pcsx2/plugins/spu2-x/src/defs.h

591 lines
14 KiB
C
Raw Normal View History

/* SPU2-X, A plugin for Emulating the Sound Processing Unit of the Playstation 2
* Developed and maintained by the Pcsx2 Development Team.
*
* Original portions from SPU2ghz are (c) 2008 by David Quintana [gigaherz]
*
* SPU2-X is free software: you can redistribute it and/or modify it under the terms
* of the GNU Lesser General Public License as published by the Free Software Found-
* ation, either version 3 of the License, or (at your option) any later version.
*
* SPU2-X is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY;
* without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR
* PURPOSE. See the GNU Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public License
* along with SPU2-X. If not, see <http://www.gnu.org/licenses/>.
*/
#pragma once
#include "Mixer.h"
#include "SndOut.h"
// --------------------------------------------------------------------------------------
// SPU2 Memory Indexers
// --------------------------------------------------------------------------------------
#define spu2Rs16(mmem) (*(s16 *)((s8 *)spu2regs + ((mmem)&0x1fff)))
#define spu2Ru16(mmem) (*(u16 *)((s8 *)spu2regs + ((mmem)&0x1fff)))
extern s16 *GetMemPtr(u32 addr);
extern s16 spu2M_Read(u32 addr);
extern void spu2M_Write(u32 addr, s16 value);
extern void spu2M_Write(u32 addr, u16 value);
struct V_VolumeLR
{
static V_VolumeLR Max;
s32 Left;
s32 Right;
V_VolumeLR() {}
V_VolumeLR(s32 both)
: Left(both)
, Right(both)
{
}
void DebugDump(FILE *dump, const char *title);
};
struct V_VolumeSlide
{
// Holds the "original" value of the volume for this voice, prior to slides.
// (ie, the volume as written to the register)
s16 Reg_VOL;
s32 Value;
s8 Increment;
s8 Mode;
public:
V_VolumeSlide() {}
V_VolumeSlide(s16 regval, s32 fullvol)
: Reg_VOL(regval)
, Value(fullvol)
, Increment(0)
, Mode(0)
{
}
void Update();
void RegSet(u16 src); // used to set the volume from a register source (16 bit signed)
void DebugDump(FILE *dump, const char *title, const char *nameLR);
};
struct V_VolumeSlideLR
{
static V_VolumeSlideLR Max;
V_VolumeSlide Left;
V_VolumeSlide Right;
public:
V_VolumeSlideLR() {}
V_VolumeSlideLR(s16 regval, s32 bothval)
: Left(regval, bothval)
, Right(regval, bothval)
{
}
void Update()
{
Left.Update();
Right.Update();
}
void DebugDump(FILE *dump, const char *title);
};
struct V_ADSR
{
union
{
u32 reg32;
struct
{
u16 regADSR1;
u16 regADSR2;
};
struct
{
u32 SustainLevel : 4,
DecayRate : 4,
AttackRate : 7,
AttackMode : 1, // 0 for linear (+lin), 1 for pseudo exponential (+exp)
ReleaseRate : 5,
ReleaseMode : 1, // 0 for linear (-lin), 1 for exponential (-exp)
SustainRate : 7,
SustainMode : 3; // 0 = +lin, 1 = -lin, 2 = +exp, 3 = -exp
};
};
s32 Value; // Ranges from 0 to 0x7fffffff (signed values are clamped to 0) [Reg_ENVX]
u8 Phase; // monitors current phase of ADSR envelope
bool Releasing; // Ready To Release, triggered by Voice.Stop();
public:
bool Calculate();
};
struct V_Voice
{
u32 PlayCycle; // SPU2 cycle where the Playing started
V_VolumeSlideLR Volume;
// Envelope
V_ADSR ADSR;
// Pitch (also Reg_PITCH)
u16 Pitch;
// Loop Start address (also Reg_LSAH/L)
u32 LoopStartA;
// Sound Start address (also Reg_SSAH/L)
u32 StartA;
// Next Read Data address (also Reg_NAXH/L)
u32 NextA;
// Voice Decoding State
s32 Prev1;
s32 Prev2;
// Pitch Modulated by previous voice
bool Modulated;
// Source (Wave/Noise)
bool Noise;
s8 LoopMode;
s8 LoopFlags;
// Sample pointer (19:12 bit fixed point)
s32 SP;
// Sample pointer for Cubic Interpolation
// Cubic interpolation mixes a sample behind Linear, so that it
// can have sample data to either side of the end points from which
// to extrapolate. This SP represents that late sample position.
s32 SPc;
// Previous sample values - used for interpolation
// Inverted order of these members to match the access order in the
// code (might improve cache hits).
s32 PV4;
s32 PV3;
s32 PV2;
s32 PV1;
// Last outputted audio value, used for voice modulation.
s32 OutX;
s32 NextCrest; // temp value for Crest calculation
// SBuffer now points directly to an ADPCM cache entry.
s16 *SBuffer;
// sample position within the current decoded packet.
s32 SCurrent;
// it takes a few ticks for voices to start on the real SPU2?
void QueueStart();
bool Start();
void Stop();
};
// ** Begin Debug-only variables section **
// Separated from the V_Voice struct to improve cache performance of
// the Public Release build.
struct V_VoiceDebug
{
s8 FirstBlock;
s32 SampleData;
s32 PeakX;
s32 displayPeak;
s32 lastSetStartA;
};
struct V_CoreDebug
{
V_VoiceDebug Voices[24];
// Last Transfer Size
u32 lastsize;
// draw adma waveform in the visual debugger
s32 admaWaveformL[0x100];
s32 admaWaveformR[0x100];
// Enabled when a dma write starts, disabled when the visual debugger showed it once
s32 dmaFlag;
};
// Debug tracking information - 24 voices and 2 cores.
extern V_CoreDebug DebugCores[2];
struct V_Reverb
{
s16 IN_COEF_L;
s16 IN_COEF_R;
u32 FB_SIZE_A;
u32 FB_SIZE_B;
s16 FB_ALPHA;
s16 FB_X;
u32 IIR_SRC_A0;
u32 IIR_SRC_A1;
u32 IIR_SRC_B1;
u32 IIR_SRC_B0;
u32 IIR_DEST_A0;
u32 IIR_DEST_A1;
u32 IIR_DEST_B0;
u32 IIR_DEST_B1;
s16 IIR_ALPHA;
s16 IIR_COEF;
u32 ACC_SRC_A0;
u32 ACC_SRC_A1;
u32 ACC_SRC_B0;
u32 ACC_SRC_B1;
u32 ACC_SRC_C0;
u32 ACC_SRC_C1;
u32 ACC_SRC_D0;
u32 ACC_SRC_D1;
s16 ACC_COEF_A;
s16 ACC_COEF_B;
s16 ACC_COEF_C;
s16 ACC_COEF_D;
u32 MIX_DEST_A0;
u32 MIX_DEST_A1;
u32 MIX_DEST_B0;
u32 MIX_DEST_B1;
};
struct V_ReverbBuffers
{
s32 IIR_SRC_A0;
s32 IIR_SRC_A1;
s32 IIR_SRC_B0;
s32 IIR_SRC_B1;
s32 IIR_DEST_A0;
s32 IIR_DEST_A1;
s32 IIR_DEST_B0;
s32 IIR_DEST_B1;
s32 ACC_SRC_A0;
s32 ACC_SRC_A1;
s32 ACC_SRC_B0;
s32 ACC_SRC_B1;
s32 ACC_SRC_C0;
s32 ACC_SRC_C1;
s32 ACC_SRC_D0;
s32 ACC_SRC_D1;
s32 MIX_DEST_A0;
s32 MIX_DEST_A1;
s32 MIX_DEST_B0;
s32 MIX_DEST_B1;
s32 SAME_L_PRV;
s32 SAME_R_PRV;
s32 DIFF_L_PRV;
s32 DIFF_R_PRV;
s32 APF1_L_SRC;
s32 APF1_R_SRC;
s32 APF2_L_SRC;
s32 APF2_R_SRC;
bool NeedsUpdated;
};
struct V_SPDIF
{
u16 Out;
u16 Info;
u16 Unknown1;
u16 Mode;
u16 Media;
u16 Unknown2;
u16 Protection;
};
struct V_CoreRegs
{
u32 PMON;
u32 NON;
u32 VMIXL;
u32 VMIXR;
u32 VMIXEL;
u32 VMIXER;
u32 ENDX;
u16 MMIX;
u16 STATX;
u16 ATTR;
u16 _1AC;
};
struct V_VoiceGates
{
s16 DryL; // 'AND Gate' for Direct Output to Left Channel
s16 DryR; // 'AND Gate' for Direct Output for Right Channel
s16 WetL; // 'AND Gate' for Effect Output for Left Channel
s16 WetR; // 'AND Gate' for Effect Output for Right Channel
};
struct V_CoreGates
{
union
{
u128 v128;
struct
{
s16 InpL; // Sound Data Input to Direct Output (Left)
s16 InpR; // Sound Data Input to Direct Output (Right)
s16 SndL; // Voice Data to Direct Output (Left)
s16 SndR; // Voice Data to Direct Output (Right)
s16 ExtL; // External Input to Direct Output (Left)
s16 ExtR; // External Input to Direct Output (Right)
};
};
};
struct VoiceMixSet
{
static const VoiceMixSet Empty;
StereoOut32 Dry, Wet;
VoiceMixSet() {}
VoiceMixSet(const StereoOut32 &dry, const StereoOut32 &wet)
: Dry(dry)
, Wet(wet)
{
}
};
struct V_Core
{
static const uint NumVoices = 24;
int Index; // Core index identifier.
// Voice Gates -- These are SSE-related values, and must always be
// first to ensure 16 byte alignment
V_VoiceGates VoiceGates[NumVoices];
V_CoreGates DryGate;
V_CoreGates WetGate;
V_VolumeSlideLR MasterVol; // Master Volume
V_VolumeLR ExtVol; // Volume for External Data Input
V_VolumeLR InpVol; // Volume for Sound Data Input
V_VolumeLR FxVol; // Volume for Output from Effects
V_Voice Voices[NumVoices];
u32 IRQA; // Interrupt Address
u32 TSA; // DMA Transfer Start Address
bool IRQEnable; // Interrupt Enable
bool FxEnable; // Effect Enable
bool Mute; // Mute
bool AdmaInProgress;
s8 DMABits; // DMA related?
s8 NoiseClk; // Noise Clock
u16 AutoDMACtrl; // AutoDMA Status
s32 DMAICounter; // DMA Interrupt Counter
u32 InputDataLeft; // Input Buffer
u32 InputPosRead;
u32 InputPosWrite;
u32 InputDataProgress;
V_Reverb Revb; // Reverb Registers
V_ReverbBuffers RevBuffers; // buffer pointers for reverb, pre-calculated and pre-clipped.
u32 EffectsStartA;
u32 EffectsEndA;
u32 ExtEffectsStartA;
u32 ExtEffectsEndA;
u32 ReverbX;
// Current size of and position of the effects buffer. Pre-caculated when the effects start
// or end position registers are written. CAN BE NEGATIVE OR ZERO, in which
// case reverb should be disabled.
s32 EffectsBufferSize;
u32 EffectsBufferStart;
V_CoreRegs Regs; // Registers
// Preserves the channel processed last cycle
StereoOut32 LastEffect;
u8 CoreEnabled;
u8 AttrBit0;
u8 DmaMode;
// new dma only
bool DmaStarted;
u32 AutoDmaFree;
// old dma only
u16 *DMAPtr;
u32 MADR;
u32 TADR;
u32 KeyOn; // not the KON register (though maybe it is)
// psxmode caches
u16 psxSoundDataTransferControl;
u16 psxSPUSTAT;
// HACK -- This is a temp buffer which is (or isn't?) used to circumvent some memory
// corruption that originates elsewhere in the plugin. >_< The actual ADMA buffer
// is an area mapped to SPU2 main memory.
//s16 ADMATempBuffer[0x1000];
// ----------------------------------------------------------------------------------
// V_Core Methods
// ----------------------------------------------------------------------------------
// uninitialized constructor
V_Core()
: Index(-1)
, DMAPtr(NULL)
{
}
V_Core(int idx); // our badass constructor
~V_Core() throw();
void Init(int index);
void UpdateEffectsBufferSize();
void AnalyzeReverbPreset();
s32 EffectsBufferIndexer(s32 offset) const;
void WriteRegPS1(u32 mem, u16 value);
u16 ReadRegPS1(u32 mem);
// --------------------------------------------------------------------------------------
// Mixer Section
// --------------------------------------------------------------------------------------
StereoOut32 Mix(const VoiceMixSet &inVoices, const StereoOut32 &Input, const StereoOut32 &Ext);
void Reverb_AdvanceBuffer();
StereoOut32 DoReverb(const StereoOut32 &Input);
s32 RevbGetIndexer(s32 offset);
StereoOut32 ReadInput();
StereoOut32 ReadInput_HiFi();
// --------------------------------------------------------------------------
// DMA Section
// --------------------------------------------------------------------------
// Returns the index of the DMA channel (4 for Core 0, or 7 for Core 1)
int GetDmaIndex() const
{
return (Index == 0) ? 4 : 7;
}
// returns either '4' or '7'
char GetDmaIndexChar() const
{
return 0x30 + GetDmaIndex();
}
__forceinline u16 DmaRead()
{
const u16 ret = (u16)spu2M_Read(TSA);
++TSA;
TSA &= 0xfffff;
return ret;
}
__forceinline void DmaWrite(u16 value)
{
spu2M_Write(TSA, value);
++TSA;
TSA &= 0xfffff;
}
void LogAutoDMA(FILE *fp);
s32 NewDmaRead(u32 *data, u32 bytesLeft, u32 *bytesProcessed);
s32 NewDmaWrite(u32 *data, u32 bytesLeft, u32 *bytesProcessed);
void NewDmaInterrupt();
// old dma only
void DoDMAwrite(u16 *pMem, u32 size);
void DoDMAread(u16 *pMem, u32 size);
void AutoDMAReadBuffer(int mode);
void StartADMAWrite(u16 *pMem, u32 sz);
void PlainDMAWrite(u16 *pMem, u32 sz);
};
extern V_Core Cores[2];
extern V_SPDIF Spdif;
// Output Buffer Writing Position (the same for all data);
extern s16 OutPos;
// Input Buffer Reading Position (the same for all data);
extern s16 InputPos;
// SPU Mixing Cycles ("Ticks mixed" counter)
extern u32 Cycles;
extern s16 *spu2regs;
extern s16 *_spu2mem;
extern int PlayMode;
extern void SetIrqCall(int core);
extern void StartVoices(int core, u32 value);
extern void StopVoices(int core, u32 value);
extern void InitADSR();
extern void CalculateADSR(V_Voice &vc);
extern void UpdateSpdifMode();
namespace Savestate
{
struct DataBlock;
extern s32 __fastcall FreezeIt(DataBlock &spud);
extern s32 __fastcall ThawIt(DataBlock &spud);
extern s32 __fastcall SizeIt();
}
// --------------------------------------------------------------------------------------
// ADPCM Decoder Cache
// --------------------------------------------------------------------------------------
// The SPU2 has a dynamic memory range which is used for several internal operations, such as
// registers, CORE 1/2 mixing, AutoDMAs, and some other fancy stuff. We exclude this range
// from the cache here:
static const s32 SPU2_DYN_MEMLINE = 0x2800;
// 8 short words per encoded PCM block. (as stored in SPU2 ram)
static const int pcm_WordsPerBlock = 8;
// number of cachable ADPCM blocks (any blocks above the SPU2_DYN_MEMLINE)
static const int pcm_BlockCount = 0x100000 / pcm_WordsPerBlock;
// 28 samples per decoded PCM block (as stored in our cache)
static const int pcm_DecodedSamplesPerBlock = 28;
struct PcmCacheEntry
{
bool Validated;
s16 Sampledata[pcm_DecodedSamplesPerBlock];
};
extern PcmCacheEntry *pcm_cache_data;