == NULL || EndEmulation()) { break; } *(JumpTable + (Addr >> 2)) = (void *)Info; // if (SelfModCheck == ModCode_ProtectedMemory) { // VirtualProtect(RDRAM + Addr, 4, PAGE_READONLY, &OldProtect); // } } if (bSMM_ValidFunc()) { if ((*Info->MemLocation[0] != Info->MemContents[0]) || (*Info->MemLocation[1] != Info->MemContents[1])) { ClearRecompCode_Virt((Info->VStartPC() - 0x1000) & ~0xFFF,0x3000,Remove_ValidateFunc); Info = NULL; continue; } } _Notify->BreakPoint(__FILE__,__LINE__); #ifdef tofix if (Profiling && IndvidualBlock) { static DWORD ProfAddress = 0; if ((PROGRAM_COUNTER & ~0xFFF) != ProfAddress) { char Label[100]; ProfAddress = PROGRAM_COUNTER & ~0xFFF; sprintf(Label,"PC: %X to %X",ProfAddress,ProfAddress+ 0xFFC); // StartTimer(Label); } /*if (PROGRAM_COUNTER >= 0x800DD000 && PROGRAM_COUNTER <= 0x800DDFFC) { char Label[100]; sprintf(Label,"PC: %X Block: %X",PROGRAM_COUNTER,Block); StartTimer(Label); }*/ // } else if ((Profiling || ShowCPUPer) && ProfilingLabel[0] == 0) { // StartTimer("r4300i Running"); /* } #endif const BYTE * Block = Info->FunctionAddr(); _asm { pushad call Block popad } }*/ } void CRecompiler::ResetRecompCode() { /* RecompPos() = RecompCode; m_Functions.Reset(); m_FunctionsDelaySlot.Reset(); if (JumpTable) { memset(JumpTable,0,_MMU->RdramSize()); memset(JumpTable + (0x04000000 >> 2),0,0x1000); memset(JumpTable + (0x04001000 >> 2),0,0x1000); if (bRomInMemory()) { memset(JumpTable + (0x10000000 >> 2),0,RomFileSize); } } #ifdef to_clean DWORD count, OldProtect; if (SelfModCheck == ModCode_ChangeMemory) { DWORD count, PAddr, Value; for (count = 0; count < TargetIndex; count++) { PAddr = OrigMem[(WORD)(count)].PAddr; Value = *(DWORD *)(RDRAM + PAddr); if ( ((Value >> 16) == 0x7C7C) && ((Value & 0xFFFF) == count)) { *(DWORD *)(RDRAM + PAddr) = OrigMem[(WORD)(count)].OriginalValue; } } } TargetIndex = 0; //Jump Table for (count = 0; count < (RdramSize >> 12); count ++ ) { if (N64_Blocks.NoOfRDRamBlocks[count] > 0) { N64_Blocks.NoOfRDRamBlocks[count] = 0; memset(JumpTable + (count << 10),0,0x1000); *(DelaySlotTable + count) = NULL; if (VirtualProtect((RDRAM + (count << 12)), 4, PAGE_READWRITE, &OldProtect) == 0) { DisplayError("Failed to unprotect %X\n1", (count << 12)); } } } if (N64_Blocks.NoOfDMEMBlocks > 0) { N64_Blocks.NoOfDMEMBlocks = 0; memset(JumpTable + (0x04000000 >> 2),0,0x1000); *(DelaySlotTable + (0x04000000 >> 12)) = NULL; if (VirtualProtect((RDRAM + 0x04000000), 4, PAGE_READWRITE, &OldProtect) == 0) { DisplayError("Failed to unprotect %X\n0", 0x04000000); } } if (N64_Blocks.NoOfIMEMBlocks > 0) { N64_Blocks.NoOfIMEMBlocks = 0; memset(JumpTable + (0x04001000 >> 2),0,0x1000); *(DelaySlotTable + (0x04001000 >> 12)) = NULL; if (VirtualProtect((RDRAM + 0x04001000), 4, PAGE_READWRITE, &OldProtect) == 0) { DisplayError("Failed to unprotect %X\n4", 0x04001000); } } // if (N64_Blocks.NoOfPifRomBlocks > 0) { // N64_Blocks.NoOfPifRomBlocks = 0; // memset(JumpTable + (0x1FC00000 >> 2),0,0x1000); // } #endif */ } CCompiledFunc * CRecompiler::CompileDelaySlot(DWORD PC) { WriteTraceF(TraceRecompiler,"Compile Delay Slot: %X",PC); _Notify->BreakPoint(__FILE__,__LINE__); #ifdef tofix if ((PC & 0xFFC) != 0) { DisplayError("Why are you compiling the Delay Slot at %X",PC); return NULL; } if (!_MMU->LW_VAddr(PC, g_Opcode.Hex)) { DisplayError("TLB Miss in delay slot\nEmulation will know stop"); return NULL; } CCompiledFunc * info = m_FunctionsDelaySlot.AddFunctionInfo(PC, _TLB->TranslateVaddr(PC)); CCodeBlock BlockInfo(PROGRAM_COUNTER, RecompPos()); CCodeSection * Section = &BlockInfo.ParentSection; BYTE * Block = RecompPos(); DWORD StartAddress; if (!TranslateVaddr(PC, &StartAddress)) { return NULL; } if (StartAddress < RdramSize()) { CPU_Message("====== RDRAM: Delay Slot ======"); } else if (StartAddress >= 0x04000000 && StartAddress <= 0x04000FFC) { CPU_Message("====== DMEM: Delay Slot ======"); } else if (StartAddress >= 0x04001000 && StartAddress <= 0x04001FFC) { CPU_Message("====== IMEM: Delay Slot ======"); } else if (StartAddress >= 0x1FC00000 && StartAddress <= 0x1FC00800) { CPU_Message("====== PIF ROM: Delay Slot ======"); } else { CPU_Message("====== Unknown: Delay Slot ======"); } CPU_Message("x86 code at: %X",Block); CPU_Message("Delay Slot location: %X",PROGRAM_COUNTER ); CPU_Message("====== recompiled code ======"); Section->AddParent(NULL); Section->BlockCycleCount() += CountPerOp(); Section->BlockRandomModifier() += 1; switch (Opcode.op) { case R4300i_SPECIAL: switch (Opcode.funct) { case R4300i_SPECIAL_SLL: Compile_R4300i_SPECIAL_SLL(Section); break; case R4300i_SPECIAL_SRL: Compile_R4300i_SPECIAL_SRL(Section); break; case R4300i_SPECIAL_SRA: Compile_R4300i_SPECIAL_SRA(Section); break; case R4300i_SPECIAL_SLLV: Compile_R4300i_SPECIAL_SLLV(Section); break; case R4300i_SPECIAL_SRLV: Compile_R4300i_SPECIAL_SRLV(Section); break; case R4300i_SPECIAL_SRAV: Compile_R4300i_SPECIAL_SRAV(Section); break; case R4300i_SPECIAL_MFLO: Compile_R4300i_SPECIAL_MFLO(Section); break; case R4300i_SPECIAL_MTLO: Compile_R4300i_SPECIAL_MTLO(Section); break; case R4300i_SPECIAL_MFHI: Compile_R4300i_SPECIAL_MFHI(Section); break; case R4300i_SPECIAL_MTHI: Compile_R4300i_SPECIAL_MTHI(Section); break; case R4300i_SPECIAL_MULT: Compile_R4300i_SPECIAL_MULT(Section); break; case R4300i_SPECIAL_DIV: Compile_R4300i_SPECIAL_DIV(Section); break; case R4300i_SPECIAL_DIVU: Compile_R4300i_SPECIAL_DIVU(Section); break; case R4300i_SPECIAL_MULTU: Compile_R4300i_SPECIAL_MULTU(Section); break; case R4300i_SPECIAL_DMULTU: Compile_R4300i_SPECIAL_DMULTU(Section); break; case R4300i_SPECIAL_DDIVU: Compile_R4300i_SPECIAL_DDIVU(Section); break; case R4300i_SPECIAL_ADD: Compile_R4300i_SPECIAL_ADD(Section); break; case R4300i_SPECIAL_ADDU: Compile_R4300i_SPECIAL_ADDU(Section); break; case R4300i_SPECIAL_SUB: Compile_R4300i_SPECIAL_SUB(Section); break; case R4300i_SPECIAL_SUBU: Compile_R4300i_SPECIAL_SUBU(Section); break; case R4300i_SPECIAL_AND: Compile_R4300i_SPECIAL_AND(Section); break; case R4300i_SPECIAL_OR: Compile_R4300i_SPECIAL_OR(Section); break; case R4300i_SPECIAL_XOR: Compile_R4300i_SPECIAL_XOR(Section); break; case R4300i_SPECIAL_SLT: Compile_R4300i_SPECIAL_SLT(Section); break; case R4300i_SPECIAL_SLTU: Compile_R4300i_SPECIAL_SLTU(Section); break; case R4300i_SPECIAL_DADD: Compile_R4300i_SPECIAL_DADD(Section); break; case R4300i_SPECIAL_DADDU: Compile_R4300i_SPECIAL_DADDU(Section); break; case R4300i_SPECIAL_DSLL32: Compile_R4300i_SPECIAL_DSLL32(Section); break; case R4300i_SPECIAL_DSRA32: Compile_R4300i_SPECIAL_DSRA32(Section); break; default: Compile_R4300i_UnknownOpcode(Section); break; } break; case R4300i_ADDI: Compile_R4300i_ADDI(Section); break; case R4300i_ADDIU: Compile_R4300i_ADDIU(Section); break; case R4300i_SLTI: Compile_R4300i_SLTI(Section); break; case R4300i_SLTIU: Compile_R4300i_SLTIU(Section); break; case R4300i_ANDI: Compile_R4300i_ANDI(Section); break; case R4300i_ORI: Compile_R4300i_ORI(Section); break; case R4300i_XORI: Compile_R4300i_XORI(Section); break; case R4300i_LUI: Compile_R4300i_LUI(Section); break; case R4300i_CP1: switch (Opcode.rs) { case R4300i_COP1_CF: Compile_R4300i_COP1_CF(Section); break; case R4300i_COP1_MT: Compile_R4300i_COP1_MT(Section); break; case R4300i_COP1_CT: Compile_R4300i_COP1_CT(Section); break; case R4300i_COP1_MF: Compile_R4300i_COP1_MF(Section); break; case R4300i_COP1_S: switch (Opcode.funct) { case R4300i_COP1_FUNCT_ADD: Compile_R4300i_COP1_S_ADD(Section); break; case R4300i_COP1_FUNCT_SUB: Compile_R4300i_COP1_S_SUB(Section); break; case R4300i_COP1_FUNCT_MUL: Compile_R4300i_COP1_S_MUL(Section); break; case R4300i_COP1_FUNCT_DIV: Compile_R4300i_COP1_S_DIV(Section); break; case R4300i_COP1_FUNCT_ABS: Compile_R4300i_COP1_S_ABS(Section); break; case R4300i_COP1_FUNCT_NEG: Compile_R4300i_COP1_S_NEG(Section); break; case R4300i_COP1_FUNCT_SQRT: Compile_R4300i_COP1_S_SQRT(Section); break; case R4300i_COP1_FUNCT_MOV: Compile_R4300i_COP1_S_MOV(Section); break; case R4300i_COP1_FUNCT_CVT_D: Compile_R4300i_COP1_S_CVT_D(Section); break; case R4300i_COP1_FUNCT_ROUND_W: Compile_R4300i_COP1_S_ROUND_W(Section); break; case R4300i_COP1_FUNCT_TRUNC_W: Compile_R4300i_COP1_S_TRUNC_W(Section); break; case R4300i_COP1_FUNCT_FLOOR_W: Compile_R4300i_COP1_S_FLOOR_W(Section); break; case R4300i_COP1_FUNCT_C_F: case R4300i_COP1_FUNCT_C_UN: case R4300i_COP1_FUNCT_C_EQ: case R4300i_COP1_FUNCT_C_UEQ: case R4300i_COP1_FUNCT_C_OLT: case R4300i_COP1_FUNCT_C_ULT: case R4300i_COP1_FUNCT_C_OLE: case R4300i_COP1_FUNCT_C_ULE: case R4300i_COP1_FUNCT_C_SF: case R4300i_COP1_FUNCT_C_NGLE: case R4300i_COP1_FUNCT_C_SEQ: case R4300i_COP1_FUNCT_C_NGL: case R4300i_COP1_FUNCT_C_LT: case R4300i_COP1_FUNCT_C_NGE: case R4300i_COP1_FUNCT_C_LE: case R4300i_COP1_FUNCT_C_NGT: Compile_R4300i_COP1_S_CMP(Section); break; default: Compile_R4300i_UnknownOpcode(Section); break; } break; case R4300i_COP1_D: switch (Opcode.funct) { case R4300i_COP1_FUNCT_ADD: Compile_R4300i_COP1_D_ADD(Section); break; case R4300i_COP1_FUNCT_SUB: Compile_R4300i_COP1_D_SUB(Section); break; case R4300i_COP1_FUNCT_MUL: Compile_R4300i_COP1_D_MUL(Section); break; case R4300i_COP1_FUNCT_DIV: Compile_R4300i_COP1_D_DIV(Section); break; case R4300i_COP1_FUNCT_ABS: Compile_R4300i_COP1_D_ABS(Section); break; case R4300i_COP1_FUNCT_NEG: Compile_R4300i_COP1_D_NEG(Section); break; case R4300i_COP1_FUNCT_SQRT: Compile_R4300i_COP1_D_SQRT(Section); break; case R4300i_COP1_FUNCT_MOV: Compile_R4300i_COP1_D_MOV(Section); break; case R4300i_COP1_FUNCT_TRUNC_W: Compile_R4300i_COP1_D_TRUNC_W(Section); break; case R4300i_COP1_FUNCT_CVT_S: Compile_R4300i_COP1_D_CVT_S(Section); break; case R4300i_COP1_FUNCT_CVT_W: Compile_R4300i_COP1_D_CVT_W(Section); break; case R4300i_COP1_FUNCT_C_F: case R4300i_COP1_FUNCT_C_UN: case R4300i_COP1_FUNCT_C_EQ: case R4300i_COP1_FUNCT_C_UEQ: case R4300i_COP1_FUNCT_C_OLT: case R4300i_COP1_FUNCT_C_ULT: case R4300i_COP1_FUNCT_C_OLE: case R4300i_COP1_FUNCT_C_ULE: case R4300i_COP1_FUNCT_C_SF: case R4300i_COP1_FUNCT_C_NGLE: case R4300i_COP1_FUNCT_C_SEQ: case R4300i_COP1_FUNCT_C_NGL: case R4300i_COP1_FUNCT_C_LT: case R4300i_COP1_FUNCT_C_NGE: case R4300i_COP1_FUNCT_C_LE: case R4300i_COP1_FUNCT_C_NGT: Compile_R4300i_COP1_D_CMP(Section); break; default: Compile_R4300i_UnknownOpcode(Section); break; } break; case R4300i_COP1_W: switch (Opcode.funct) { case R4300i_COP1_FUNCT_CVT_S: Compile_R4300i_COP1_W_CVT_S(Section); break; case R4300i_COP1_FUNCT_CVT_D: Compile_R4300i_COP1_W_CVT_D(Section); break; default: Compile_R4300i_UnknownOpcode(Section); break; } break; default: Compile_R4300i_UnknownOpcode(Section); break; } break; case R4300i_LB: Compile_R4300i_LB(Section); break; case R4300i_LH: Compile_R4300i_LH(Section); break; case R4300i_LW: Compile_R4300i_LW(Section); break; case R4300i_LBU: Compile_R4300i_LBU(Section); break; case R4300i_LHU: Compile_R4300i_LHU(Section); break; case R4300i_SB: Compile_R4300i_SB(Section); break; case R4300i_SH: Compile_R4300i_SH(Section); break; case R4300i_SW: Compile_R4300i_SW(Section); break; case R4300i_SWR: Compile_R4300i_SWR(Section); break; case R4300i_CACHE: Compile_R4300i_CACHE(Section); break; case R4300i_LWC1: Compile_R4300i_LWC1(Section); break; case R4300i_LDC1: Compile_R4300i_LDC1(Section); break; case R4300i_LD: Compile_R4300i_LD(Section); break; case R4300i_SWC1: Compile_R4300i_SWC1(Section); break; case R4300i_SDC1: Compile_R4300i_SDC1(Section); break; case R4300i_SD: Compile_R4300i_SD(Section); break; default: Compile_R4300i_UnknownOpcode(Section); break; } Section->ResetX86Protection(); WriteBackRegisters(Section); UpdateCounters(&Section->BlockCycleCount(),&Section->BlockRandomModifier(), FALSE); int x86Reg = Map_TempReg(Section,x86_Any,-1,FALSE); MoveVariableToX86reg(&JumpToLocation,"JumpToLocation",x86Reg); MoveX86regToVariable(x86Reg,&PROGRAM_COUNTER,"PROGRAM_COUNTER"); MoveConstToVariable(NORMAL,&NextInstruction,"NextInstruction"); if (CPU_Type == CPU_SyncCores) { Call_Direct(SyncToPC, "SyncToPC"); } Ret(); CompileExitCode(BlockInfo); CPU_Message("====== End of recompiled code ======"); info->SetVEndPC(BlockInfo.EndVAddr); info->SetFunctionAddr(BlockInfo.CompiledLocation); _TLB->VAddrToRealAddr(info->VStartPC(),*(reinterpret_cast(&info->MemLocation[0]))); info->MemLocation[1] = info->MemLocation[0] + 1; info->MemContents[0] = *info->MemLocation[0]; info->MemContents[1] = *info->MemLocation[1]; NextInstruction = NORMAL; return info; #endif return NULL; } bool CRecompiler::AnalyseBlock ( CCodeBlock & BlockInfo) { _Notify->BreakPoint(__FILE__,__LINE__); #ifdef tofix if (bLinkBlocks()) { CCodeSection * Section = &BlockInfo.ParentSection; if (!CreateSectionLinkage (Section)) { return false; } DetermineLoop(Section,CCodeSection::GetNewTestValue(),CCodeSection::GetNewTestValue(), Section->m_SectionID); while (FixConstants(Section,CCodeSection::GetNewTestValue())) {} } #endif return true; } bool CRecompiler::FixConstants (CCodeSection * Section, DWORD Test) { _Notify->BreakPoint(__FILE__,__LINE__); #ifdef tofix if (Section == NULL) { return false; } if (Section->Test == Test) { return false; } Section->Test = Test; InheritConstants(Section); bool Changed = false; /* BLOCK_SECTION * Parent; int count, NoOfParents; REG_INFO Original[2]; */ CRegInfo Original[2] = { Section->m_Cont.RegSet, Section->m_Jump.RegSet }; if (!Section->ParentSection.empty()) { for (SECTION_LIST::iterator iter = Section->ParentSection.begin(); iter != Section->ParentSection.end(); iter++) { CCodeSection * Parent = *iter; if (Parent->m_ContinueSection == Section) { for (int count = 0; count < 32; count++) { if (Section->RegStart.MipsRegState(count) != Parent->m_Cont.RegSet.MipsRegState(count)) { Section->RegStart.MipsRegState(count) = CRegInfo::STATE_UNKNOWN; //*Changed = true; } Section->RegStart.MipsRegState(count) = CRegInfo::STATE_UNKNOWN; } } if (Parent->m_JumpSection == Section) { for (int count = 0; count < 32; count++) { if (Section->RegStart.MipsRegState(count) != Parent->m_Jump.RegSet.MipsRegState(count)) { Section->RegStart.MipsRegState(count) = CRegInfo::STATE_UNKNOWN; //*Changed = true; } } } Section->RegWorking = Section->RegStart; } } FillSectionInfo(Section, NORMAL); if (Original[0] != Section->m_Cont.RegSet) { Changed = true; } if (Original[1] != Section->m_Jump.RegSet) { Changed = true; } if (Section->m_JumpSection && FixConstants(Section->m_JumpSection,Test)) { Changed = true; } if (Section->m_ContinueSection && FixConstants(Section->m_ContinueSection,Test)) { Changed = true; } return Changed; #endif return false; } void CRecompiler::InheritConstants(CCodeSection * Section) { _Notify->BreakPoint(__FILE__,__LINE__); #ifdef tofix if (Section->ParentSection.empty()) { Section->RegStart.Initilize(); Section->RegWorking = Section->RegStart; return; } CCodeSection * Parent = *(Section->ParentSection.begin()); CRegInfo * RegSet = (Section == Parent->m_ContinueSection?&Parent->m_Cont.RegSet:&Parent->m_Jump.RegSet); Section->RegStart = *RegSet; Section->RegWorking = *RegSet; for (SECTION_LIST::iterator iter = Section->ParentSection.begin(); iter != Section->ParentSection.end(); iter++) { if (iter == Section->ParentSection.begin()) { continue; } Parent = *iter; RegSet = Section == Parent->m_ContinueSection?&Parent->m_Cont.RegSet:&Parent->m_Jump.RegSet; for (int count = 0; count < 32; count++) { if (Section->IsConst(count)) { if (Section->MipsRegState(count) != RegSet->MipsRegState(count)) { Section->MipsRegState(count) = CRegInfo::STATE_UNKNOWN; } else if (Section->Is32Bit(count) && Section->MipsRegLo(count) != RegSet->MipsRegLo(count)) { Section->MipsRegState(count) = CRegInfo::STATE_UNKNOWN; } else if (Section->Is64Bit(count) && Section->MipsReg(count) != RegSet->MipsReg(count)) { Section->MipsRegState(count) = CRegInfo::STATE_UNKNOWN; } } } } Section->RegStart = Section->RegWorking; #endif } CCodeSection * CRecompiler::ExistingSection(CCodeSection * StartSection, DWORD Addr, DWORD Test) { _Notify->BreakPoint(__FILE__,__LINE__); #ifdef tofix if (StartSection == NULL) { return NULL; } if (StartSection->StartPC == Addr && StartSection->LinkAllowed) { return StartSection; } if (StartSection->Test == Test) { return NULL; } StartSection->Test = Test; CCodeSection * Section = ExistingSection(StartSection->m_JumpSection,Addr,Test); if (Section != NULL) { return Section; } Section = ExistingSection(StartSection->m_ContinueSection,Addr,Test); if (Section != NULL) { return Section; } #endif return NULL; } bool CRecompiler::CreateSectionLinkage (CCodeSection * Section) { _Notify->BreakPoint(__FILE__,__LINE__); #ifdef tofix InheritConstants(Section); if (!FillSectionInfo(Section,NORMAL)) { return false; } CCodeSection ** TargetSection[2]; CJumpInfo * JumpInfo[2]; if (Section->m_Jump.TargetPC < Section->m_Cont.TargetPC) { TargetSection[0] = (CCodeSection **)&Section->m_JumpSection; TargetSection[1] = (CCodeSection **)&Section->m_ContinueSection; JumpInfo[0] = &Section->m_Jump; JumpInfo[1] = &Section->m_Cont; } else { TargetSection[0] = (CCodeSection **)&Section->m_ContinueSection; TargetSection[1] = (CCodeSection **)&Section->m_JumpSection; JumpInfo[0] = &Section->m_Cont; JumpInfo[1] = &Section->m_Jump; } CCodeBlock * BlockInfo = Section->BlockInfo; for (int count = 0; count < 2; count ++) { if (JumpInfo[count]->TargetPC == (DWORD)-1 || *TargetSection[count] != NULL) { continue; } if (!JumpInfo[count]->DoneDelaySlot) { Section->m_Jump.RegSet = Section->RegWorking; //this is a special delay slot section BlockInfo->NoOfSections += 1; *TargetSection[count] = new CCodeSection(BlockInfo,CRecompilerOps::CompilePC() + 4,BlockInfo->NoOfSections); (*TargetSection[count])->AddParent(Section); (*TargetSection[count])->LinkAllowed = false; InheritConstants((*TargetSection[count])); if (!FillSectionInfo((*TargetSection[count]),END_BLOCK)) { return false; } (*TargetSection[count])->m_Jump.TargetPC = -1; (*TargetSection[count])->m_Cont.TargetPC = JumpInfo[count]->TargetPC; (*TargetSection[count])->m_Cont.FallThrough = true; (*TargetSection[count])->m_Cont.RegSet = (*TargetSection[count])->RegWorking; JumpInfo[count]->TargetPC = CRecompilerOps::CompilePC() + 4; //Create the section that joins with that block (*TargetSection[count])->m_ContinueSection = ExistingSection(&BlockInfo->ParentSection,(*TargetSection[count])->m_Cont.TargetPC,CCodeSection::GetNewTestValue()); if ((*TargetSection[count])->m_ContinueSection == NULL) { BlockInfo->NoOfSections += 1; (*TargetSection[count])->m_ContinueSection = new CCodeSection(BlockInfo,(*TargetSection[count])->m_Cont.TargetPC,BlockInfo->NoOfSections); (*TargetSection[count])->m_ContinueSection->AddParent((*TargetSection[count])); CreateSectionLinkage((*TargetSection[count])->m_ContinueSection); } else { (*TargetSection[count])->m_ContinueSection->AddParent((*TargetSection[count])); } } else { *TargetSection[count] = ExistingSection(&BlockInfo->ParentSection,JumpInfo[count]->TargetPC,CCodeSection::GetNewTestValue()); if (*TargetSection[count] == NULL) { BlockInfo->NoOfSections += 1; *TargetSection[count] = new CCodeSection(BlockInfo,JumpInfo[count]->TargetPC,BlockInfo->NoOfSections); (*TargetSection[count])->AddParent(Section); CreateSectionLinkage(*TargetSection[count]); } else { (*TargetSection[count])->AddParent(Section); } } } #endif return true; } bool CRecompiler::FillSectionInfo(CCodeSection * Section, STEP_TYPE StartStepType) { _Notify->BreakPoint(__FILE__,__LINE__); #ifdef tofix OPCODE Command; if (Section->CompiledLocation != NULL) { return true; } CRecompilerOps::CompilePC() = Section->StartPC; Section->RegWorking = Section->RegStart; NextInstruction = StartStepType; do { if (!_MMU->LW_VAddr(CRecompilerOps::CompilePC(), Command.Hex)) { DisplayError(GS(MSG_FAIL_LOAD_WORD)); return false; } switch (Command.op) { case R4300i_SPECIAL: switch (Command.funct) { case R4300i_SPECIAL_SLL: if (Command.rd == 0) { break; } if (Section->InLoop && Command.rt == Command.rd) { Section->MipsRegState(Command.rd) = CRegInfo::STATE_UNKNOWN; } if (Section->IsConst(Command.rt)) { Section->MipsRegState(Command.rd) = CRegInfo::STATE_CONST_32; Section->MipsRegLo(Command.rd) = Section->MipsRegLo(Command.rt) << Command.sa; } else { Section->MipsRegState(Command.rd) = CRegInfo::STATE_UNKNOWN; } break; case R4300i_SPECIAL_SRL: if (Command.rd == 0) { break; } if (Section->InLoop && Command.rt == Command.rd) { Section->MipsRegState(Command.rd) = CRegInfo::STATE_UNKNOWN; } if (Section->IsConst(Command.rt)) { Section->MipsRegState(Command.rd) = CRegInfo::STATE_CONST_32; Section->MipsRegLo(Command.rd) = Section->MipsRegLo(Command.rt) >> Command.sa; } else { Section->MipsRegState(Command.rd) = CRegInfo::STATE_UNKNOWN; } break; case R4300i_SPECIAL_SRA: if (Command.rd == 0) { break; } if (Section->InLoop && Command.rt == Command.rd) { Section->MipsRegState(Command.rd) = CRegInfo::STATE_UNKNOWN; } if (Section->IsConst(Command.rt)) { Section->MipsRegState(Command.rd) = CRegInfo::STATE_CONST_32; Section->MipsRegLo(Command.rd) = Section->MipsRegLo_S(Command.rt) >> Command.sa; } else { Section->MipsRegState(Command.rd) = CRegInfo::STATE_UNKNOWN; } break; case R4300i_SPECIAL_SLLV: if (Command.rd == 0) { break; } if (Section->InLoop && (Command.rt == Command.rd || Command.rs == Command.rd)) { Section->MipsRegState(Command.rd) = CRegInfo::STATE_UNKNOWN; } if (Section->IsConst(Command.rt) && Section->IsConst(Command.rs)) { Section->MipsRegState(Command.rd) = CRegInfo::STATE_CONST_32; Section->MipsRegLo(Command.rd) = Section->MipsRegLo(Command.rt) << (Section->MipsRegLo(Command.rs) & 0x1F); } else { Section->MipsRegState(Command.rd) = CRegInfo::STATE_UNKNOWN; } break; case R4300i_SPECIAL_SRLV: if (Command.rd == 0) { break; } if (Section->InLoop && (Command.rt == Command.rd || Command.rs == Command.rd)) { Section->MipsRegState(Command.rd) = CRegInfo::STATE_UNKNOWN; } if (Section->IsConst(Command.rt) && Section->IsConst(Command.rs)) { Section->MipsRegState(Command.rd) = CRegInfo::STATE_CONST_32; Section->MipsRegLo(Command.rd) = Section->MipsRegLo(Command.rt) >> (Section->MipsRegLo(Command.rs) & 0x1F); } else { Section->MipsRegState(Command.rd) = CRegInfo::STATE_UNKNOWN; } break; case R4300i_SPECIAL_SRAV: if (Command.rd == 0) { break; } if (Section->InLoop && (Command.rt == Command.rd || Command.rs == Command.rd)) { Section->MipsRegState(Command.rd) = CRegInfo::STATE_UNKNOWN; } if (Section->IsConst(Command.rt) && Section->IsConst(Command.rs)) { Section->MipsRegState(Command.rd) = CRegInfo::STATE_CONST_32; Section->MipsRegLo(Command.rd) = Section->MipsRegLo_S(Command.rt) >> (Section->MipsRegLo(Command.rs) & 0x1F); } else { Section->MipsRegState(Command.rd) = CRegInfo::STATE_UNKNOWN; } break; case R4300i_SPECIAL_JR: if (Section->IsConst(Command.rs)) { Section->m_Jump.TargetPC = Section->MipsRegLo(Command.rs); } else { Section->m_Jump.TargetPC = (DWORD)-1; } NextInstruction = DELAY_SLOT; break; case R4300i_SPECIAL_JALR: Section->MipsRegLo(Opcode.rd) = CRecompilerOps::CompilePC() + 8; Section->MipsRegState(Opcode.rd) = CRegInfo::STATE_CONST_32; if (Section->IsConst(Command.rs)) { Section->m_Jump.TargetPC = Section->MipsRegLo(Command.rs); } else { Section->m_Jump.TargetPC = (DWORD)-1; } NextInstruction = DELAY_SLOT; break; case R4300i_SPECIAL_SYSCALL: case R4300i_SPECIAL_BREAK: NextInstruction = END_BLOCK; CRecompilerOps::CompilePC() -= 4; break; case R4300i_SPECIAL_MFHI: Section->MipsRegState(Command.rd) = CRegInfo::STATE_UNKNOWN; break; case R4300i_SPECIAL_MTHI: break; case R4300i_SPECIAL_MFLO: Section->MipsRegState(Command.rd) = CRegInfo::STATE_UNKNOWN; break; case R4300i_SPECIAL_MTLO: break; case R4300i_SPECIAL_DSLLV: if (Command.rd == 0) { break; } if (Section->InLoop && (Command.rt == Command.rd || Command.rs == Command.rd)) { Section->MipsRegState(Command.rd) = CRegInfo::STATE_UNKNOWN; } if (Section->IsConst(Command.rt) && Section->IsConst(Command.rs)) { Section->MipsRegState(Command.rd) = CRegInfo::STATE_CONST_64; Section->MipsReg(Command.rd) = Section->Is64Bit(Command.rt)?Section->MipsReg(Command.rt):(QWORD)Section->MipsRegLo_S(Command.rt) << (Section->MipsRegLo(Command.rs) & 0x3F); } else { Section->MipsRegState(Command.rd) = CRegInfo::STATE_UNKNOWN; } break; case R4300i_SPECIAL_DSRLV: if (Command.rd == 0) { break; } if (Section->InLoop && (Command.rt == Command.rd || Command.rs == Command.rd)) { Section->MipsRegState(Command.rd) = CRegInfo::STATE_UNKNOWN; } if (Section->IsConst(Command.rt) && Section->IsConst(Command.rs)) { Section->MipsRegState(Command.rd) = CRegInfo::STATE_CONST_64; Section->MipsReg(Command.rd) = Section->Is64Bit(Command.rt)?Section->MipsReg(Command.rt):(QWORD)Section->MipsRegLo_S(Command.rt) >> (Section->MipsRegLo(Command.rs) & 0x3F); } else { Section->MipsRegState(Command.rd) = CRegInfo::STATE_UNKNOWN; } break; case R4300i_SPECIAL_DSRAV: if (Command.rd == 0) { break; } if (Section->InLoop && (Command.rt == Command.rd || Command.rs == Command.rd)) { Section->MipsRegState(Command.rd) = CRegInfo::STATE_UNKNOWN; } if (Section->IsConst(Command.rt) && Section->IsConst(Command.rs)) { Section->MipsRegState(Command.rd) = CRegInfo::STATE_CONST_64; Section->MipsReg(Command.rd) = Section->Is64Bit(Command.rt)?Section->MipsReg_S(Command.rt):(_int64)Section->MipsRegLo_S(Command.rt) >> (Section->MipsRegLo(Command.rs) & 0x3F); } else { Section->MipsRegState(Command.rd) = CRegInfo::STATE_UNKNOWN; } break; case R4300i_SPECIAL_MULT: break; case R4300i_SPECIAL_MULTU: break; case R4300i_SPECIAL_DIV: break; case R4300i_SPECIAL_DIVU: break; case R4300i_SPECIAL_DMULT: break; case R4300i_SPECIAL_DMULTU: break; case R4300i_SPECIAL_DDIV: break; case R4300i_SPECIAL_DDIVU: break; case R4300i_SPECIAL_ADD: case R4300i_SPECIAL_ADDU: if (Command.rd == 0) { break; } if (Section->InLoop && (Command.rt == Command.rd || Command.rs == Command.rd)) { Section->MipsRegState(Command.rd) = CRegInfo::STATE_UNKNOWN; } if (Section->IsConst(Command.rt) && Section->IsConst(Command.rs)) { Section->MipsRegLo(Command.rd) = Section->MipsRegLo(Command.rs) + Section->MipsRegLo(Command.rt); Section->MipsRegState(Command.rd) = CRegInfo::STATE_CONST_32; } else { Section->MipsRegState(Command.rd) = CRegInfo::STATE_UNKNOWN; } break; case R4300i_SPECIAL_SUB: case R4300i_SPECIAL_SUBU: if (Command.rd == 0) { break; } if (Section->InLoop && (Command.rt == Command.rd || Command.rs == Command.rd)) { Section->MipsRegState(Command.rd) = CRegInfo::STATE_UNKNOWN; } if (Section->IsConst(Command.rt) && Section->IsConst(Command.rs)) { Section->MipsRegLo(Command.rd) = Section->MipsRegLo(Command.rs) - Section->MipsRegLo(Command.rt); Section->MipsRegState(Command.rd) = CRegInfo::STATE_CONST_32; } else { Section->MipsRegState(Command.rd) = CRegInfo::STATE_UNKNOWN; } break; case R4300i_SPECIAL_AND: if (Command.rd == 0) { break; } if (Section->InLoop && (Command.rt == Command.rd || Command.rs == Command.rd)) { Section->MipsRegState(Command.rd) = CRegInfo::STATE_UNKNOWN; } if (Section->IsConst(Command.rt) && Section->IsConst(Command.rs)) { if (Section->Is64Bit(Command.rt) && Section->Is64Bit(Command.rs)) { Section->MipsReg(Command.rd) = Section->MipsReg(Command.rt) & Section->MipsReg(Command.rs); Section->MipsRegState(Command.rd) = CRegInfo::STATE_CONST_64; } else if (Section->Is64Bit(Command.rt) || Section->Is64Bit(Command.rs)) { if (Section->Is64Bit(Command.rt)) { Section->MipsReg(Command.rd) = Section->MipsReg(Command.rt) & Section->MipsRegLo(Command.rs); } else { Section->MipsReg(Command.rd) = Section->MipsRegLo(Command.rt) & Section->MipsReg(Command.rs); } Section->MipsRegState(Command.rd) = CRegInfo::ConstantsType(Section->MipsReg(Command.rd)); } else { Section->MipsRegLo(Command.rd) = Section->MipsRegLo(Command.rt) & Section->MipsRegLo(Command.rs); Section->MipsRegState(Command.rd) = CRegInfo::STATE_CONST_32; } } else { Section->MipsRegState(Command.rd) = CRegInfo::STATE_UNKNOWN; } break; case R4300i_SPECIAL_OR: if (Command.rd == 0) { break; } if (Section->InLoop && (Command.rt == Command.rd || Command.rs == Command.rd)) { Section->MipsRegState(Command.rd) = CRegInfo::STATE_UNKNOWN; } if (Section->IsConst(Command.rt) && Section->IsConst(Command.rs)) { if (Section->Is64Bit(Command.rt) && Section->Is64Bit(Command.rs)) { Section->MipsReg(Command.rd) = Section->MipsReg(Command.rt) | Section->MipsReg(Command.rs); Section->MipsRegState(Command.rd) = CRegInfo::STATE_CONST_64; } else if (Section->Is64Bit(Command.rt) || Section->Is64Bit(Command.rs)) { if (Section->Is64Bit(Command.rt)) { Section->MipsReg(Command.rd) = Section->MipsReg(Command.rt) | Section->MipsRegLo(Command.rs); } else { Section->MipsReg(Command.rd) = Section->MipsRegLo(Command.rt) | Section->MipsReg(Command.rs); } Section->MipsRegState(Command.rd) = CRegInfo::STATE_CONST_64; } else { Section->MipsRegLo(Command.rd) = Section->MipsRegLo(Command.rt) | Section->MipsRegLo(Command.rs); Section->MipsRegState(Command.rd) = CRegInfo::STATE_CONST_32; } } else { Section->MipsRegState(Command.rd) = CRegInfo::STATE_UNKNOWN; } break; case R4300i_SPECIAL_XOR: if (Command.rd == 0) { break; } if (Section->InLoop && (Command.rt == Command.rd || Command.rs == Command.rd)) { Section->MipsRegState(Command.rd) = CRegInfo::STATE_UNKNOWN; } if (Section->IsConst(Command.rt) && Section->IsConst(Command.rs)) { if (Section->Is64Bit(Command.rt) && Section->Is64Bit(Command.rs)) { Section->MipsReg(Command.rd) = Section->MipsReg(Command.rt) ^ Section->MipsReg(Command.rs); Section->MipsRegState(Command.rd) = CRegInfo::STATE_CONST_64; } else if (Section->Is64Bit(Command.rt) || Section->Is64Bit(Command.rs)) { if (Section->Is64Bit(Command.rt)) { Section->MipsReg(Command.rd) = Section->MipsReg(Command.rt) ^ Section->MipsRegLo(Command.rs); } else { Section->MipsReg(Command.rd) = Section->MipsRegLo(Command.rt) ^ Section->MipsReg(Command.rs); } Section->MipsRegState(Command.rd) = CRegInfo::STATE_CONST_64; } else { Section->MipsRegLo(Command.rd) = Section->MipsRegLo(Command.rt) ^ Section->MipsRegLo(Command.rs); Section->MipsRegState(Command.rd) = CRegInfo::STATE_CONST_32; } } else { Section->MipsRegState(Command.rd) = CRegInfo::STATE_UNKNOWN; } break; case R4300i_SPECIAL_NOR: if (Command.rd == 0) { break; } if (Section->InLoop && (Command.rt == Command.rd || Command.rs == Command.rd)) { Section->MipsRegState(Command.rd) = CRegInfo::STATE_UNKNOWN; } if (Section->IsConst(Command.rt) && Section->IsConst(Command.rs)) { if (Section->Is64Bit(Command.rt) && Section->Is64Bit(Command.rs)) { Section->MipsReg(Command.rd) = ~(Section->MipsReg(Command.rt) | Section->MipsReg(Command.rs)); Section->MipsRegState(Command.rd) = CRegInfo::STATE_CONST_64; } else if (Section->Is64Bit(Command.rt) || Section->Is64Bit(Command.rs)) { if (Section->Is64Bit(Command.rt)) { Section->MipsReg(Command.rd) = ~(Section->MipsReg(Command.rt) | Section->MipsRegLo(Command.rs)); } else { Section->MipsReg(Command.rd) = ~(Section->MipsRegLo(Command.rt) | Section->MipsReg(Command.rs)); } Section->MipsRegState(Command.rd) = CRegInfo::STATE_CONST_64; } else { Section->MipsRegLo(Command.rd) = ~(Section->MipsRegLo(Command.rt) | Section->MipsRegLo(Command.rs)); Section->MipsRegState(Command.rd) = CRegInfo::STATE_CONST_32; } } else { Section->MipsRegState(Command.rd) = CRegInfo::STATE_UNKNOWN; } break; case R4300i_SPECIAL_SLT: if (Command.rd == 0) { break; } if (Section->IsConst(Command.rt) && Section->IsConst(Command.rs)) { if (Section->Is64Bit(Command.rt) || Section->Is64Bit(Command.rs)) { if (Section->Is64Bit(Command.rt)) { Section->MipsRegLo(Command.rd) = (Section->MipsRegLo_S(Command.rs) < Section->MipsReg_S(Command.rt))?1:0; } else { Section->MipsRegLo(Command.rd) = (Section->MipsReg_S(Command.rs) < Section->MipsRegLo_S(Command.rt))?1:0; } } else { Section->MipsRegLo(Command.rd) = (Section->MipsRegLo_S(Command.rs) < Section->MipsRegLo_S(Command.rt))?1:0; } Section->MipsRegState(Command.rd) = CRegInfo::STATE_CONST_32; } else { Section->MipsRegState(Command.rd) = CRegInfo::STATE_UNKNOWN; } break; case R4300i_SPECIAL_SLTU: if (Command.rd == 0) { break; } if (Section->IsConst(Command.rt) && Section->IsConst(Command.rs)) { if (Section->Is64Bit(Command.rt) || Section->Is64Bit(Command.rs)) { if (Section->Is64Bit(Command.rt)) { Section->MipsRegLo(Command.rd) = (Section->MipsRegLo(Command.rs) < Section->MipsReg(Command.rt))?1:0; } else { Section->MipsRegLo(Command.rd) = (Section->MipsReg(Command.rs) < Section->MipsRegLo(Command.rt))?1:0; } } else { Section->MipsRegLo(Command.rd) = (Section->MipsRegLo(Command.rs) < Section->MipsRegLo(Command.rt))?1:0; } Section->MipsRegState(Command.rd) = CRegInfo::STATE_CONST_32; } else { Section->MipsRegState(Command.rd) = CRegInfo::STATE_UNKNOWN; } break; case R4300i_SPECIAL_DADD: case R4300i_SPECIAL_DADDU: if (Command.rd == 0) { break; } if (Section->InLoop && (Command.rt == Command.rd || Command.rs == Command.rd)) { Section->MipsRegState(Command.rd) = CRegInfo::STATE_UNKNOWN; } if (Section->IsConst(Command.rt) && Section->IsConst(Command.rs)) { Section->MipsReg(Command.rd) = Section->Is64Bit(Command.rs)?Section->MipsReg(Command.rs):(_int64)Section->MipsRegLo_S(Command.rs) + Section->Is64Bit(Command.rt)?Section->MipsReg(Command.rt):(_int64)Section->MipsRegLo_S(Command.rt); Section->MipsRegState(Command.rd) = CRegInfo::STATE_CONST_64; } else { Section->MipsRegState(Command.rd) = CRegInfo::STATE_UNKNOWN; } break; case R4300i_SPECIAL_DSUB: case R4300i_SPECIAL_DSUBU: if (Command.rd == 0) { break; } if (Section->InLoop && (Command.rt == Command.rd || Command.rs == Command.rd)) { Section->MipsRegState(Command.rd) = CRegInfo::STATE_UNKNOWN; } if (Section->IsConst(Command.rt) && Section->IsConst(Command.rs)) { Section->MipsReg(Command.rd) = Section->Is64Bit(Command.rs)?Section->MipsReg(Command.rs):(_int64)Section->MipsRegLo_S(Command.rs) - Section->Is64Bit(Command.rt)?Section->MipsReg(Command.rt):(_int64)Section->MipsRegLo_S(Command.rt); Section->MipsRegState(Command.rd) = CRegInfo::STATE_CONST_64; } else { Section->MipsRegState(Command.rd) = CRegInfo::STATE_UNKNOWN; } break; case R4300i_SPECIAL_DSLL: if (Command.rd == 0) { break; } if (Section->InLoop && Command.rt == Command.rd) { Section->MipsRegState(Command.rd) = CRegInfo::STATE_UNKNOWN; } if (Section->IsConst(Command.rt)) { Section->MipsRegState(Command.rd) = CRegInfo::STATE_CONST_64; Section->MipsReg(Command.rd) = Section->Is64Bit(Command.rt)?Section->MipsReg(Command.rt):(_int64)Section->MipsRegLo_S(Command.rt) << Command.sa; } else { Section->MipsRegState(Command.rd) = CRegInfo::STATE_UNKNOWN; } break; case R4300i_SPECIAL_DSRL: if (Command.rd == 0) { break; } if (Section->InLoop && Command.rt == Command.rd) { Section->MipsRegState(Command.rd) = CRegInfo::STATE_UNKNOWN; } if (Section->IsConst(Command.rt)) { Section->MipsRegState(Command.rd) = CRegInfo::STATE_CONST_64; Section->MipsReg(Command.rd) = Section->Is64Bit(Command.rt)?Section->MipsReg(Command.rt):(QWORD)Section->MipsRegLo_S(Command.rt) >> Command.sa; } else { Section->MipsRegState(Command.rd) = CRegInfo::STATE_UNKNOWN; } break; case R4300i_SPECIAL_DSRA: if (Command.rd == 0) { break; } if (Section->InLoop && Command.rt == Command.rd) { Section->MipsRegState(Command.rd) = CRegInfo::STATE_UNKNOWN; } if (Section->IsConst(Command.rt)) { Section->MipsRegState(Command.rd) = CRegInfo::STATE_CONST_64; Section->MipsReg_S(Command.rd) = Section->Is64Bit(Command.rt)?Section->MipsReg_S(Command.rt):(_int64)Section->MipsRegLo_S(Command.rt) >> Command.sa; } else { Section->MipsRegState(Command.rd) = CRegInfo::STATE_UNKNOWN; } break; case R4300i_SPECIAL_DSLL32: if (Command.rd == 0) { break; } if (Section->InLoop && Command.rt == Command.rd) { Section->MipsRegState(Command.rd) = CRegInfo::STATE_UNKNOWN; } if (Section->IsConst(Command.rt)) { Section->MipsRegState(Command.rd) = CRegInfo::STATE_CONST_64; Section->MipsReg(Command.rd) = Section->MipsRegLo(Command.rt) << (Command.sa + 32); } else { Section->MipsRegState(Command.rd) = CRegInfo::STATE_UNKNOWN; } break; case R4300i_SPECIAL_DSRL32: if (Command.rd == 0) { break; } if (Section->InLoop && Command.rt == Command.rd) { Section->MipsRegState(Command.rd) = CRegInfo::STATE_UNKNOWN; } if (Section->IsConst(Command.rt)) { Section->MipsRegState(Command.rd) = CRegInfo::STATE_CONST_32; Section->MipsRegLo(Command.rd) = (DWORD)(Section->MipsReg(Command.rt) >> (Command.sa + 32)); } else { Section->MipsRegState(Command.rd) = CRegInfo::STATE_UNKNOWN; } break; case R4300i_SPECIAL_DSRA32: if (Command.rd == 0) { break; } if (Section->InLoop && Command.rt == Command.rd) { Section->MipsRegState(Command.rd) = CRegInfo::STATE_UNKNOWN; } if (Section->IsConst(Command.rt)) { Section->MipsRegState(Command.rd) = CRegInfo::STATE_CONST_32; Section->MipsRegLo(Command.rd) = (DWORD)(Section->MipsReg_S(Command.rt) >> (Command.sa + 32)); } else { Section->MipsRegState(Command.rd) = CRegInfo::STATE_UNKNOWN; } break; default: #ifndef EXTERNAL_RELEASE if (Command.Hex == 0x00000001) { break; } DisplayError("Unhandled R4300i OpCode in FillSectionInfo 5\n%s", R4300iOpcodeName(Command.Hex,CRecompilerOps::CompilePC())); #endif NextInstruction = END_BLOCK; CRecompilerOps::CompilePC() -= 4; } break; case R4300i_REGIMM: switch (Command.rt) { case R4300i_REGIMM_BLTZ: case R4300i_REGIMM_BGEZ: NextInstruction = DELAY_SLOT; Section->m_Cont.TargetPC = CRecompilerOps::CompilePC() + 8; Section->m_Jump.TargetPC = CRecompilerOps::CompilePC() + ((short)Command.offset << 2) + 4; if (CRecompilerOps::CompilePC() == Section->m_Jump.TargetPC) { if (!DelaySlotEffectsCompare(CRecompilerOps::CompilePC(),Command.rs,0)) { Section->m_Jump.PermLoop = true; } } break; case R4300i_REGIMM_BLTZL: case R4300i_REGIMM_BGEZL: NextInstruction = LIKELY_DELAY_SLOT; Section->m_Cont.TargetPC = CRecompilerOps::CompilePC() + 8; Section->m_Jump.TargetPC = CRecompilerOps::CompilePC() + ((short)Command.offset << 2) + 4; if (CRecompilerOps::CompilePC() == Section->m_Jump.TargetPC) { if (!DelaySlotEffectsCompare(CRecompilerOps::CompilePC(),Command.rs,0)) { Section->m_Jump.PermLoop = true; } } break; case R4300i_REGIMM_BLTZAL: Section->MipsRegLo(31) = CRecompilerOps::CompilePC() + 8; Section->MipsRegState(31) = CRegInfo::STATE_CONST_32; Section->m_Cont.TargetPC = CRecompilerOps::CompilePC() + 8; Section->m_Jump.TargetPC = CRecompilerOps::CompilePC() + ((short)Command.offset << 2) + 4; if (CRecompilerOps::CompilePC() == Section->m_Jump.TargetPC) { if (!DelaySlotEffectsCompare(CRecompilerOps::CompilePC(),Command.rs,0)) { Section->m_Jump.PermLoop = true; } } break; case R4300i_REGIMM_BGEZAL: NextInstruction = DELAY_SLOT; if (Section->IsConst(Command.rs)) { __int64 Value; if (Section->Is32Bit(Command.rs)) { Value = Section->MipsRegLo_S(Command.rs); } else { Value = Section->MipsReg_S(Command.rs); } if (Value >= 0) { Section->MipsRegLo(31) = CRecompilerOps::CompilePC() + 8; Section->MipsRegState(31) = CRegInfo::STATE_CONST_32; Section->m_Jump.TargetPC = CRecompilerOps::CompilePC() + ((short)Command.offset << 2) + 4; if (CRecompilerOps::CompilePC() == Section->m_Jump.TargetPC) { if (!DelaySlotEffectsCompare(CRecompilerOps::CompilePC(),31,0)) { Section->m_Jump.PermLoop = true; } } break; } } Section->MipsRegLo(31) = CRecompilerOps::CompilePC() + 8; Section->MipsRegState(31) = CRegInfo::STATE_CONST_32; Section->m_Cont.TargetPC = CRecompilerOps::CompilePC() + 8; Section->m_Jump.TargetPC = CRecompilerOps::CompilePC() + ((short)Command.offset << 2) + 4; if (CRecompilerOps::CompilePC() == Section->m_Jump.TargetPC) { if (!DelaySlotEffectsCompare(CRecompilerOps::CompilePC(),Command.rs,0)) { Section->m_Jump.PermLoop = true; } } break; default: #ifndef EXTERNAL_RELEASE if (Command.Hex == 0x0407000D) { break; } DisplayError("Unhandled R4300i OpCode in FillSectionInfo 4\n%s", R4300iOpcodeName(Command.Hex,CRecompilerOps::CompilePC())); #endif NextInstruction = END_BLOCK; CRecompilerOps::CompilePC() -= 4; } break; case R4300i_JAL: NextInstruction = DELAY_SLOT; Section->MipsRegLo(31) = CRecompilerOps::CompilePC() + 8; Section->MipsRegState(31) = CRegInfo::STATE_CONST_32; Section->m_Jump.TargetPC = (CRecompilerOps::CompilePC() & 0xF0000000) + (Command.target << 2); if (CRecompilerOps::CompilePC() == Section->m_Jump.TargetPC) { if (!DelaySlotEffectsCompare(CRecompilerOps::CompilePC(),31,0)) { Section->m_Jump.PermLoop = true; } } break; case R4300i_J: NextInstruction = DELAY_SLOT; Section->m_Jump.TargetPC = (CRecompilerOps::CompilePC() & 0xF0000000) + (Command.target << 2); if (CRecompilerOps::CompilePC() == Section->m_Jump.TargetPC) { Section->m_Jump.PermLoop = true; } break; case R4300i_BEQ: NextInstruction = DELAY_SLOT; Section->m_Cont.TargetPC = CRecompilerOps::CompilePC() + 8; Section->m_Jump.TargetPC = CRecompilerOps::CompilePC() + ((short)Command.offset << 2) + 4; if (CRecompilerOps::CompilePC() == Section->m_Jump.TargetPC) { if (!DelaySlotEffectsCompare(CRecompilerOps::CompilePC(),Command.rs,Command.rt)) { Section->m_Jump.PermLoop = true; } } if (Section->IsConst(Command.rs) && Section->IsConst(Command.rt)) { __int64 Value1, Value2; if (Section->Is32Bit(Command.rs)) { Value1 = Section->MipsRegLo_S(Command.rs); } else { Value1 = Section->MipsReg_S(Command.rs); } if (Section->Is32Bit(Command.rt)) { Value2 = Section->MipsRegLo_S(Command.rt); } else { Value2 = Section->MipsReg_S(Command.rt); } if (Value1 == Value2) { Section->m_Cont.TargetPC = -1; } } break; case R4300i_BNE: case R4300i_BLEZ: case R4300i_BGTZ: NextInstruction = DELAY_SLOT; Section->m_Cont.TargetPC = CRecompilerOps::CompilePC() + 8; Section->m_Jump.TargetPC = CRecompilerOps::CompilePC() + ((short)Command.offset << 2) + 4; if (CRecompilerOps::CompilePC() == Section->m_Jump.TargetPC) { if (!DelaySlotEffectsCompare(CRecompilerOps::CompilePC(),Command.rs,Command.rt)) { Section->m_Jump.PermLoop = true; } } break; case R4300i_ADDI: case R4300i_ADDIU: if (Command.rt == 0) { break; } if (Section->InLoop && Command.rs == Command.rt) { Section->MipsRegState(Command.rt) = CRegInfo::STATE_UNKNOWN; } if (Section->IsConst(Command.rs)) { Section->MipsRegLo(Command.rt) = Section->MipsRegLo(Command.rs) + (short)Command.immediate; Section->MipsRegState(Command.rt) = CRegInfo::STATE_CONST_32; } else { Section->MipsRegState(Command.rt) = CRegInfo::STATE_UNKNOWN; } break; case R4300i_SLTI: if (Command.rt == 0) { break; } if (Section->IsConst(Command.rs)) { if (Section->Is64Bit(Command.rs)) { Section->MipsRegLo(Command.rt) = (Section->MipsReg_S(Command.rs) < (_int64)((short)Command.immediate))?1:0; } else { Section->MipsRegLo(Command.rt) = (Section->MipsRegLo_S(Command.rs) < (int)((short)Command.immediate))?1:0; } Section->MipsRegState(Command.rt) = CRegInfo::STATE_CONST_32; } else { Section->MipsRegState(Command.rt) = CRegInfo::STATE_UNKNOWN; } break; case R4300i_SLTIU: if (Command.rt == 0) { break; } if (Section->IsConst(Command.rs)) { if (Section->Is64Bit(Command.rs)) { Section->MipsRegLo(Command.rt) = (Section->MipsReg(Command.rs) < (unsigned _int64)((short)Command.immediate))?1:0; } else { Section->MipsRegLo(Command.rt) = (Section->MipsRegLo(Command.rs) < (DWORD)((short)Command.immediate))?1:0; } Section->MipsRegState(Command.rt) = CRegInfo::STATE_CONST_32; } else { Section->MipsRegState(Command.rt) = CRegInfo::STATE_UNKNOWN; } break; case R4300i_LUI: if (Command.rt == 0) { break; } Section->MipsRegLo(Command.rt) = ((short)Command.offset << 16); Section->MipsRegState(Command.rt) = CRegInfo::STATE_CONST_32; break; case R4300i_ANDI: if (Command.rt == 0) { break; } if (Section->InLoop && Command.rs == Command.rt) { Section->MipsRegState(Command.rt) = CRegInfo::STATE_UNKNOWN; } if (Section->IsConst(Command.rs)) { Section->MipsRegState(Command.rt) = CRegInfo::STATE_CONST_32; Section->MipsRegLo(Command.rt) = Section->MipsRegLo(Command.rs) & Command.immediate; } else { Section->MipsRegState(Command.rt) = CRegInfo::STATE_UNKNOWN; } break; case R4300i_ORI: if (Command.rt == 0) { break; } if (Section->InLoop && Command.rs == Command.rt) { Section->MipsRegState(Command.rt) = CRegInfo::STATE_UNKNOWN; } if (Section->IsConst(Command.rs)) { Section->MipsRegState(Command.rt) = CRegInfo::STATE_CONST_32; Section->MipsRegLo(Command.rt) = Section->MipsRegLo(Command.rs) | Command.immediate; } else { Section->MipsRegState(Command.rt) = CRegInfo::STATE_UNKNOWN; } break; case R4300i_XORI: if (Command.rt == 0) { break; } if (Section->InLoop && Command.rs == Command.rt) { Section->MipsRegState(Command.rt) = CRegInfo::STATE_UNKNOWN; } if (Section->IsConst(Command.rs)) { Section->MipsRegState(Command.rt) = CRegInfo::STATE_CONST_32; Section->MipsRegLo(Command.rt) = Section->MipsRegLo(Command.rs) ^ Command.immediate; } else { Section->MipsRegState(Command.rt) = CRegInfo::STATE_UNKNOWN; } break; case R4300i_CP0: switch (Command.rs) { case R4300i_COP0_MF: if (Command.rt == 0) { break; } Section->MipsRegState(Command.rt) = CRegInfo::STATE_UNKNOWN; break; case R4300i_COP0_MT: break; default: if ( (Command.rs & 0x10 ) != 0 ) { switch( Command.funct ) { case R4300i_COP0_CO_TLBR: break; case R4300i_COP0_CO_TLBWI: break; case R4300i_COP0_CO_TLBWR: break; case R4300i_COP0_CO_TLBP: break; case R4300i_COP0_CO_ERET: NextInstruction = END_BLOCK; break; default: #ifndef EXTERNAL_RELEASE DisplayError("Unhandled R4300i OpCode in FillSectionInfo\n%s", R4300iOpcodeName(Command.Hex,CRecompilerOps::CompilePC())); #endif NextInstruction = END_BLOCK; CRecompilerOps::CompilePC() -= 4; } } else { #ifndef EXTERNAL_RELEASE DisplayError("Unhandled R4300i OpCode in FillSectionInfo 3\n%s", R4300iOpcodeName(Command.Hex,CRecompilerOps::CompilePC())); #endif NextInstruction = END_BLOCK; CRecompilerOps::CompilePC() -= 4; } } break; case R4300i_CP1: switch (Command.fmt) { case R4300i_COP1_CF: case R4300i_COP1_MF: case R4300i_COP1_DMF: if (Command.rt == 0) { break; } Section->MipsRegState(Command.rt) = CRegInfo::STATE_UNKNOWN; break; case R4300i_COP1_BC: switch (Command.ft) { case R4300i_COP1_BC_BCFL: case R4300i_COP1_BC_BCTL: NextInstruction = LIKELY_DELAY_SLOT; Section->m_Cont.TargetPC = CRecompilerOps::CompilePC() + 8; Section->m_Jump.TargetPC = CRecompilerOps::CompilePC() + ((short)Command.offset << 2) + 4; if (CRecompilerOps::CompilePC() == Section->m_Jump.TargetPC) { int EffectDelaySlot; OPCODE NewCommand; if (!_MMU->LW_VAddr(CRecompilerOps::CompilePC() + 4, NewCommand.Hex)) { DisplayError(GS(MSG_FAIL_LOAD_WORD)); ExitThread(0); } EffectDelaySlot = false; if (NewCommand.op == R4300i_CP1) { if (NewCommand.fmt == R4300i_COP1_S && (NewCommand.funct & 0x30) == 0x30 ) { EffectDelaySlot = true; } if (NewCommand.fmt == R4300i_COP1_D && (NewCommand.funct & 0x30) == 0x30 ) { EffectDelaySlot = true; } } if (!EffectDelaySlot) { Section->m_Jump.PermLoop = true; } } break; case R4300i_COP1_BC_BCF: case R4300i_COP1_BC_BCT: NextInstruction = DELAY_SLOT; Section->m_Cont.TargetPC = CRecompilerOps::CompilePC() + 8; Section->m_Jump.TargetPC = CRecompilerOps::CompilePC() + ((short)Command.offset << 2) + 4; if (CRecompilerOps::CompilePC() == Section->m_Jump.TargetPC) { int EffectDelaySlot; OPCODE NewCommand; if (!_MMU->LW_VAddr(CRecompilerOps::CompilePC() + 4, NewCommand.Hex)) { DisplayError(GS(MSG_FAIL_LOAD_WORD)); ExitThread(0); } EffectDelaySlot = false; if (NewCommand.op == R4300i_CP1) { if (NewCommand.fmt == R4300i_COP1_S && (NewCommand.funct & 0x30) == 0x30 ) { EffectDelaySlot = true; } if (NewCommand.fmt == R4300i_COP1_D && (NewCommand.funct & 0x30) == 0x30 ) { EffectDelaySlot = true; } } if (!EffectDelaySlot) { Section->m_Jump.PermLoop = true; } } break; } break; case R4300i_COP1_MT: break; case R4300i_COP1_DMT: break; case R4300i_COP1_CT: break; case R4300i_COP1_S: break; case R4300i_COP1_D: break; case R4300i_COP1_W: break; case R4300i_COP1_L: break; default: #ifndef EXTERNAL_RELEASE DisplayError("Unhandled R4300i OpCode in FillSectionInfo 2\n%s", R4300iOpcodeName(Command.Hex,CRecompilerOps::CompilePC())); #endif NextInstruction = END_BLOCK; CRecompilerOps::CompilePC() -= 4; } break; case R4300i_BEQL: case R4300i_BNEL: case R4300i_BLEZL: case R4300i_BGTZL: NextInstruction = LIKELY_DELAY_SLOT; Section->m_Cont.TargetPC = CRecompilerOps::CompilePC() + 8; Section->m_Jump.TargetPC = CRecompilerOps::CompilePC() + ((short)Command.offset << 2) + 4; if (CRecompilerOps::CompilePC() == Section->m_Jump.TargetPC) { if (!DelaySlotEffectsCompare(CRecompilerOps::CompilePC(),Command.rs,Command.rt)) { Section->m_Jump.PermLoop = true; } } break; case R4300i_DADDI: case R4300i_DADDIU: if (Command.rt == 0) { break; } if (Section->InLoop && Command.rs == Command.rt) { Section->MipsRegState(Command.rt) = CRegInfo::STATE_UNKNOWN; } if (Section->IsConst(Command.rs)) { if (Section->Is64Bit(Command.rs)) { int imm32 = (short)Opcode.immediate; __int64 imm64 = imm32; Section->MipsReg_S(Command.rt) = Section->MipsRegLo_S(Command.rs) + imm64; } else { Section->MipsReg_S(Command.rt) = Section->MipsRegLo_S(Command.rs) + (short)Command.immediate; } Section->MipsRegState(Command.rt) = CRegInfo::STATE_CONST_64; } else { Section->MipsRegState(Command.rt) = CRegInfo::STATE_UNKNOWN; } break; case R4300i_LDR: case R4300i_LDL: case R4300i_LB: case R4300i_LH: case R4300i_LWL: case R4300i_LW: case R4300i_LWU: case R4300i_LL: case R4300i_LBU: case R4300i_LHU: case R4300i_LWR: case R4300i_SC: if (Command.rt == 0) { break; } Section->MipsRegState(Command.rt) = CRegInfo::STATE_UNKNOWN; break; case R4300i_SB: break; case R4300i_SH: break; case R4300i_SWL: break; case R4300i_SW: break; case R4300i_SWR: break; case R4300i_SDL: break; case R4300i_SDR: break; case R4300i_CACHE: break; case R4300i_LWC1: break; case R4300i_SWC1: break; case R4300i_LDC1: break; case R4300i_LD: if (Command.rt == 0) { break; } Section->MipsRegState(Command.rt) = CRegInfo::STATE_UNKNOWN; break; case R4300i_SDC1: break; case R4300i_SD: break; default: NextInstruction = END_BLOCK; CRecompilerOps::CompilePC() -= 4; if (Command.Hex == 0x7C1C97C0) { break; } if (Command.Hex == 0x7FFFFFFF) { break; } if (Command.Hex == 0xF1F3F5F7) { break; } if (Command.Hex == 0xC1200000) { break; } if (Command.Hex == 0x4C5A5353) { break; } #ifndef EXTERNAL_RELEASE DisplayError("Unhandled R4300i OpCode in FillSectionInfo 1\n%s\n%X", R4300iOpcodeName(Command.Hex,CRecompilerOps::CompilePC()),Command.Hex); #endif } // if (CRecompilerOps::CompilePC() == 0x8005E4B8) { //CPU_Message("%X: %s %s = %d",CRecompilerOps::CompilePC(),R4300iOpcodeName(Command.Hex,CRecompilerOps::CompilePC()), // CRegName::GPR[8],Section->MipsRegState(8)); //_asm int 3 // } switch (NextInstruction) { case NORMAL: CRecompilerOps::CompilePC() += 4; break; case DELAY_SLOT: NextInstruction = DELAY_SLOT_DONE; CRecompilerOps::CompilePC() += 4; break; case LIKELY_DELAY_SLOT: if (Section->m_Cont.TargetPC == Section->m_Jump.TargetPC) { Section->m_Jump.RegSet = Section->RegWorking; Section->m_Cont.DoneDelaySlot = false; Section->m_Cont.RegSet = Section->RegWorking; Section->m_Cont.DoneDelaySlot = true; NextInstruction = END_BLOCK; } else { Section->m_Cont.RegSet = Section->RegWorking; Section->m_Cont.DoneDelaySlot = true; NextInstruction = LIKELY_DELAY_SLOT_DONE; CRecompilerOps::CompilePC() += 4; } break; case DELAY_SLOT_DONE: Section->m_Cont.RegSet = Section->RegWorking; Section->m_Jump.RegSet = Section->RegWorking; Section->m_Cont.DoneDelaySlot = true; Section->m_Jump.DoneDelaySlot = true; NextInstruction = END_BLOCK; break; case LIKELY_DELAY_SLOT_DONE: Section->m_Jump.RegSet = Section->RegWorking; Section->m_Jump.DoneDelaySlot = true; NextInstruction = END_BLOCK; break; } if ((CRecompilerOps::CompilePC() & 0xFFFFF000) != (Section->StartPC & 0xFFFFF000)) { if (NextInstruction != END_BLOCK && NextInstruction != NORMAL) { // DisplayError("Branch running over delay slot ???\nNextInstruction == %d",NextInstruction); Section->m_Cont.TargetPC = (DWORD)-1; Section->m_Jump.TargetPC = (DWORD)-1; } NextInstruction = END_BLOCK; CRecompilerOps::CompilePC() -= 4; } } while (NextInstruction != END_BLOCK); if (Section->m_Cont.TargetPC != (DWORD)-1) { if ((Section->m_Cont.TargetPC & 0xFFFFF000) != (Section->StartPC & 0xFFFFF000)) { Section->m_Cont.TargetPC = (DWORD)-1; } } if (Section->m_Jump.TargetPC != (DWORD)-1) { if (Section->m_Jump.TargetPC < Section->BlockInfo->StartVAddr) { Section->m_Jump.TargetPC = (DWORD)-1; } if ((Section->m_Jump.TargetPC & 0xFFFFF000) != (Section->StartPC & 0xFFFFF000)) { Section->m_Jump.TargetPC = (DWORD)-1; } } #endif return true; } void CRecompiler::CompileExitCode ( CCodeBlock & BlockInfo ) { _Notify->BreakPoint(__FILE__,__LINE__); #ifdef tofix for (EXIT_LIST::iterator ExitIter = BlockInfo.ExitInfo.begin(); ExitIter != BlockInfo.ExitInfo.end(); ExitIter++) { CPU_Message(""); CPU_Message(" $Exit_%d",ExitIter->ID); SetJump32(ExitIter->m_JumpLoc,RecompPos()); NextInstruction = ExitIter->NextInstruction; CompileExit(&BlockInfo.ParentSection, -1, ExitIter->TargetPC,ExitIter->ExitRegSet,ExitIter->reason,true,NULL); } #endif } void CRecompiler::RecompilerMain_ChangeMemory ( void ) { _Notify->BreakPoint(__FILE__,__LINE__); #ifdef tofix DWORD Value, Addr; BYTE * Block; while(!EndEmulation()) { if (UseTlb) { if (!TranslateVaddr(PROGRAM_COUNTER, &Addr)) { DoTLBMiss(NextInstruction == DELAY_SLOT,PROGRAM_COUNTER); NextInstruction = NORMAL; if (!TranslateVaddr(PROGRAM_COUNTER, &Addr)) { #ifndef EXTERNAL_RELEASE DisplayError("Failed to tranlate PC to a PAddr: %X\n\nEmulation stopped",PROGRAM_COUNTER); #endif ExitThread(0); } } } else { Addr = PROGRAM_COUNTER & 0x1FFFFFFF; } if (NextInstruction == DELAY_SLOT) { __try { Value = (DWORD)(*(DelaySlotTable + (Addr >> 12))); } __except(EXCEPTION_EXECUTE_HANDLER) { #ifndef EXTERNAL_RELEASE DisplayError("Executing Delay Slot from non maped space\nPROGRAM_COUNTER = 0x%X",PROGRAM_COUNTER); #endif ExitThread(0); } if ( (Value >> 16) == 0x7C7C) { DWORD Index = (Value & 0xFFFF); Block = (BYTE *)OrigMem[Index].CompiledLocation; if (OrigMem[Index].PAddr != Addr) { Block = NULL; } if (OrigMem[Index].VAddr != PROGRAM_COUNTER) { Block = NULL; } if (Index >= TargetIndex) { Block = NULL; } } else { Block = NULL; } if (Block == NULL) { DWORD MemValue; Block = CompileDelaySlot(); Value = 0x7C7C0000; Value += (WORD)(TargetIndex); MemValue = *(DWORD *)(RDRAM + Addr); if ( (MemValue >> 16) == 0x7C7C) { MemValue = OrigMem[(MemValue & 0xFFFF)].OriginalValue; } OrigMem[(WORD)(TargetIndex)].OriginalValue = MemValue; OrigMem[(WORD)(TargetIndex)].CompiledLocation = Block; OrigMem[(WORD)(TargetIndex)].PAddr = Addr; OrigMem[(WORD)(TargetIndex)].VAddr = PROGRAM_COUNTER; TargetIndex += 1; *(DelaySlotTable + (Addr >> 12)) = (void *)Value; NextInstruction = NORMAL; } _asm { pushad call Block popad } continue; } __try { Value = *(DWORD *)(RDRAM + Addr); if ( (Value >> 16) == 0x7C7C) { DWORD Index = (Value & 0xFFFF); Block = (BYTE *)OrigMem[Index].CompiledLocation; if (OrigMem[Index].PAddr != Addr) { Block = NULL; } if (OrigMem[Index].VAddr != PROGRAM_COUNTER) { Block = NULL; } if (Index >= TargetIndex) { Block = NULL; } } else { Block = NULL; } } __except(EXCEPTION_EXECUTE_HANDLER) { DisplayError(GS(MSG_NONMAPPED_SPACE)); ExitThread(0); } if (Block == NULL) { DWORD MemValue; __try { Block = Compiler4300iBlock(); } __except(EXCEPTION_EXECUTE_HANDLER) { ResetRecompCode(); Block = Compiler4300iBlock(); } if (EndEmulation()) { continue; } if (TargetIndex == MaxOrigMem) { ResetRecompCode(); continue; } Value = 0x7C7C0000; Value += (WORD)(TargetIndex); MemValue = *(DWORD *)(RDRAM + Addr); if ( (MemValue >> 16) == 0x7C7C) { MemValue = OrigMem[(MemValue & 0xFFFF)].OriginalValue; } OrigMem[(WORD)(TargetIndex)].OriginalValue = MemValue; OrigMem[(WORD)(TargetIndex)].CompiledLocation = Block; OrigMem[(WORD)(TargetIndex)].PAddr = Addr; OrigMem[(WORD)(TargetIndex)].VAddr = PROGRAM_COUNTER; TargetIndex += 1; *(DWORD *)(RDRAM + Addr) = Value; NextInstruction = NORMAL; } if (Profiling && IndvidualBlock) { static DWORD ProfAddress = 0; /*if ((PROGRAM_COUNTER & ~0xFFF) != ProfAddress) { char Label[100]; ProfAddress = PROGRAM_COUNTER & ~0xFFF; sprintf(Label,"PC: %X to %X",ProfAddress,ProfAddress+ 0xFFC); StartTimer(Label); }*/ /*if (PROGRAM_COUNTER >= 0x800DD000 && PROGRAM_COUNTER <= 0x800DDFFC) { char Label[100]; sprintf(Label,"PC: %X Block: %X",PROGRAM_COUNTER,Block); StartTimer(Label); }*/ // } else if ((Profiling || ShowCPUPer) && ProfilingLabel[0] == 0) { // StartTimer("r4300i Running"); } _asm { pushad call Block popad } } // end for(;;) #endif } CCompiledFunc * CRecompiler::CompilerCode ( void ) { CheckRecompMem(); DWORD pAddr; if (!_TransVaddr->TranslateVaddr(*_PROGRAM_COUNTER,pAddr)) { WriteTraceF(TraceError,"CRecompiler::CompilerCode: Failed to translate %X",*_PROGRAM_COUNTER); return NULL; } DWORD StartTime = timeGetTime(); WriteTraceF(TraceRecompiler,"Compile Block-Start: Program Counter: %X pAddr: %X",*_PROGRAM_COUNTER,pAddr); CCodeBlock CodeBlock(*_PROGRAM_COUNTER, RecompPos()); if (!CodeBlock.Compile()) { return NULL; } CCompiledFunc * info = new CCompiledFunc(CodeBlock); //if block linking then analysis // /*CCompiledFunc * info = new CCompiledFunc(PROGRAM_COUNTER,pAddr); if (info == NULL) { WriteTrace(TraceError,"CRecompiler::CompilerCode: Failed to allocate CCompiledFunc"); return NULL; } if (!info->CompilerCodeBlock()) { WriteTrace(TraceError,"CRecompiler::CompilerCode: Failed to compile code block"); return NULL; } #ifdef tofix CCompiledFunc * Info = m_Functions.AddFunctionInfo(PROGRAM_COUNTER,_TLB->TranslateVaddr(PROGRAM_COUNTER)); __try { if (!Compiler4300iBlock(Info)) { return NULL; } return Info; } __except(EXCEPTION_EXECUTE_HANDLER) { ResetRecompCode(); Info = m_Functions.AddFunctionInfo(PROGRAM_COUNTER,_TLB->TranslateVaddr(PROGRAM_COUNTER)); if (!Compiler4300iBlock(Info)) { return NULL; } return Info; } #endif */ return info; } #ifdef tofix void CRecompiler::DetermineLoop(CCodeSection * Section, DWORD Test, DWORD Test2, DWORD TestID) { if (Section == NULL) { return; } if (Section->m_SectionID != TestID) { if (Section->Test2 == Test2) { return; } Section->Test2 = Test2; DetermineLoop(Section->m_ContinueSection,Test,Test2,TestID); DetermineLoop(Section->m_JumpSection,Test,Test2,TestID); return; } if (Section->Test2 == Test2) { Section->InLoop = true; return; } Section->Test2 = Test2; DetermineLoop(Section->m_ContinueSection,Test,Test2,TestID); DetermineLoop(Section->m_JumpSection,Test,Test2,TestID); if (Section->Test == Test) { return; } Section->Test = Test; if (Section->m_ContinueSection != NULL) { DetermineLoop(Section->m_ContinueSection,Test,CCodeSection::GetNewTestValue(),Section->m_ContinueSection->m_SectionID); } if (Section->m_JumpSection != NULL) { DetermineLoop(Section->m_JumpSection,Test,CCodeSection::GetNewTestValue(),Section->m_JumpSection->m_SectionID); } } bool CRecompiler::DisplaySectionInformation (CCodeSection * Section, DWORD ID, DWORD Test) { if (!IsX86Logging()) { return false; } if (Section == NULL) { return false; } if (Section->Test == Test) { return false; } Section->Test = Test; if (Section->m_SectionID != ID) { if (DisplaySectionInformation(Section->m_ContinueSection,ID,Test)) { return true; } if (DisplaySectionInformation(Section->m_JumpSection,ID,Test)) { return true; } return false; } CPU_Message("====== Section %d ======",Section->m_SectionID); CPU_Message("Start PC: %X",Section->StartPC); CPU_Message("CompiledLocation: %X",RecompPos()); if (!Section->ParentSection.empty()) { stdstr ParentList; for (SECTION_LIST::iterator iter = Section->ParentSection.begin(); iter != Section->ParentSection.end(); iter++) { CCodeSection * Parent = *iter; if (!ParentList.empty()) { ParentList += ", "; } ParentList += stdstr_f("%d",Parent->m_SectionID); } CPU_Message("Number of parents: %d (%s)",Section->ParentSection.size(),ParentList.c_str()); } if (Section->m_JumpSection != NULL) { CPU_Message("Jump Section: %d",Section->m_JumpSection->m_SectionID); } else { CPU_Message("Jump Section: None"); } if (Section->m_ContinueSection != NULL) { CPU_Message("Continue Section: %d",Section->m_ContinueSection->m_SectionID); } else { CPU_Message("Continue Section: None"); } CPU_Message("=======================",Section->m_SectionID); return true; } bool CRecompiler::InheritParentInfo (CCodeSection * Section) { /* int count, start, NoOfParents, NoOfCompiledParents, FirstParent,CurrentParent; BLOCK_PARENT * SectionParents; BLOCK_SECTION * Parent; JUMP_INFO * JumpInfo; char Label[100]; BOOL NeedSync; */ DisplaySectionInformation(Section,Section->m_SectionID,CCodeSection::GetNewTestValue()); if (Section->ParentSection.empty()) { Section->RegStart.Initilize(); Section->RegWorking = Section->RegStart; return true; } if (Section->ParentSection.size() == 1) { CCodeSection * Parent = *(Section->ParentSection.begin()); CJumpInfo * JumpInfo = Section == Parent->m_ContinueSection ? &Parent->m_Cont : &Parent->m_Jump; Section->RegStart = JumpInfo->RegSet; if (JumpInfo->LinkLocation != NULL) { CPU_Message(" Section_%d:",Section->m_SectionID); SetJump32(JumpInfo->LinkLocation,RecompPos()); if (JumpInfo->LinkLocation2 != NULL) { SetJump32(JumpInfo->LinkLocation2,RecompPos()); } } Section->RegWorking = Section->RegStart; return true; } //Multiple Parents BLOCK_PARENT_LIST ParentList; SECTION_LIST::iterator iter; for (iter = Section->ParentSection.begin(); iter != Section->ParentSection.end(); iter++) { CCodeSection * Parent = *iter; BLOCK_PARENT BlockParent; if (Parent->CompiledLocation == NULL) { continue; } if (Parent->m_JumpSection != Parent->m_ContinueSection) { BlockParent.Parent = Parent; BlockParent.JumpInfo = Section == Parent->m_ContinueSection?&Parent->m_Cont:&Parent->m_Jump; ParentList.push_back(BlockParent); } else { BlockParent.Parent = Parent; BlockParent.JumpInfo = &Parent->m_Cont; ParentList.push_back(BlockParent); BlockParent.Parent = Parent; BlockParent.JumpInfo = &Parent->m_Jump; ParentList.push_back(BlockParent); } } int NoOfCompiledParents = ParentList.size(); if (NoOfCompiledParents == 0) { DisplayError("No Parent has been compiled ????"); return false; } // Add all the uncompiled blocks to the end of the list for (iter = Section->ParentSection.begin(); iter != Section->ParentSection.end(); iter++) { CCodeSection * Parent = *iter; BLOCK_PARENT BlockParent; if (Parent->CompiledLocation != NULL) { continue; } if (Parent->m_JumpSection != Parent->m_ContinueSection) { BlockParent.Parent = Parent; BlockParent.JumpInfo = Section == Parent->m_ContinueSection?&Parent->m_Cont:&Parent->m_Jump; ParentList.push_back(BlockParent); } else { BlockParent.Parent = Parent; BlockParent.JumpInfo = &Parent->m_Cont; ParentList.push_back(BlockParent); BlockParent.Parent = Parent; BlockParent.JumpInfo = &Parent->m_Jump; ParentList.push_back(BlockParent); } } int FirstParent = 0; for (int count = 1;count < NoOfCompiledParents;count++) { if (ParentList[count].JumpInfo->FallThrough) { FirstParent = count; break; } } //Link First Parent to start CCodeSection * Parent = ParentList[FirstParent].Parent; CJumpInfo * JumpInfo = ParentList[FirstParent].JumpInfo; Section->RegWorking = JumpInfo->RegSet; if (JumpInfo->LinkLocation != NULL) { CPU_Message(" Section_%d (from %d):",Section->m_SectionID,Parent->m_SectionID); SetJump32(JumpInfo->LinkLocation,RecompPos()); JumpInfo->LinkLocation = NULL; if (JumpInfo->LinkLocation2 != NULL) { SetJump32(JumpInfo->LinkLocation2,RecompPos()); JumpInfo->LinkLocation2 = NULL; } } if (Section->StartPC < Parent->m_CompilePC ) { UpdateCounters(&JumpInfo->RegSet.BlockCycleCount(),&JumpInfo->RegSet.BlockRandomModifier(),true); CompileSystemCheck(Section->StartPC,JumpInfo->RegSet); } else { UpdateCounters(&JumpInfo->RegSet.BlockCycleCount(),&JumpInfo->RegSet.BlockRandomModifier(),false); } JumpInfo->FallThrough = false; //Fix up initial state UnMap_AllFPRs(Section); for (count = 0;count < ParentList.size();count++) { int count2, MemoryStackPos; if (count == FirstParent) { continue; } Parent = ParentList[count].Parent; CRegInfo * RegSet = &ParentList[count].JumpInfo->RegSet; if (Section->CurrentRoundingModel() != RegSet->CurrentRoundingModel()) { Section->CurrentRoundingModel() = CRegInfo::RoundUnknown; } if (ParentList.size() != NoOfCompiledParents) { Section->CurrentRoundingModel() = CRegInfo::RoundUnknown; } //Find Parent MapRegState MemoryStackPos = -1; for (count2 = 1; count2 < 10; count2++) { if (RegSet->x86Mapped(count2) == CRegInfo::Stack_Mapped) { MemoryStackPos = count2; break; } } if (MemoryStackPos < 0) { // if the memory stack position is not mapped then unmap it int MemStackReg = Map_MemoryStack(Section,x86_Any,false); if (MemStackReg > 0) { UnMap_X86reg(Section,MemStackReg); } } for (count2 = 1; count2 < 32; count2++) { if (Section->Is32BitMapped(count2)) { switch (RegSet->MipsRegState(count2)) { case CRegInfo::STATE_MAPPED_64: Map_GPR_64bit(Section,count2,count2); break; case CRegInfo::STATE_MAPPED_32_ZERO: break; case CRegInfo::STATE_MAPPED_32_SIGN: if (Section->IsUnsigned(count2)) { Section->MipsRegState(count2) = CRegInfo::STATE_MAPPED_32_SIGN; } break; case CRegInfo::STATE_CONST_64: Map_GPR_64bit(Section,count2,count2); break; case CRegInfo::STATE_CONST_32: if ((RegSet->MipsRegLo_S(count2) < 0) && Section->IsUnsigned(count2)) { Section->MipsRegState(count2) = CRegInfo::STATE_MAPPED_32_SIGN; } break; case CRegInfo::STATE_UNKNOWN: //Map_GPR_32bit(Section,count2,true,count2); Map_GPR_64bit(Section,count2,count2); //?? //UnMap_GPR(Section,count2,true); ?? break; #ifndef EXTERNAL_RELEASE default: DisplayError("Unknown CPU State(%d) in InheritParentInfo",RegSet->MipsRegState(count2)); #endif } } if (Section->IsConst(count2)) { if (Section->MipsRegState(count2) != RegSet->MipsRegState(count2)) { if (Section->Is32Bit(count2)) { Map_GPR_32bit(Section,count2,true,count2); } else { Map_GPR_32bit(Section,count2,true,count2); } } else if (Section->Is32Bit(count2) && Section->MipsRegLo(count2) != RegSet->MipsRegLo(count2)) { Map_GPR_32bit(Section,count2,true,count2); } else if (Section->Is64Bit(count2) && Section->MipsReg(count2) != RegSet->MipsReg(count2)) { Map_GPR_32bit(Section,count2,true,count2); } } Section->ResetX86Protection(); } if (MemoryStackPos > 0) { Map_MemoryStack(Section,MemoryStackPos,true); } } Section->RegStart = Section->RegWorking; //Sync registers for different blocks char Label[100]; sprintf(Label,"Section_%d",Section->m_SectionID); int CurrentParent = FirstParent; bool NeedSync = false; for (count = 0;count < NoOfCompiledParents;count++) { CRegInfo * RegSet; int count2; if (count == FirstParent) { continue; } Parent = ParentList[count].Parent; JumpInfo = ParentList[count].JumpInfo; RegSet = &ParentList[count].JumpInfo->RegSet; if (JumpInfo->RegSet.BlockCycleCount() != 0) { NeedSync = true; } if (JumpInfo->RegSet.BlockRandomModifier() != 0) { NeedSync = true; } for (count2 = 0; count2 < 8; count2++) { if (Section->FpuMappedTo(count2) == (DWORD)-1) { NeedSync = true; } } for (count2 = 1; count2 < 10; count2++) { if (Section->x86Mapped(count2) == CRegInfo::Stack_Mapped) { if (Section->x86Mapped(count2) != RegSet->x86Mapped(count2)) { NeedSync = true; } break; } } for (count2 = 0; count2 < 32; count2++) { if (NeedSync == true) { break; } if (Section->MipsRegState(count2) != RegSet->MipsRegState(count2)) { NeedSync = true; continue; } switch (Section->MipsRegState(count2)) { case CRegInfo::STATE_UNKNOWN: break; case CRegInfo::STATE_MAPPED_64: if (Section->MipsReg(count2) != RegSet->MipsReg(count2)) { NeedSync = true; } break; case CRegInfo::STATE_MAPPED_32_ZERO: case CRegInfo::STATE_MAPPED_32_SIGN: if (Section->MipsRegLo(count2) != RegSet->MipsRegLo(count2)) { //DisplayError("Parent: %d",Parent->m_SectionID); NeedSync = true; } break; case CRegInfo::STATE_CONST_32: if (Section->MipsRegLo(count2) != RegSet->MipsRegLo(count2)) { #if (!defined(EXTERNAL_RELEASE)) DisplayError("Umm.. how ???"); #endif NeedSync = true; } break; #ifndef EXTERNAL_RELEASE default: DisplayError("Unhandled Reg state %d\nin InheritParentInfo",Section->MipsRegState(count2)); #endif } } if (NeedSync == false) { continue; } Parent = ParentList[CurrentParent].Parent; JumpInfo = ParentList[CurrentParent].JumpInfo; JmpLabel32(Label,0); JumpInfo->LinkLocation = RecompPos() - 4; JumpInfo->LinkLocation2 = NULL; CurrentParent = count; Parent = ParentList[CurrentParent].Parent; JumpInfo = ParentList[CurrentParent].JumpInfo; CPU_Message(" Section_%d (from %d):",Section->m_SectionID,Parent->m_SectionID); if (JumpInfo->LinkLocation != NULL) { SetJump32(JumpInfo->LinkLocation,RecompPos()); JumpInfo->LinkLocation = NULL; if (JumpInfo->LinkLocation2 != NULL) { SetJump32(JumpInfo->LinkLocation2,RecompPos()); JumpInfo->LinkLocation2 = NULL; } } Section->RegWorking = JumpInfo->RegSet; if (Section->StartPC < Parent->m_CompilePC ) { UpdateCounters(&Section->BlockCycleCount(),&Section->BlockRandomModifier(),true); CompileSystemCheck(Section->StartPC,Section->RegWorking); } else { UpdateCounters(&Section->BlockCycleCount(),&Section->BlockRandomModifier(),false); } SyncRegState(Section,&Section->RegStart); //Sync Section->RegStart = Section->RegWorking; } for (count = 0;count < NoOfCompiledParents;count++) { Parent = ParentList[count].Parent; JumpInfo = ParentList[count].JumpInfo; if (JumpInfo->LinkLocation != NULL) { SetJump32(JumpInfo->LinkLocation,RecompPos()); JumpInfo->LinkLocation = NULL; if (JumpInfo->LinkLocation2 != NULL) { SetJump32(JumpInfo->LinkLocation2,RecompPos()); JumpInfo->LinkLocation2 = NULL; } } } CPU_Message(" Section_%d:",Section->m_SectionID); Section->BlockCycleCount() = 0; Section->BlockRandomModifier() = 0; return true; } bool CRecompiler::GenerateX86Code(CCodeBlock & BlockInfo, CCodeSection * Section, DWORD Test ) { _Notify->BreakPoint(__FILE__,__LINE__); #ifdef tofix if (Section == NULL) { return false; } if (Section->CompiledLocation != NULL) { if (Section->Test == Test) { return false; } Section->Test = Test; if (GenerateX86Code(BlockInfo,Section->m_ContinueSection,Test)) { return true; } if (GenerateX86Code(BlockInfo,Section->m_JumpSection,Test)) { return true; } return false; } if (Section->ParentSection.size() > 0) { for (SECTION_LIST::iterator iter = Section->ParentSection.begin(); iter != Section->ParentSection.end(); iter++) { CCodeSection * Parent = *iter; if (Parent->CompiledLocation != NULL) { continue; } if (Section->IsAllParentLoops(Parent,true,CCodeSection::GetNewTestValue())) { continue; } return false; } } if (!InheritParentInfo(Section)) { return false; } Section->CompiledLocation = RecompPos(); CRecompilerOps::CompilePC() = Section->StartPC; NextInstruction = NORMAL; /*if (m_SyncSystem) { //if (m_SyncSystem && (DWORD)RecompPos() > 0x6094C283) { MoveConstToVariable(Section->StartPC,&PROGRAM_COUNTER,"PROGRAM_COUNTER"); if (BlockCycleCount != 0) { AddConstToVariable(BlockCycleCount,&_CP0[9],CRegName::Cop0[9]); SubConstFromVariable(BlockCycleCount,&Timers.Timer,"Timer"); } if (BlockRandomModifier != 0) { SubConstFromVariable(BlockRandomModifier,&_CP0[1],CRegName::Cop0[1]); } BlockCycleCount = 0; BlockRandomModifier = 0; Call_Direct(SyncToPC, "SyncToPC"); MoveConstToVariable((DWORD)RecompPos(),&CurrentBlock,"CurrentBlock"); }*/ do { __try { if (!_MMU->LW_VAddr(CRecompilerOps::CompilePC(), g_Opcode.Hex)) { DisplayError(GS(MSG_FAIL_LOAD_WORD)); ExitThread(0); } } __except( _MMU->MemoryFilter( GetExceptionCode(), GetExceptionInformation()) ) { DisplayError(GS(MSG_UNKNOWN_MEM_ACTION)); ExitThread(0); } //if (CRecompilerOps::CompilePC() == 0x800AA51C && NextInstruction == NORMAL) { _asm int 3 } // if (CRecompilerOps::CompilePC() == 0xF000044 && NextInstruction == NORMAL) // { // WriteBackRegisters(Section); // UpdateCounters(&Section->BlockCycleCount(),&Section->BlockRandomModifier(),false); // // CompConstToVariable(0x26D5BB0,&_CP0[9],CRegName::Cop0[9]); // JlLabel8("blah",0); // BYTE * Jump = RecompPos() - 1; // // BreakPoint(__FILE__,__LINE__); // X86BreakPoint(__FILE__,__LINE__); // *((BYTE *)(Jump))=(BYTE)(RecompPos() - Jump - 1); // } /*if (CRecompilerOps::CompilePC() >= 0x800C4024 && CRecompilerOps::CompilePC() < 0x800C4030) { CurrentRoundingModel = RoundUnknown; }*/ // if (CRecompilerOps::CompilePC() >= 0x800017A8 && CRecompilerOps::CompilePC() < 0x800017DC && NextInstruction == NORMAL) { // WriteBackRegisters(Section); // UpdateCounters(&Section->BlockCycleCount(),&Section->BlockRandomModifier(),false); // MoveConstToVariable(CRecompilerOps::CompilePC(),&PROGRAM_COUNTER,"PROGRAM_COUNTER"); // //MoveConstToVariable((DWORD)RecompPos(),&CurrentBlock,"CurrentBlock"); // if (m_SyncSystem) { Call_Direct(SyncToPC, "SyncToPC"); } // } // if (CRecompilerOps::CompilePC() >= 0x8005E984 && CRecompilerOps::CompilePC() < 0x8005EA84 && NextInstruction == NORMAL) { // WriteBackRegisters(Section); // UpdateCounters(&Section->BlockCycleCount(),&Section->BlockRandomModifier(),false); // MoveConstToVariable(CRecompilerOps::CompilePC(),&PROGRAM_COUNTER,"PROGRAM_COUNTER"); // //MoveConstToVariable((DWORD)RecompPos(),&CurrentBlock,"CurrentBlock"); // if (m_SyncSystem) { Call_Direct(SyncToPC, "SyncToPC"); } // } // if (CRecompilerOps::CompilePC() >= 0xF000000 && CRecompilerOps::CompilePC() < 0xF000500 && NextInstruction == NORMAL) { // WriteBackRegisters(Section); // UpdateCounters(&Section->BlockCycleCount(),&Section->BlockRandomModifier(),false); // MoveConstToVariable(CRecompilerOps::CompilePC(),&PROGRAM_COUNTER,"PROGRAM_COUNTER"); // //MoveConstToVariable((DWORD)RecompPos(),&CurrentBlock,"CurrentBlock"); // if (m_SyncSystem) { Call_Direct(SyncToPC, "SyncToPC"); } // } /*if (CRecompilerOps::CompilePC() == 0x802000D0 && NextInstruction == NORMAL) { CPU_Message("%s = %d",CRegName::GPR[14],Section->MipsRegState(14)); }*/ /*if (CRecompilerOps::CompilePC() == 0x150A1514 && NextInstruction == NORMAL) { CPU_Message("%s = %d",CRegName::GPR[14],Section->MipsRegState(14)); } if (CRecompilerOps::CompilePC() == 0x150A1454 && NextInstruction == NORMAL) { CPU_Message("%s = %d",CRegName::GPR[14],Section->MipsRegState(14)); }*/ if (CRecompilerOps::CompilePC() > Section->BlockInfo->EndVAddr) { Section->BlockInfo->EndVAddr = CRecompilerOps::CompilePC(); } Section->BlockCycleCount() += CountPerOp(); //CPU_Message("BlockCycleCount = %d",BlockCycleCount); Section->BlockRandomModifier() += 1; //CPU_Message("BlockRandomModifier = %d",BlockRandomModifier); Section->ResetX86Protection(); switch (g_Opcode.op) { case R4300i_SPECIAL: switch (g_Opcode.funct) { case R4300i_SPECIAL_SLL: Compile_R4300i_SPECIAL_SLL(Section); break; case R4300i_SPECIAL_SRL: Compile_R4300i_SPECIAL_SRL(Section); break; case R4300i_SPECIAL_SRA: Compile_R4300i_SPECIAL_SRA(Section); break; case R4300i_SPECIAL_SLLV: Compile_R4300i_SPECIAL_SLLV(Section); break; case R4300i_SPECIAL_SRLV: Compile_R4300i_SPECIAL_SRLV(Section); break; case R4300i_SPECIAL_SRAV: Compile_R4300i_SPECIAL_SRAV(Section); break; case R4300i_SPECIAL_JR: Compile_R4300i_SPECIAL_JR(Section); break; case R4300i_SPECIAL_JALR: Compile_R4300i_SPECIAL_JALR(Section); break; case R4300i_SPECIAL_MFLO: Compile_R4300i_SPECIAL_MFLO(Section); break; case R4300i_SPECIAL_SYSCALL: Compile_R4300i_SPECIAL_SYSCALL(Section); break; case R4300i_SPECIAL_MTLO: Compile_R4300i_SPECIAL_MTLO(Section); break; case R4300i_SPECIAL_MFHI: Compile_R4300i_SPECIAL_MFHI(Section); break; case R4300i_SPECIAL_MTHI: Compile_R4300i_SPECIAL_MTHI(Section); break; case R4300i_SPECIAL_DSLLV: Compile_R4300i_SPECIAL_DSLLV(Section); break; case R4300i_SPECIAL_DSRLV: Compile_R4300i_SPECIAL_DSRLV(Section); break; case R4300i_SPECIAL_DSRAV: Compile_R4300i_SPECIAL_DSRAV(Section); break; case R4300i_SPECIAL_MULT: Compile_R4300i_SPECIAL_MULT(Section); break; case R4300i_SPECIAL_DIV: Compile_R4300i_SPECIAL_DIV(Section); break; case R4300i_SPECIAL_DIVU: Compile_R4300i_SPECIAL_DIVU(Section); break; case R4300i_SPECIAL_MULTU: Compile_R4300i_SPECIAL_MULTU(Section); break; case R4300i_SPECIAL_DMULT: Compile_R4300i_SPECIAL_DMULT(Section); break; case R4300i_SPECIAL_DMULTU: Compile_R4300i_SPECIAL_DMULTU(Section); break; case R4300i_SPECIAL_DDIV: Compile_R4300i_SPECIAL_DDIV(Section); break; case R4300i_SPECIAL_DDIVU: Compile_R4300i_SPECIAL_DDIVU(Section); break; case R4300i_SPECIAL_ADD: Compile_R4300i_SPECIAL_ADD(Section); break; case R4300i_SPECIAL_ADDU: Compile_R4300i_SPECIAL_ADDU(Section); break; case R4300i_SPECIAL_SUB: Compile_R4300i_SPECIAL_SUB(Section); break; case R4300i_SPECIAL_SUBU: Compile_R4300i_SPECIAL_SUBU(Section); break; case R4300i_SPECIAL_AND: Compile_R4300i_SPECIAL_AND(Section); break; case R4300i_SPECIAL_OR: Compile_R4300i_SPECIAL_OR(Section); break; case R4300i_SPECIAL_XOR: Compile_R4300i_SPECIAL_XOR(Section); break; case R4300i_SPECIAL_NOR: Compile_R4300i_SPECIAL_NOR(Section); break; case R4300i_SPECIAL_SLT: Compile_R4300i_SPECIAL_SLT(Section); break; case R4300i_SPECIAL_SLTU: Compile_R4300i_SPECIAL_SLTU(Section); break; case R4300i_SPECIAL_DADD: Compile_R4300i_SPECIAL_DADD(Section); break; case R4300i_SPECIAL_DADDU: Compile_R4300i_SPECIAL_DADDU(Section); break; case R4300i_SPECIAL_DSUB: Compile_R4300i_SPECIAL_DSUB(Section); break; case R4300i_SPECIAL_DSUBU: Compile_R4300i_SPECIAL_DSUBU(Section); break; case R4300i_SPECIAL_DSLL: Compile_R4300i_SPECIAL_DSLL(Section); break; case R4300i_SPECIAL_DSRL: Compile_R4300i_SPECIAL_DSRL(Section); break; case R4300i_SPECIAL_DSRA: Compile_R4300i_SPECIAL_DSRA(Section); break; case R4300i_SPECIAL_DSLL32: Compile_R4300i_SPECIAL_DSLL32(Section); break; case R4300i_SPECIAL_DSRL32: Compile_R4300i_SPECIAL_DSRL32(Section); break; case R4300i_SPECIAL_DSRA32: Compile_R4300i_SPECIAL_DSRA32(Section); break; default: Compile_R4300i_UnknownOpcode(Section); break; } break; case R4300i_REGIMM: switch (g_Opcode.rt) { case R4300i_REGIMM_BLTZ:Compile_R4300i_Branch(Section,BLTZ_Compare,BranchTypeRs, false); break; case R4300i_REGIMM_BGEZ:Compile_R4300i_Branch(Section,BGEZ_Compare,BranchTypeRs, false); break; case R4300i_REGIMM_BLTZL:Compile_R4300i_BranchLikely(Section,BLTZ_Compare, false); break; case R4300i_REGIMM_BGEZL:Compile_R4300i_BranchLikely(Section,BGEZ_Compare, false); break; case R4300i_REGIMM_BLTZAL:Compile_R4300i_Branch(Section,BLTZ_Compare,BranchTypeRs, true); break; case R4300i_REGIMM_BGEZAL:Compile_R4300i_Branch(Section,BGEZ_Compare,BranchTypeRs, true); break; default: Compile_R4300i_UnknownOpcode(Section); break; } break; case R4300i_BEQ: Compile_R4300i_Branch(Section,BEQ_Compare,BranchTypeRsRt,false); break; case R4300i_BNE: Compile_R4300i_Branch(Section,BNE_Compare,BranchTypeRsRt,false); break; case R4300i_BGTZ:Compile_R4300i_Branch(Section,BGTZ_Compare,BranchTypeRs,false); break; case R4300i_BLEZ:Compile_R4300i_Branch(Section,BLEZ_Compare,BranchTypeRs,false); break; case R4300i_J: Compile_R4300i_J(Section); break; case R4300i_JAL: Compile_R4300i_JAL(Section); break; case R4300i_ADDI: Compile_R4300i_ADDI(Section); break; case R4300i_ADDIU: Compile_R4300i_ADDIU(Section); break; case R4300i_SLTI: Compile_R4300i_SLTI(Section); break; case R4300i_SLTIU: Compile_R4300i_SLTIU(Section); break; case R4300i_ANDI: Compile_R4300i_ANDI(Section); break; case R4300i_ORI: Compile_R4300i_ORI(Section); break; case R4300i_XORI: Compile_R4300i_XORI(Section); break; case R4300i_LUI: Compile_R4300i_LUI(Section); break; case R4300i_CP0: switch (g_Opcode.rs) { case R4300i_COP0_MF: Compile_R4300i_COP0_MF(Section); break; case R4300i_COP0_MT: Compile_R4300i_COP0_MT(Section); break; default: if ( (g_Opcode.rs & 0x10 ) != 0 ) { switch( g_Opcode.funct ) { case R4300i_COP0_CO_TLBR: Compile_R4300i_COP0_CO_TLBR(Section); break; case R4300i_COP0_CO_TLBWI: Compile_R4300i_COP0_CO_TLBWI(Section); break; case R4300i_COP0_CO_TLBWR: Compile_R4300i_COP0_CO_TLBWR(Section); break; case R4300i_COP0_CO_TLBP: Compile_R4300i_COP0_CO_TLBP(Section); break; case R4300i_COP0_CO_ERET: Compile_R4300i_COP0_CO_ERET(Section); break; default: Compile_R4300i_UnknownOpcode(Section); break; } } else { Compile_R4300i_UnknownOpcode(Section); } } break; case R4300i_CP1: switch (g_Opcode.rs) { case R4300i_COP1_MF: Compile_R4300i_COP1_MF(Section); break; case R4300i_COP1_DMF: Compile_R4300i_COP1_DMF(Section); break; case R4300i_COP1_CF: Compile_R4300i_COP1_CF(Section); break; case R4300i_COP1_MT: Compile_R4300i_COP1_MT(Section); break; case R4300i_COP1_DMT: Compile_R4300i_COP1_DMT(Section); break; case R4300i_COP1_CT: Compile_R4300i_COP1_CT(Section); break; case R4300i_COP1_BC: switch (g_Opcode.ft) { case R4300i_COP1_BC_BCF: Compile_R4300i_Branch(Section,COP1_BCF_Compare,BranchTypeCop1,false); break; case R4300i_COP1_BC_BCT: Compile_R4300i_Branch(Section,COP1_BCT_Compare,BranchTypeCop1,false); break; case R4300i_COP1_BC_BCFL: Compile_R4300i_BranchLikely(Section,COP1_BCF_Compare,false); break; case R4300i_COP1_BC_BCTL: Compile_R4300i_BranchLikely(Section,COP1_BCT_Compare,false); break; default: Compile_R4300i_UnknownOpcode(Section); break; } break; case R4300i_COP1_S: switch (g_Opcode.funct) { case R4300i_COP1_FUNCT_ADD: Compile_R4300i_COP1_S_ADD(Section); break; case R4300i_COP1_FUNCT_SUB: Compile_R4300i_COP1_S_SUB(Section); break; case R4300i_COP1_FUNCT_MUL: Compile_R4300i_COP1_S_MUL(Section); break; case R4300i_COP1_FUNCT_DIV: Compile_R4300i_COP1_S_DIV(Section); break; case R4300i_COP1_FUNCT_ABS: Compile_R4300i_COP1_S_ABS(Section); break; case R4300i_COP1_FUNCT_NEG: Compile_R4300i_COP1_S_NEG(Section); break; case R4300i_COP1_FUNCT_SQRT: Compile_R4300i_COP1_S_SQRT(Section); break; case R4300i_COP1_FUNCT_MOV: Compile_R4300i_COP1_S_MOV(Section); break; case R4300i_COP1_FUNCT_TRUNC_L: Compile_R4300i_COP1_S_TRUNC_L(Section); break; case R4300i_COP1_FUNCT_CEIL_L: Compile_R4300i_COP1_S_CEIL_L(Section); break; //added by Witten case R4300i_COP1_FUNCT_FLOOR_L: Compile_R4300i_COP1_S_FLOOR_L(Section); break; //added by Witten case R4300i_COP1_FUNCT_ROUND_W: Compile_R4300i_COP1_S_ROUND_W(Section); break; case R4300i_COP1_FUNCT_TRUNC_W: Compile_R4300i_COP1_S_TRUNC_W(Section); break; case R4300i_COP1_FUNCT_CEIL_W: Compile_R4300i_COP1_S_CEIL_W(Section); break; //added by Witten case R4300i_COP1_FUNCT_FLOOR_W: Compile_R4300i_COP1_S_FLOOR_W(Section); break; case R4300i_COP1_FUNCT_CVT_D: Compile_R4300i_COP1_S_CVT_D(Section); break; case R4300i_COP1_FUNCT_CVT_W: Compile_R4300i_COP1_S_CVT_W(Section); break; case R4300i_COP1_FUNCT_CVT_L: Compile_R4300i_COP1_S_CVT_L(Section); break; case R4300i_COP1_FUNCT_C_F: case R4300i_COP1_FUNCT_C_UN: case R4300i_COP1_FUNCT_C_EQ: case R4300i_COP1_FUNCT_C_UEQ: case R4300i_COP1_FUNCT_C_OLT: case R4300i_COP1_FUNCT_C_ULT: case R4300i_COP1_FUNCT_C_OLE: case R4300i_COP1_FUNCT_C_ULE: case R4300i_COP1_FUNCT_C_SF: case R4300i_COP1_FUNCT_C_NGLE: case R4300i_COP1_FUNCT_C_SEQ: case R4300i_COP1_FUNCT_C_NGL: case R4300i_COP1_FUNCT_C_LT: case R4300i_COP1_FUNCT_C_NGE: case R4300i_COP1_FUNCT_C_LE: case R4300i_COP1_FUNCT_C_NGT: Compile_R4300i_COP1_S_CMP(Section); break; default: Compile_R4300i_UnknownOpcode(Section); break; } break; case R4300i_COP1_D: switch (g_Opcode.funct) { case R4300i_COP1_FUNCT_ADD: Compile_R4300i_COP1_D_ADD(Section); break; case R4300i_COP1_FUNCT_SUB: Compile_R4300i_COP1_D_SUB(Section); break; case R4300i_COP1_FUNCT_MUL: Compile_R4300i_COP1_D_MUL(Section); break; case R4300i_COP1_FUNCT_DIV: Compile_R4300i_COP1_D_DIV(Section); break; case R4300i_COP1_FUNCT_ABS: Compile_R4300i_COP1_D_ABS(Section); break; case R4300i_COP1_FUNCT_NEG: Compile_R4300i_COP1_D_NEG(Section); break; case R4300i_COP1_FUNCT_SQRT: Compile_R4300i_COP1_D_SQRT(Section); break; case R4300i_COP1_FUNCT_MOV: Compile_R4300i_COP1_D_MOV(Section); break; case R4300i_COP1_FUNCT_TRUNC_L: Compile_R4300i_COP1_D_TRUNC_L(Section); break; //added by Witten case R4300i_COP1_FUNCT_CEIL_L: Compile_R4300i_COP1_D_CEIL_L(Section); break; //added by Witten case R4300i_COP1_FUNCT_FLOOR_L: Compile_R4300i_COP1_D_FLOOR_L(Section); break; //added by Witten case R4300i_COP1_FUNCT_ROUND_W: Compile_R4300i_COP1_D_ROUND_W(Section); break; case R4300i_COP1_FUNCT_TRUNC_W: Compile_R4300i_COP1_D_TRUNC_W(Section); break; case R4300i_COP1_FUNCT_CEIL_W: Compile_R4300i_COP1_D_CEIL_W(Section); break; //added by Witten case R4300i_COP1_FUNCT_FLOOR_W: Compile_R4300i_COP1_D_FLOOR_W(Section); break; //added by Witten case R4300i_COP1_FUNCT_CVT_S: Compile_R4300i_COP1_D_CVT_S(Section); break; case R4300i_COP1_FUNCT_CVT_W: Compile_R4300i_COP1_D_CVT_W(Section); break; case R4300i_COP1_FUNCT_CVT_L: Compile_R4300i_COP1_D_CVT_L(Section); break; case R4300i_COP1_FUNCT_C_F: case R4300i_COP1_FUNCT_C_UN: case R4300i_COP1_FUNCT_C_EQ: case R4300i_COP1_FUNCT_C_UEQ: case R4300i_COP1_FUNCT_C_OLT: case R4300i_COP1_FUNCT_C_ULT: case R4300i_COP1_FUNCT_C_OLE: case R4300i_COP1_FUNCT_C_ULE: case R4300i_COP1_FUNCT_C_SF: case R4300i_COP1_FUNCT_C_NGLE: case R4300i_COP1_FUNCT_C_SEQ: case R4300i_COP1_FUNCT_C_NGL: case R4300i_COP1_FUNCT_C_LT: case R4300i_COP1_FUNCT_C_NGE: case R4300i_COP1_FUNCT_C_LE: case R4300i_COP1_FUNCT_C_NGT: Compile_R4300i_COP1_D_CMP(Section); break; default: Compile_R4300i_UnknownOpcode(Section); break; } break; case R4300i_COP1_W: switch (g_Opcode.funct) { case R4300i_COP1_FUNCT_CVT_S: Compile_R4300i_COP1_W_CVT_S(Section); break; case R4300i_COP1_FUNCT_CVT_D: Compile_R4300i_COP1_W_CVT_D(Section); break; default: Compile_R4300i_UnknownOpcode(Section); break; } break; case R4300i_COP1_L: switch (g_Opcode.funct) { case R4300i_COP1_FUNCT_CVT_S: Compile_R4300i_COP1_L_CVT_S(Section); break; case R4300i_COP1_FUNCT_CVT_D: Compile_R4300i_COP1_L_CVT_D(Section); break; default: Compile_R4300i_UnknownOpcode(Section); break; } break; default: Compile_R4300i_UnknownOpcode(Section); break; } break; case R4300i_BEQL: Compile_R4300i_BranchLikely(Section,BEQ_Compare,false); break; case R4300i_BNEL: Compile_R4300i_BranchLikely(Section,BNE_Compare,false); break; case R4300i_BGTZL:Compile_R4300i_BranchLikely(Section,BGTZ_Compare,false); break; case R4300i_BLEZL:Compile_R4300i_BranchLikely(Section,BLEZ_Compare,false); break; case R4300i_DADDIU: Compile_R4300i_DADDIU(Section); break; case R4300i_LDL: Compile_R4300i_LDL(Section); break; case R4300i_LDR: Compile_R4300i_LDR(Section); break; case R4300i_LB: Compile_R4300i_LB(Section); break; case R4300i_LH: Compile_R4300i_LH(Section); break; case R4300i_LWL: Compile_R4300i_LWL(Section); break; case R4300i_LW: Compile_R4300i_LW(Section); break; case R4300i_LBU: Compile_R4300i_LBU(Section); break; case R4300i_LHU: Compile_R4300i_LHU(Section); break; case R4300i_LWR: Compile_R4300i_LWR(Section); break; case R4300i_LWU: Compile_R4300i_LWU(Section); break; //added by Witten case R4300i_SB: Compile_R4300i_SB(Section); break; case R4300i_SH: Compile_R4300i_SH(Section); break; case R4300i_SWL: Compile_R4300i_SWL(Section); break; case R4300i_SW: Compile_R4300i_SW(Section); break; case R4300i_SWR: Compile_R4300i_SWR(Section); break; case R4300i_SDL: Compile_R4300i_SDL(Section); break; case R4300i_SDR: Compile_R4300i_SDR(Section); break; case R4300i_CACHE: Compile_R4300i_CACHE(Section); break; case R4300i_LL: Compile_R4300i_LL(Section); break; case R4300i_LWC1: Compile_R4300i_LWC1(Section); break; case R4300i_LDC1: Compile_R4300i_LDC1(Section); break; case R4300i_SC: Compile_R4300i_SC(Section); break; case R4300i_LD: Compile_R4300i_LD(Section); break; case R4300i_SWC1: Compile_R4300i_SWC1(Section); break; case R4300i_SDC1: Compile_R4300i_SDC1(Section); break; case R4300i_SD: Compile_R4300i_SD(Section); break; default: Compile_R4300i_UnknownOpcode(Section); break; } if (!bRegCaching()) { WriteBackRegisters(Section); } Section->ResetX86Protection(); /*if ((DWORD)RecompPos() > 0x60B452E6) { if (CRecompilerOps::CompilePC() == 0x8002D9B8 && CRecompilerOps::CompilePC() < 0x8002DA20) { CurrentRoundingModel = RoundUnknown; } }*/ UnMap_AllFPRs(Section); /*if ((DWORD)RecompPos() > 0x60AD0BD3) { if (CRecompilerOps::CompilePC() >= 0x8008B804 && CRecompilerOps::CompilePC() < 0x800496D8) { CPU_Message("Blah *"); WriteBackRegisters(Section); } /*if (CRecompilerOps::CompilePC() >= 0x80000180 && CRecompilerOps::CompilePC() < 0x80000190) { CPU_Message("Blah *"); //WriteBackRegisters(Section); }*/ //} /*for (count = 1; count < 10; count ++) { if (Section->x86Mapped(count) == CRegInfo::Stack_Mapped) { UnMap_X86reg (Section, count); } }*/ //CPU_Message("MemoryStack = %s",Map_MemoryStack(Section, false) > 0?x86_Name(Map_MemoryStack(Section, false)):"Not Mapped"); if ((CRecompilerOps::CompilePC() &0xFFC) == 0xFFC) { if (NextInstruction == DO_DELAY_SLOT) { #ifndef EXTERNAL_RELEASE DisplayError("Wanting to do delay slot over end of block"); #endif } if (NextInstruction == NORMAL) { CompileExit (Section,CRecompilerOps::CompilePC(), CRecompilerOps::CompilePC() + 4,Section->RegWorking,CExitInfo::Normal,true,NULL); NextInstruction = END_BLOCK; } } if (Section->DelaySlotSection) { Section->m_Cont.RegSet = Section->RegWorking; GenerateSectionLinkage(Section); NextInstruction = END_BLOCK; } switch (NextInstruction) { case NORMAL: CRecompilerOps::CompilePC() += 4; break; case DO_DELAY_SLOT: NextInstruction = DELAY_SLOT; CRecompilerOps::CompilePC() += 4; break; case DELAY_SLOT: NextInstruction = DELAY_SLOT_DONE; Section->BlockCycleCount() -= CountPerOp(); Section->BlockRandomModifier() -= 1; CRecompilerOps::CompilePC() -= 4; break; } } while (NextInstruction != END_BLOCK); #endif return true; } void CRecompiler::UpdateCounters ( DWORD * Cycles, DWORD * RandomMod, BOOL CheckTimer) { if (Cycles == NULL || RandomMod == NULL) { BreakPoint(__FILE__,__LINE__); } if (*RandomMod != 0 || *Cycles != 0) { WriteX86Comment("Update Counters"); } if (*RandomMod != 0) { SubConstFromVariable(*RandomMod,&_CP0[1],CRegName::Cop0[1]); } if (*Cycles != 0) { if (m_SyncSystem) { char text[100]; WriteX86Comment("Sync CPU after update of cycles"); Pushad(); sprintf(text,"%d",(DWORD)*Cycles); PushImm32(text,(DWORD)*Cycles); Call_Direct(UpdateSyncCPU,"UpdateSyncCPU"); Popad(); } _Notify->BreakPoint(__FILE__,__LINE__); #ifdef tofix AddConstToVariable(*Cycles,&_CP0[9],CRegName::Cop0[9]); SubConstFromVariable(*Cycles,_Timer,"Timer"); #endif } *Cycles = 0; *RandomMod = 0; if (CheckTimer) { BYTE * Jump; // Timer if (*Cycles == 0) { _Notify->BreakPoint(__FILE__,__LINE__); #ifdef tofix CompConstToVariable(0,_Timer,"Timer"); #endif //} else{ // uses SubConstFromVariable(Cycles,_Timer,"Timer"); for compare flag } JnsLabel8("Continue_From_Timer_Test",0); Jump = RecompPos() - 1; Pushad(); X86BreakPoint(__FILE__,__LINE__); MoveConstToX86reg((DWORD)_SystemTimer,x86_ECX); Call_Direct(AddressOf(CSystemTimer::TimerDone),"CSystemTimer::TimerDone"); Popad(); CPU_Message(""); CPU_Message(" $Continue_From_Timer_Test:"); SetJump8(Jump,RecompPos()); } /* if (CheckTimer) { x86ops.CompConstToVariable(0,(DWORD *)&_Reg->Timer,"_Reg->Timer"); x86ops.JgLabel8("Timer_Fine",0); BYTE * Jump = x86ops.RecompPos().WritePos() - 1; Section->SaveX86Registers(); x86ops.Call_NonStatic_Direct((CSystemTimer *)_Reg,AddressOf(CSystemTimer::CheckTimer),"CSystemTimer::CheckTimer"); Section->RestoreX86Registers(); x86ops.WriteLabel("Timer_Fine"); x86ops.SetJump8(Jump, x86ops.RecompPos().WritePos()); }*/ } void SyncRegState (CCodeSection * Section, CRegInfo * SyncTo) { int count, x86Reg,x86RegHi, changed; changed = false; UnMap_AllFPRs(Section); if (Section->CurrentRoundingModel() != SyncTo->CurrentRoundingModel()) { Section->CurrentRoundingModel() = CRegInfo::RoundUnknown; } x86Reg = Map_MemoryStack(Section, x86_Any, false); //CPU_Message("MemoryStack for Original State = %s",x86Reg > 0?x86_Name(x86Reg):"Not Mapped"); for (x86Reg = 1; x86Reg < 10; x86Reg ++) { if (Section->x86Mapped(x86Reg) != CRegInfo::Stack_Mapped) { continue; } if (SyncTo->x86Mapped(x86Reg) != CRegInfo::Stack_Mapped) { UnMap_X86reg(Section,x86Reg); for (count = 1; count < 10; count ++) { if (SyncTo->x86Mapped(count) == CRegInfo::Stack_Mapped) { MoveX86RegToX86Reg(count,x86Reg); changed = true; } } if (!changed) { _Notify->BreakPoint(__FILE__,__LINE__); #ifdef tofix MoveVariableToX86reg(g_MemoryStack,"MemoryStack",x86Reg); #endif } changed = true; } } for (x86Reg = 1; x86Reg < 10; x86Reg ++) { if (SyncTo->x86Mapped(x86Reg) != CRegInfo::Stack_Mapped) { continue; } //CPU_Message("MemoryStack for Sync State = %s",x86Reg > 0?x86_Name(x86Reg):"Not Mapped"); if (Section->x86Mapped(x86Reg) == CRegInfo::Stack_Mapped) { break; } UnMap_X86reg(Section,x86Reg); } for (count = 1; count < 32; count ++) { if (Section->MipsRegState(count) == SyncTo->MipsRegState(count)) { switch (Section->MipsRegState(count)) { case CRegInfo::STATE_UNKNOWN: continue; case CRegInfo::STATE_MAPPED_64: if (Section->MipsReg(count) == SyncTo->MipsReg(count)) { continue; } break; case CRegInfo::STATE_MAPPED_32_ZERO: case CRegInfo::STATE_MAPPED_32_SIGN: if (Section->MipsRegLo(count) == SyncTo->MipsRegLo(count)) { continue; } break; case CRegInfo::STATE_CONST_64: if (Section->MipsReg(count) != SyncTo->MipsReg(count)) { #if (!defined(EXTERNAL_RELEASE)) DisplayError("Umm.. how ???"); #endif } continue; case CRegInfo::STATE_CONST_32: if (Section->MipsRegLo(count) != SyncTo->MipsRegLo(count)) { #if (!defined(EXTERNAL_RELEASE)) DisplayError("Umm.. how ???"); #endif } continue; #ifndef EXTERNAL_RELEASE default: DisplayError("Unhandled Reg state %d\nin SyncRegState",Section->MipsRegState(count)); #endif } } changed = true; switch (SyncTo->MipsRegState(count)) { case CRegInfo::STATE_UNKNOWN: UnMap_GPR(Section,count,true); break; case CRegInfo::STATE_MAPPED_64: x86Reg = SyncTo->MipsRegLo(count); x86RegHi = SyncTo->MipsRegHi(count); UnMap_X86reg(Section,x86Reg); UnMap_X86reg(Section,x86RegHi); switch (Section->MipsRegState(count)) { case CRegInfo::STATE_UNKNOWN: MoveVariableToX86reg(&_GPR[count].UW[0],CRegName::GPR_Lo[count],x86Reg); MoveVariableToX86reg(&_GPR[count].UW[1],CRegName::GPR_Hi[count],x86RegHi); break; case CRegInfo::STATE_MAPPED_64: MoveX86RegToX86Reg(Section->MipsRegLo(count),x86Reg); Section->x86Mapped(Section->MipsRegLo(count)) = CRegInfo::NotMapped; MoveX86RegToX86Reg(Section->MipsRegHi(count),x86RegHi); Section->x86Mapped(Section->MipsRegHi(count)) = CRegInfo::NotMapped; break; case CRegInfo::STATE_MAPPED_32_SIGN: MoveX86RegToX86Reg(Section->MipsRegLo(count),x86RegHi); ShiftRightSignImmed(x86RegHi,31); MoveX86RegToX86Reg(Section->MipsRegLo(count),x86Reg); Section->x86Mapped(Section->MipsRegLo(count)) = CRegInfo::NotMapped; break; case CRegInfo::STATE_MAPPED_32_ZERO: XorX86RegToX86Reg(x86RegHi,x86RegHi); MoveX86RegToX86Reg(Section->MipsRegLo(count),x86Reg); Section->x86Mapped(Section->MipsRegLo(count)) = CRegInfo::NotMapped; break; case CRegInfo::STATE_CONST_64: MoveConstToX86reg(Section->MipsRegHi(count),x86RegHi); MoveConstToX86reg(Section->MipsRegLo(count),x86Reg); break; case CRegInfo::STATE_CONST_32: MoveConstToX86reg(Section->MipsRegLo_S(count) >> 31,x86RegHi); MoveConstToX86reg(Section->MipsRegLo(count),x86Reg); break; default: #ifndef EXTERNAL_RELEASE CPU_Message("Do something with states in SyncRegState\nSTATE_MAPPED_64\n%d",Section->MipsRegState(count)); DisplayError("Do something with states in SyncRegState\nSTATE_MAPPED_64\n%d",Section->MipsRegState(count)); #endif continue; } Section->MipsRegLo(count) = x86Reg; Section->MipsRegHi(count) = x86RegHi; Section->MipsRegState(count) = CRegInfo::STATE_MAPPED_64; Section->x86Mapped(x86Reg) = CRegInfo::GPR_Mapped; Section->x86Mapped(x86RegHi) = CRegInfo::GPR_Mapped; Section->x86MapOrder(x86Reg) = 1; Section->x86MapOrder(x86RegHi) = 1; break; case CRegInfo::STATE_MAPPED_32_SIGN: x86Reg = SyncTo->MipsRegLo(count); UnMap_X86reg(Section,x86Reg); switch (Section->MipsRegState(count)) { case CRegInfo::STATE_UNKNOWN: MoveVariableToX86reg(&_GPR[count].UW[0],CRegName::GPR_Lo[count],x86Reg); break; case CRegInfo::STATE_CONST_32: MoveConstToX86reg(Section->MipsRegLo(count),x86Reg); break; case CRegInfo::STATE_MAPPED_32_SIGN: MoveX86RegToX86Reg(Section->MipsRegLo(count),x86Reg); Section->x86Mapped(Section->MipsRegLo(count)) = CRegInfo::NotMapped; break; case CRegInfo::STATE_MAPPED_32_ZERO: if (Section->MipsRegLo(count) != (DWORD)x86Reg) { MoveX86RegToX86Reg(Section->MipsRegLo(count),x86Reg); Section->x86Mapped(Section->MipsRegLo(count)) = CRegInfo::NotMapped; } break; case CRegInfo::STATE_MAPPED_64: MoveX86RegToX86Reg(Section->MipsRegLo(count),x86Reg); Section->x86Mapped(Section->MipsRegLo(count)) = CRegInfo::NotMapped; Section->x86Mapped(Section->MipsRegHi(count)) = CRegInfo::NotMapped; break; #ifndef EXTERNAL_RELEASE case CRegInfo::STATE_CONST_64: DisplayError("hi %X\nLo %X",Section->MipsRegHi(count),Section->MipsRegLo(count)); default: CPU_Message("Do something with states in SyncRegState\nSTATE_MAPPED_32_SIGN\n%d",Section->MipsRegState(count)); DisplayError("Do something with states in SyncRegState\nSTATE_MAPPED_32_SIGN\n%d",Section->MipsRegState(count)); #endif } Section->MipsRegLo(count) = x86Reg; Section->MipsRegState(count) = CRegInfo::STATE_MAPPED_32_SIGN; Section->x86Mapped(x86Reg) = CRegInfo::GPR_Mapped; Section->x86MapOrder(x86Reg) = 1; break; case CRegInfo::STATE_MAPPED_32_ZERO: x86Reg = SyncTo->MipsRegLo(count); UnMap_X86reg(Section,x86Reg); switch (Section->MipsRegState(count)) { case CRegInfo::STATE_MAPPED_64: case CRegInfo::STATE_UNKNOWN: MoveVariableToX86reg(&_GPR[count].UW[0],CRegName::GPR_Lo[count],x86Reg); break; case CRegInfo::STATE_MAPPED_32_ZERO: MoveX86RegToX86Reg(Section->MipsRegLo(count),x86Reg); Section->x86Mapped(Section->MipsRegLo(count)) = CRegInfo::NotMapped; break; case CRegInfo::STATE_CONST_32: if (Section->MipsRegLo_S(count) < 0) { CPU_Message("Sign Problems in SyncRegState\nSTATE_MAPPED_32_ZERO"); CPU_Message("%s: %X",CRegName::GPR[count],Section->MipsRegLo_S(count)); #ifndef EXTERNAL_RELEASE DisplayError("Sign Problems in SyncRegState\nSTATE_MAPPED_32_ZERO"); #endif } MoveConstToX86reg(Section->MipsRegLo(count),x86Reg); break; #ifndef EXTERNAL_RELEASE default: CPU_Message("Do something with states in SyncRegState\nSTATE_MAPPED_32_ZERO\n%d",Section->MipsRegState(count)); DisplayError("Do something with states in SyncRegState\nSTATE_MAPPED_32_ZERO\n%d",Section->MipsRegState(count)); #endif } Section->MipsRegLo(count) = x86Reg; Section->MipsRegState(count) = SyncTo->MipsRegState(count); Section->x86Mapped(x86Reg) = CRegInfo::GPR_Mapped; Section->x86MapOrder(x86Reg) = 1; break; default: #if (!defined(EXTERNAL_RELEASE)) CPU_Message("%d\n%d\nreg: %s (%d)",SyncTo->MipsRegState(count),Section->MipsRegState(count),CRegName::GPR[count],count); DisplayError("%d\n%d\nreg: %s (%d)",SyncTo->MipsRegState(count),Section->MipsRegState(count),CRegName::GPR[count],count); DisplayError("Do something with states in SyncRegState"); #endif changed = false; } } } #endif #ifdef tofix void CRecompiler::RemoveFunction (CCompiledFunc * FunInfo, bool DelaySlot, REMOVE_REASON Reason ) { _Notify->BreakPoint(__FILE__,__LINE__); #ifdef tofix LPCSTR lpReason = "Unknown"; switch (Reason) { case Remove_InitialCode: lpReason = "Remove_InitialCode"; break; case Remove_Cache: lpReason = "Remove_Cache"; break; case Remove_ProtectedMem: lpReason = "Remove_ProtectedMem"; break; case Remove_ValidateFunc: lpReason = "Remove_ValidateFunc"; break; case Remove_TLB: lpReason = "Remove_TLB"; break; case Remove_DMA: lpReason = "Remove_DMA"; break; } WriteTraceF(TraceRecompiler,"Remove Func (%s): %X-%X",lpReason, FunInfo->VStartPC(), FunInfo->VEndPC()); if (JumpTable && !DelaySlot) { CCompiledFunc * Info = FunInfo; while (Info) { if (*(JumpTable + (Info->PStartPC() >> 2)) == Info) { *(JumpTable + (Info->PStartPC() >> 2)) = NULL; } Info = Info->Next; } } #endif /* TlbLog.Log("Clear %X",FunInfo->StartPC()); //Remove from the list of called functions FunInfo->RemoveFromCallList(); //remove all functions that call this if (_Settings->LoadDword(SMM_Linked)) { for (FUNCTION_PTR_MAP::iterator item = FunInfo->CallingList().begin(); FunInfo->CallingList().begin() != FunInfo->CallingList().end(); item = FunInfo->CallingList().begin()) { RemoveFunction(m_Functions.find(item->first)); } } else { //Remove from the list of called functions FunInfo->RemoveFromCallingList(); } */ /* DWORD StartBlock = FunInfo->VStartPC() & ~0xFFF; DWORD EndBlock = FunInfo->VEndPC() & ~0xFFF; //Remove this item from the main list if (DelaySlot) { m_FunctionsDelaySlot.Remove(FunInfo); } else { m_Functions.Remove(FunInfo); } //if no more functions in this block then unprotect the memory if (bSMM_Protect()) { for (DWORD Addr = StartBlock; Addr <= EndBlock; Addr += 0x1000 ){ CCompiledFunc * info = m_Functions.FindFunction(Addr,0xFFF); if (info == NULL) { _Notify->BreakPoint(__FILE__,__LINE__); #ifdef tofix _MMU->UnProtectMemory(Addr,Addr + 0xFFC); #endif } } }*/ } bool CRecompiler::ClearRecompCode_Phys(DWORD Address, int length, REMOVE_REASON Reason ) { bool Result = true; if (!ClearRecompCode_Virt(Address + 0x80000000,length,Reason)) { Result = false; } if (!ClearRecompCode_Virt(Address + 0xA0000000,length,Reason)) { Result = false; } if (g_UseTlb) { _Notify->BreakPoint(__FILE__,__LINE__); #ifdef tofix DWORD VAddr, Index = 0; while (_TLB->PAddrToVAddr(Address,VAddr,Index)) { WriteTraceF(TraceRecompiler,"ClearRecompCode Vaddr %X len: %d",VAddr,length); if (!ClearRecompCode_Virt(VAddr,length,Reason)) { Result = false; } } #endif } if (LookUpMode() == FuncFind_PhysicalLookup) { WriteTraceF(TraceRecompiler,"Reseting Jump Table, Addr: %X len: %d",Address,((length + 3) & ~3)); memset((BYTE *)JumpTable + Address,0,((length + 3) & ~3)); } return Result; } bool CRecompiler::ClearRecompCode_Virt(DWORD Address, int length,REMOVE_REASON Reason ) { /* CCompiledFunc * info; do { info = m_Functions.FindFunction(Address,length); if (info) { RemoveFunction(info,false,Reason); } } while (info != NULL); do { info = m_FunctionsDelaySlot.FindFunction(Address,length); if (info) { RemoveFunction(info,true,Reason); } } while (info != NULL); if (bSMM_Protect()) { DWORD Start = Address & ~0xFFF; info = m_Functions.FindFunction(Start,0xFFF); if (info) { WriteTraceF(TraceDebug,"Function exists at %X End: %X",info->VStartPC(),info->VEndPC()); return false; } info = m_FunctionsDelaySlot.FindFunction(Start,0xFFF); if (info) { WriteTraceF(TraceDebug,"Delay function exists at %X End: %X",info->VStartPC(),info->VEndPC()); return false; } return true; }*/ return true; } void CRecompiler::SyncRegState (CCodeSection * Section, CRegInfo * SyncTo) { int count, x86Reg,x86RegHi; bool changed = FALSE; UnMap_AllFPRs(Section); if (Section->CurrentRoundingModel() != SyncTo->CurrentRoundingModel()) { Section->CurrentRoundingModel() = CRegInfo::RoundUnknown; } //x86Reg = Map_MemoryStack(Section, x86_Any, FALSE); //CPU_Message("MemoryStack for Original State = %s",x86Reg > 0?x86_Name(x86Reg):"Not Mapped"); for (x86Reg = 1; x86Reg < 10; x86Reg ++) { if (Section->x86Mapped(x86Reg) != CRegInfo::Stack_Mapped) { continue; } if (SyncTo->x86Mapped(x86Reg) != CRegInfo::Stack_Mapped) { UnMap_X86reg(Section,x86Reg); for (count = 1; count < 10; count ++) { if (SyncTo->x86Mapped(count) == CRegInfo::Stack_Mapped) { MoveX86RegToX86Reg(count,x86Reg); changed = TRUE; } } if (!changed) { _Notify->BreakPoint(__FILE__,__LINE__); #ifdef tofix MoveVariableToX86reg(g_MemoryStack,"MemoryStack",x86Reg); #endif } changed = TRUE; } } for (x86Reg = 1; x86Reg < 10; x86Reg ++) { if (SyncTo->x86Mapped(x86Reg) != CRegInfo::Stack_Mapped) { continue; } //CPU_Message("MemoryStack for Sync State = %s",x86Reg > 0?x86_Name(x86Reg):"Not Mapped"); if (Section->x86Mapped(x86Reg) == CRegInfo::Stack_Mapped) { break; } UnMap_X86reg(Section,x86Reg); } for (count = 1; count < 32; count ++) { if (Section->MipsRegState(count) == SyncTo->MipsRegState(count)) { switch (Section->MipsRegState(count)) { case CRegInfo::STATE_UNKNOWN: continue; case CRegInfo::STATE_MAPPED_64: if (Section->MipsReg(count) == SyncTo->MipsReg(count)) { continue; } break; case CRegInfo::STATE_MAPPED_32_ZERO: case CRegInfo::STATE_MAPPED_32_SIGN: if (Section->MipsRegLo(count) == SyncTo->MipsRegLo(count)) { continue; } break; case CRegInfo::STATE_CONST_64: if (Section->MipsReg(count) != SyncTo->MipsReg(count)) { #if (!defined(EXTERNAL_RELEASE)) DisplayError("Umm.. how ???"); #endif } continue; case CRegInfo::STATE_CONST_32: if (Section->MipsRegLo(count) != SyncTo->MipsRegLo(count)) { #if (!defined(EXTERNAL_RELEASE)) DisplayError("Umm.. how ???"); #endif } continue; #ifndef EXTERNAL_RELEASE default: DisplayError("Unhandled Reg state %d\nin SyncRegState",Section->MipsRegState(count)); #endif } } changed = TRUE; switch (SyncTo->MipsRegState(count)) { case CRegInfo::STATE_UNKNOWN: UnMap_GPR(Section,count,TRUE); break; case CRegInfo::STATE_MAPPED_64: x86Reg = SyncTo->MipsRegLo(count); x86RegHi = SyncTo->MipsRegHi(count); UnMap_X86reg(Section,x86Reg); UnMap_X86reg(Section,x86RegHi); switch (Section->MipsRegState(count)) { case CRegInfo::STATE_UNKNOWN: MoveVariableToX86reg(&_GPR[count].UW[0],CRegName::GPR_Lo[count],x86Reg); MoveVariableToX86reg(&_GPR[count].UW[1],CRegName::GPR_Hi[count],x86RegHi); break; case CRegInfo::STATE_MAPPED_64: MoveX86RegToX86Reg(Section->MipsRegLo(count),x86Reg); Section->x86Mapped(Section->MipsRegLo(count)) = CRegInfo::NotMapped; MoveX86RegToX86Reg(Section->MipsRegHi(count),x86RegHi); Section->x86Mapped(Section->MipsRegHi(count)) = CRegInfo::NotMapped; break; case CRegInfo::STATE_MAPPED_32_SIGN: MoveX86RegToX86Reg(Section->MipsRegLo(count),x86RegHi); ShiftRightSignImmed(x86RegHi,31); MoveX86RegToX86Reg(Section->MipsRegLo(count),x86Reg); Section->x86Mapped(Section->MipsRegLo(count)) = CRegInfo::NotMapped; break; case CRegInfo::STATE_MAPPED_32_ZERO: XorX86RegToX86Reg(x86RegHi,x86RegHi); MoveX86RegToX86Reg(Section->MipsRegLo(count),x86Reg); Section->x86Mapped(Section->MipsRegLo(count)) = CRegInfo::NotMapped; break; case CRegInfo::STATE_CONST_64: MoveConstToX86reg(Section->MipsRegHi(count),x86RegHi); MoveConstToX86reg(Section->MipsRegLo(count),x86Reg); break; case CRegInfo::STATE_CONST_32: MoveConstToX86reg(Section->MipsRegLo_S(count) >> 31,x86RegHi); MoveConstToX86reg(Section->MipsRegLo(count),x86Reg); break; default: #ifndef EXTERNAL_RELEASE CPU_Message("Do something with states in SyncRegState\nSTATE_MAPPED_64\n%d",Section->MipsRegState(count)); DisplayError("Do something with states in SyncRegState\nSTATE_MAPPED_64\n%d",Section->MipsRegState(count)); #endif continue; } Section->MipsRegLo(count) = x86Reg; Section->MipsRegHi(count) = x86RegHi; Section->MipsRegState(count) = CRegInfo::STATE_MAPPED_64; Section->x86Mapped(x86Reg) = CRegInfo::GPR_Mapped; Section->x86Mapped(x86RegHi) = CRegInfo::GPR_Mapped; Section->x86MapOrder(x86Reg) = 1; Section->x86MapOrder(x86RegHi) = 1; break; case CRegInfo::STATE_MAPPED_32_SIGN: x86Reg = SyncTo->MipsRegLo(count); UnMap_X86reg(Section,x86Reg); switch (Section->MipsRegState(count)) { case CRegInfo::STATE_UNKNOWN: MoveVariableToX86reg(&_GPR[count].UW[0],CRegName::GPR_Lo[count],x86Reg); break; case CRegInfo::STATE_CONST_32: MoveConstToX86reg(Section->MipsRegLo(count),x86Reg); break; case CRegInfo::STATE_MAPPED_32_SIGN: MoveX86RegToX86Reg(Section->MipsRegLo(count),x86Reg); Section->x86Mapped(Section->MipsRegLo(count)) = CRegInfo::NotMapped; break; case CRegInfo::STATE_MAPPED_32_ZERO: if (Section->MipsRegLo(count) != (DWORD)x86Reg) { MoveX86RegToX86Reg(Section->MipsRegLo(count),x86Reg); Section->x86Mapped(Section->MipsRegLo(count)) = CRegInfo::NotMapped; } break; case CRegInfo::STATE_MAPPED_64: MoveX86RegToX86Reg(Section->MipsRegLo(count),x86Reg); Section->x86Mapped(Section->MipsRegLo(count)) = CRegInfo::NotMapped; Section->x86Mapped(Section->MipsRegHi(count)) = CRegInfo::NotMapped; break; #ifndef EXTERNAL_RELEASE case CRegInfo::STATE_CONST_64: DisplayError("hi %X\nLo %X",Section->MipsRegHi(count),Section->MipsRegLo(count)); default: CPU_Message("Do something with states in SyncRegState\nSTATE_MAPPED_32_SIGN\n%d",Section->MipsRegState(count)); DisplayError("Do something with states in SyncRegState\nSTATE_MAPPED_32_SIGN\n%d",Section->MipsRegState(count)); #endif } Section->MipsRegLo(count) = x86Reg; Section->MipsRegState(count) = CRegInfo::STATE_MAPPED_32_SIGN; Section->x86Mapped(x86Reg) = CRegInfo::GPR_Mapped; Section->x86MapOrder(x86Reg) = 1; break; case CRegInfo::STATE_MAPPED_32_ZERO: x86Reg = SyncTo->MipsRegLo(count); UnMap_X86reg(Section,x86Reg); switch (Section->MipsRegState(count)) { case CRegInfo::STATE_MAPPED_64: case CRegInfo::STATE_UNKNOWN: MoveVariableToX86reg(&_GPR[count].UW[0],CRegName::GPR_Lo[count],x86Reg); break; case CRegInfo::STATE_MAPPED_32_ZERO: MoveX86RegToX86Reg(Section->MipsRegLo(count),x86Reg); Section->x86Mapped(Section->MipsRegLo(count)) = CRegInfo::NotMapped; break; case CRegInfo::STATE_CONST_32: if (Section->MipsRegLo_S(count) < 0) { CPU_Message("Sign Problems in SyncRegState\nSTATE_MAPPED_32_ZERO"); CPU_Message("%s: %X",CRegName::GPR[count],Section->MipsRegLo_S(count)); #ifndef EXTERNAL_RELEASE DisplayError("Sign Problems in SyncRegState\nSTATE_MAPPED_32_ZERO"); #endif } MoveConstToX86reg(Section->MipsRegLo(count),x86Reg); break; #ifndef EXTERNAL_RELEASE default: CPU_Message("Do something with states in SyncRegState\nSTATE_MAPPED_32_ZERO\n%d",Section->MipsRegState(count)); DisplayError("Do something with states in SyncRegState\nSTATE_MAPPED_32_ZERO\n%d",Section->MipsRegState(count)); #endif } Section->MipsRegLo(count) = x86Reg; Section->MipsRegState(count) = SyncTo->MipsRegState(count); Section->x86Mapped(x86Reg) = CRegInfo::GPR_Mapped; Section->x86MapOrder(x86Reg) = 1; break; default: #if (!defined(EXTERNAL_RELEASE)) CPU_Message("%d\n%d\nreg: %s (%d)",SyncTo->MipsRegState(count),Section->MipsRegState(count),CRegName::GPR[count],count); DisplayError("%d\n%d\nreg: %s (%d)",SyncTo->MipsRegState(count),Section->MipsRegState(count),CRegName::GPR[count],count); DisplayError("Do something with states in SyncRegState"); #endif changed = FALSE; } } } #endif