pcsx2/plugins/spu2-x/src/Dma.cpp

660 lines
17 KiB
C++
Raw Normal View History

/* SPU2-X, A plugin for Emulating the Sound Processing Unit of the Playstation 2
* Developed and maintained by the Pcsx2 Development Team.
*
* Original portions from SPU2ghz are (c) 2008 by David Quintana [gigaherz]
*
* SPU2-X is free software: you can redistribute it and/or modify it under the terms
* of the GNU Lesser General Public License as published by the Free Software Found-
* ation, either version 3 of the License, or (at your option) any later version.
*
* SPU2-X is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY;
* without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR
* PURPOSE. See the GNU Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public License
* along with SPU2-X. If not, see <http://www.gnu.org/licenses/>.
*/
#include "Global.h"
#include "dma.h"
#include "PS2E-spu2.h" // temporary until I resolve cyclePtr/TimeUpdate dependencies.
extern u8 callirq;
static FILE *DMA4LogFile = NULL;
static FILE *DMA7LogFile = NULL;
static FILE *ADMA4LogFile = NULL;
static FILE *ADMA7LogFile = NULL;
static FILE *ADMAOutLogFile = NULL;
static FILE *REGWRTLogFile[2] = {0,0};
void DMALogOpen()
{
if(!DMALog()) return;
DMA4LogFile = fopen( Unicode::Convert( DMA4LogFileName ).c_str(), "wb");
DMA7LogFile = fopen( Unicode::Convert( DMA7LogFileName ).c_str(), "wb");
ADMA4LogFile = fopen( "logs/adma4.raw", "wb" );
ADMA7LogFile = fopen( "logs/adma7.raw", "wb" );
ADMAOutLogFile = fopen( "logs/admaOut.raw", "wb" );
//REGWRTLogFile[0]=fopen("logs/RegWrite0.raw","wb");
//REGWRTLogFile[1]=fopen("logs/RegWrite1.raw","wb");
}
void DMA4LogWrite(void *lpData, u32 ulSize) {
if(!DMALog()) return;
if (!DMA4LogFile) return;
fwrite(lpData,ulSize,1,DMA4LogFile);
}
void DMA7LogWrite(void *lpData, u32 ulSize) {
if(!DMALog()) return;
if (!DMA7LogFile) return;
fwrite(lpData,ulSize,1,DMA7LogFile);
}
void ADMAOutLogWrite(void *lpData, u32 ulSize) {
if(!DMALog()) return;
if (!ADMAOutLogFile) return;
fwrite(lpData,ulSize,1,ADMAOutLogFile);
}
void RegWriteLog(u32 core,u16 value)
{
if(!DMALog()) return;
if (!REGWRTLogFile[core]) return;
fwrite(&value,2,1,REGWRTLogFile[core]);
}
void DMALogClose()
{
safe_fclose(DMA4LogFile);
safe_fclose(DMA7LogFile);
safe_fclose(REGWRTLogFile[0]);
safe_fclose(REGWRTLogFile[1]);
safe_fclose(ADMA4LogFile);
safe_fclose(ADMA7LogFile);
safe_fclose(ADMAOutLogFile);
}
void V_Core::LogAutoDMA( FILE* fp )
{
if( !DMALog() || !fp ) return;
fwrite( DMAPtr+InputDataProgress, 0x400, 1, fp );
}
void V_Core::AutoDMAReadBuffer(int mode) //mode: 0= split stereo; 1 = do not split stereo
{
#ifndef ENABLE_NEW_IOPDMA_SPU2
int spos = ((InputPosRead+0xff)&0x100); //starting position of the free buffer
LogAutoDMA( Index ? ADMA7LogFile : ADMA4LogFile );
// HACKFIX!! DMAPtr can be invalid after a savestate load, so the savestate just forces it
// to NULL and we ignore it here. (used to work in old VM editions of PCSX2 with fixed
// addressing, but new PCSX2s have dynamic memory addressing).
if(mode)
{
if( DMAPtr != NULL )
memcpy((ADMATempBuffer+(spos<<1)),DMAPtr+InputDataProgress,0x400);
MADR+=0x400;
InputDataLeft-=0x200;
InputDataProgress+=0x200;
}
else
{
if( DMAPtr != NULL )
memcpy((ADMATempBuffer+spos),DMAPtr+InputDataProgress,0x200);
//memcpy((spu2mem+0x2000+(core<<10)+spos),DMAPtr+InputDataProgress,0x200);
MADR+=0x200;
InputDataLeft-=0x100;
InputDataProgress+=0x100;
if( DMAPtr != NULL )
memcpy((ADMATempBuffer+spos+0x200),DMAPtr+InputDataProgress,0x200);
//memcpy((spu2mem+0x2200+(core<<10)+spos),DMAPtr+InputDataProgress,0x200);
MADR+=0x200;
InputDataLeft-=0x100;
InputDataProgress+=0x100;
}
// See ReadInput at mixer.cpp for explanation on the commented out lines
//
#endif
}
void V_Core::StartADMAWrite(u16 *pMem, u32 sz)
{
#ifndef ENABLE_NEW_IOPDMA_SPU2
int size = (sz)&(~511);
if(MsgAutoDMA()) ConLog(" * SPU2: DMA%c AutoDMA Transfer of %d bytes to %x (%02x %x %04x).\n",
GetDmaIndexChar(), size<<1, TSA, DMABits, AutoDMACtrl, (~Regs.ATTR)&0x7fff);
InputDataProgress = 0;
if((AutoDMACtrl&(Index+1))==0)
{
TSA = 0x2000 + (Index<<10);
DMAICounter = size;
}
else if(size>=512)
{
InputDataLeft = size;
if(AdmaInProgress==0)
{
#ifdef PCM24_S1_INTERLEAVE
if((Index==1)&&((PlayMode&8)==8))
{
AutoDMAReadBuffer(Index,1);
}
else
{
AutoDMAReadBuffer(Index,0);
}
#else
if( ((PlayMode&4)==4) && (Index==0) )
Cores[0].InputPosRead=0;
AutoDMAReadBuffer(0);
#endif
if(size==512)
DMAICounter = size;
}
AdmaInProgress = 1;
}
else
{
InputDataLeft = 0;
DMAICounter = 1;
}
TADR = MADR + (size<<1);
#endif
}
// HACKFIX: The BIOS breaks if we check the IRQA for both cores when issuing DMA writes. The
// breakage is a null psxRegs.pc being loaded form some memory address (haven't traced it deeper
// yet). We get around it by only checking the current core's IRQA, instead of doing the
// *correct* thing and checking both. This might break some games, but having a working BIOS
// is more important for now, until a proper fix can be uncovered.
//
// This problem might be caused by bad DMA timings in the IOP or a lack of proper IRQ
// handling by the Effects Processor. After those are implemented, let's hope it gets
// magically fixed?
//
// Note: This appears to affect DMA Writes only, so DMA Read DMAs are left intact (both core
// IRQAs are tested). Very few games use DMA reads tho, so it could just be a case of "works
// by the grace of not being used."
//
// Update: This hack is no longer needed when we don't do a core reset. Guess the null pc was in spu2 memory?
#define NO_BIOS_HACKFIX 1 // set to 1 to disable the hackfix
void V_Core::PlainDMAWrite(u16 *pMem, u32 size)
{
// Perform an alignment check.
// Not really important. Everything should work regardless,
// but it could be indicative of an emulation foopah elsewhere.
#if 0
uptr pa = ((uptr)pMem)&7;
uptr pm = TSA&0x7;
if( pa )
{
fprintf(stderr, "* SPU2 DMA Write > Missaligned SOURCE! Core: %d TSA: 0x%x TDA: 0x%x Size: 0x%x\n", core, TSA, TDA, size);
}
if( pm )
{
fprintf(stderr, "* SPU2 DMA Write > Missaligned TARGET! Core: %d TSA: 0x%x TDA: 0x%x Size: 0x%x\n", core, TSA, TDA, size );
}
#endif
if(Index==0)
DMA4LogWrite(pMem,size<<1);
else
DMA7LogWrite(pMem,size<<1);
TSA &= 0xfffff;
u32 buff1end = TSA + size;
u32 buff2end=0;
if( buff1end > 0x100000 )
{
buff2end = buff1end - 0x100000;
buff1end = 0x100000;
}
const int cacheIdxStart = TSA / pcm_WordsPerBlock;
const int cacheIdxEnd = (buff1end+pcm_WordsPerBlock-1) / pcm_WordsPerBlock;
PcmCacheEntry* cacheLine = &pcm_cache_data[cacheIdxStart];
PcmCacheEntry& cacheEnd = pcm_cache_data[cacheIdxEnd];
do
{
cacheLine->Validated = false;
cacheLine++;
} while ( cacheLine != &cacheEnd );
//ConLog( " * SPU2 : Cache Clear Range! TSA=0x%x, TDA=0x%x (low8=0x%x, high8=0x%x, len=0x%x)\n",
// TSA, buff1end, flagTSA, flagTDA, clearLen );
// First Branch needs cleared:
// It starts at TSA and goes to buff1end.
const u32 buff1size = (buff1end-TSA);
memcpy( GetMemPtr( TSA ), pMem, buff1size*2 );
if( buff2end > 0 )
{
// second branch needs copied:
// It starts at the beginning of memory and moves forward to buff2end
// endpoint cache should be irrelevant, since it's almost certainly dynamic
// memory below 0x2800 (registers and such)
//const u32 endpt2 = (buff2end + roundUp) / indexer_scalar;
//memset( pcm_cache_flags, 0, endpt2 );
// Emulation Grayarea: Should addresses wrap around to zero, or wrap around to
// 0x2800? Hard to know for sure (almost no games depend on this)
memcpy( GetMemPtr( 0 ), &pMem[buff1size], buff2end*2 );
TDA = (buff2end+1) & 0xfffff;
// Flag interrupt? If IRQA occurs between start and dest, flag it.
// Important: Test both core IRQ settings for either DMA!
// Note: Because this buffer wraps, we use || instead of &&
#if NO_BIOS_HACKFIX
for( int i=0; i<2; i++ )
{
// Note: (start is inclusive, dest exclusive -- fixes DMC1 FMVs)
if( Cores[i].IRQEnable && (Cores[i].IRQA >= TSA) || (Cores[i].IRQA < TDA) )
{
Spdif.Info |= 4 << i;
SetIrqCall();
}
}
#else
if( IRQEnable && (IRQA >= TSA) || (IRQA < TDA) )
{
Spdif.Info |= 4 << Index;
SetIrqCall();
}
#endif
}
else
{
// Buffer doesn't wrap/overflow!
// Just set the TDA and check for an IRQ...
TDA = buff1end;
// Flag interrupt? If IRQA occurs between start and dest, flag it.
// Important: Test both core IRQ settings for either DMA!
#if NO_BIOS_HACKFIX
for( int i=0; i<2; i++ )
{
// Note: (start is inclusive, dest exclusive -- fixes DMC1 FMVs)
if( Cores[i].IRQEnable && (Cores[i].IRQA >= TSA) && (Cores[i].IRQA < TDA) )
{
Spdif.Info |= 4 << i;
SetIrqCall();
}
}
#else
if( IRQEnable && (IRQA >= TSA) && (IRQA < TDA) )
{
Spdif.Info |= 4 << Index;
SetIrqCall();
}
#endif
}
TSA = TDA & 0xFFFF0;
DMAICounter = size;
TADR = MADR + (size<<1);
}
void V_Core::DoDMAread(u16* pMem, u32 size)
{
#ifndef ENABLE_NEW_IOPDMA_SPU2
TSA &= 0xffff8;
u32 buff1end = TSA + size;
u32 buff2end = 0;
if( buff1end > 0x100000 )
{
buff2end = buff1end - 0x100000;
buff1end = 0x100000;
}
const u32 buff1size = (buff1end-TSA);
memcpy( pMem, GetMemPtr( TSA ), buff1size*2 );
// Note on TSA's position after our copy finishes:
// IRQA should be measured by the end of the writepos+0x20. But the TDA
// should be written back at the precise endpoint of the xfer.
if( buff2end > 0 )
{
// second branch needs cleared:
// It starts at the beginning of memory and moves forward to buff2end
memcpy( &pMem[buff1size], GetMemPtr( 0 ), buff2end*2 );
TDA = (buff2end+0x20) & 0xfffff;
// Flag interrupt? If IRQA occurs between start and dest, flag it.
// Important: Test both core IRQ settings for either DMA!
// Note: Because this buffer wraps, we use || instead of &&
for( int i=0; i<2; i++ )
{
if( Cores[i].IRQEnable && (Cores[i].IRQA >= TSA) || (Cores[i].IRQA < TDA) )
{
Spdif.Info |= 4 << i;
SetIrqCall();
}
}
}
else
{
// Buffer doesn't wrap/overflow!
// Just set the TDA and check for an IRQ...
TDA = (buff1end + 0x20) & 0xfffff;
// Flag interrupt? If IRQA occurs between start and dest, flag it.
// Important: Test both core IRQ settings for either DMA!
for( int i=0; i<2; i++ )
{
if( Cores[i].IRQEnable && (Cores[i].IRQA >= TSA) && (Cores[i].IRQA < TDA) )
{
Spdif.Info |= 4 << i;
SetIrqCall();
}
}
}
TSA = TDA & 0xFFFFF;
DMAICounter = size;
Regs.STATX &= ~0x80;
//Regs.ATTR |= 0x30;
TADR = MADR + (size<<1);
#endif
}
void V_Core::DoDMAwrite(u16* pMem, u32 size)
{
#ifndef ENABLE_NEW_IOPDMA_SPU2
DMAPtr = pMem;
if(size<2) {
//if(dma7callback) dma7callback();
Regs.STATX &= ~0x80;
//Regs.ATTR |= 0x30;
DMAICounter=1;
return;
}
if( IsDevBuild )
DebugCores[Index].lastsize = size;
TSA &= ~7;
bool adma_enable = ((AutoDMACtrl&(Index+1))==(Index+1));
if(adma_enable)
{
TSA&=0x1fff;
StartADMAWrite(pMem,size);
}
else
{
if(MsgDMA()) ConLog(" * SPU2: DMA%c Transfer of %d bytes to %x (%02x %x %04x).\n",
GetDmaIndexChar(),size<<1,TSA,DMABits,AutoDMACtrl,(~Regs.ATTR)&0x7fff);
PlainDMAWrite(pMem,size);
}
Regs.STATX &= ~0x80;
//Regs.ATTR |= 0x30;
#endif
}
s32 V_Core::NewDmaRead(u32* data, u32 bytesLeft, u32* bytesProcessed)
{
#ifdef ENABLE_NEW_IOPDMA_SPU2
bool DmaStarting = !DmaStarted;
DmaStarted = true;
TSA &= 0xffff8;
u16* pMem = (u16*)data;
u32 buff1end = TSA + bytesLeft;
u32 buff2end = 0;
if( buff1end > 0x100000 )
{
buff2end = buff1end - 0x100000;
buff1end = 0x100000;
}
const u32 buff1size = (buff1end-TSA);
memcpy( pMem, GetMemPtr( TSA ), buff1size*2 );
// Note on TSA's position after our copy finishes:
// IRQA should be measured by the end of the writepos+0x20. But the TDA
// should be written back at the precise endpoint of the xfer.
if( buff2end > 0 )
{
// second branch needs cleared:
// It starts at the beginning of memory and moves forward to buff2end
memcpy( &pMem[buff1size], GetMemPtr( 0 ), buff2end*2 );
TDA = (buff2end+0x20) & 0xfffff;
// Flag interrupt? If IRQA occurs between start and dest, flag it.
// Important: Test both core IRQ settings for either DMA!
// Note: Because this buffer wraps, we use || instead of &&
for( int i=0; i<2; i++ )
{
if( Cores[i].IRQEnable && (Cores[i].IRQA >= TSA) || (Cores[i].IRQA < TDA) )
{
Spdif.Info |= 4 << i;
SetIrqCall();
}
}
}
else
{
// Buffer doesn't wrap/overflow!
// Just set the TDA and check for an IRQ...
TDA = (buff1end + 0x20) & 0xfffff;
// Flag interrupt? If IRQA occurs between start and dest, flag it.
// Important: Test both core IRQ settings for either DMA!
for( int i=0; i<2; i++ )
{
if( Cores[i].IRQEnable && (Cores[i].IRQA >= TSA) && (Cores[i].IRQA < TDA) )
{
Spdif.Info |= 4 << i;
SetIrqCall();
}
}
}
TSA = TDA & 0xFFFFF;
Regs.STATX &= ~0x80;
//Regs.ATTR |= 0x30;
#endif
*bytesProcessed = bytesLeft;
return 0;
}
s32 V_Core::NewDmaWrite(u32* data, u32 bytesLeft, u32* bytesProcessed)
{
#ifdef ENABLE_NEW_IOPDMA_SPU2
bool DmaStarting = !DmaStarted;
DmaStarted = true;
if(bytesLeft<2)
{
// execute interrupt code early
NewDmaInterrupt();
*bytesProcessed = bytesLeft;
return 0;
}
if( IsDevBuild )
DebugCores[Index].lastsize = bytesLeft;
TSA &= ~7;
bool adma_enable = ((AutoDMACtrl&(Index+1))==(Index+1));
if(adma_enable)
{
TSA&=0x1fff;
//Console.Error(" * SPU2: AutoDMA transfers not supported yet! (core %d)\n", Index);
if(MsgAutoDMA() && DmaStarting) ConLog(" * SPU2: DMA%c AutoDMA Transfer of %d bytes to %x (%02x %x %04x).\n",
GetDmaIndexChar(), bytesLeft<<1, TSA, DMABits, AutoDMACtrl, (~Regs.ATTR)&0x7fff);
u32 processed = 0;
while((AutoDmaFree>0)&&(bytesLeft>=0x400))
{
// copy block
LogAutoDMA( Index ? ADMA7LogFile : ADMA4LogFile );
// HACKFIX!! DMAPtr can be invalid after a savestate load, so the savestate just forces it
// to NULL and we ignore it here. (used to work in old VM editions of PCSX2 with fixed
// addressing, but new PCSX2s have dynamic memory addressing).
s16* mptr = (s16*)data;
if(false)//(mode)
{
memcpy((ADMATempBuffer+(InputPosWrite<<1)),mptr,0x400);
mptr+=0x200;
// Flag interrupt? If IRQA occurs between start and dest, flag it.
// Important: Test both core IRQ settings for either DMA!
int dummyTSA = 0x2000+(Index<<10)+InputPosWrite;
int dummyTDA = 0x2000+(Index<<10)+InputPosWrite+0x200;
for( int i=0; i<2; i++ )
{
if( Cores[i].IRQEnable && (Cores[i].IRQA >= dummyTSA) && (Cores[i].IRQA < dummyTDA) )
{
Spdif.Info |= 4 << i;
SetIrqCall();
}
}
}
else
{
memcpy((ADMATempBuffer+InputPosWrite),mptr,0x200);
//memcpy((spu2mem+0x2000+(Index<<10)+InputPosWrite),mptr,0x200);
mptr+=0x100;
// Flag interrupt? If IRQA occurs between start and dest, flag it.
// Important: Test both core IRQ settings for either DMA!
int dummyTSA = 0x2000+(Index<<10)+InputPosWrite;
int dummyTDA = 0x2000+(Index<<10)+InputPosWrite+0x100;
for( int i=0; i<2; i++ )
{
if( Cores[i].IRQEnable && (Cores[i].IRQA >= dummyTSA) && (Cores[i].IRQA < dummyTDA) )
{
Spdif.Info |= 4 << i;
SetIrqCall();
}
}
memcpy((ADMATempBuffer+InputPosWrite+0x200),mptr,0x200);
//memcpy((spu2mem+0x2200+(Index<<10)+InputPosWrite),mptr,0x200);
mptr+=0x100;
// Flag interrupt? If IRQA occurs between start and dest, flag it.
// Important: Test both core IRQ settings for either DMA!
dummyTSA = 0x2200+(Index<<10)+InputPosWrite;
dummyTDA = 0x2200+(Index<<10)+InputPosWrite+0x100;
for( int i=0; i<2; i++ )
{
if( Cores[i].IRQEnable && (Cores[i].IRQA >= dummyTSA) && (Cores[i].IRQA < dummyTDA) )
{
Spdif.Info |= 4 << i;
SetIrqCall();
}
}
}
// See ReadInput at mixer.cpp for explanation on the commented out lines
//
InputPosWrite = (InputPosWrite + 0x100) & 0x1ff;
AutoDmaFree -= 0x200;
processed += 0x400;
bytesLeft -= 0x400;
}
if(processed==0)
{
*bytesProcessed = 0;
return 768*15; // pause a bit
}
else
{
*bytesProcessed = processed;
return 0; // auto pause
}
}
else
{
if(MsgDMA() && DmaStarting) ConLog(" * SPU2: DMA%c Transfer of %d bytes to %x (%02x %x %04x).\n",
GetDmaIndexChar(),bytesLeft,TSA,DMABits,AutoDMACtrl,(~Regs.ATTR)&0x7fff);
if(bytesLeft> 2048)
bytesLeft = 2048;
// TODO: Sliced transfers?
PlainDMAWrite((u16*)data,bytesLeft/2);
}
Regs.STATX &= ~0x80;
//Regs.ATTR |= 0x30;
#endif
*bytesProcessed = bytesLeft;
return 0;
}
void V_Core::NewDmaInterrupt()
{
#ifdef ENABLE_NEW_IOPDMA_SPU2
FileLog("[%10d] SPU2 interruptDMA4\n",Cycles);
Regs.STATX |= 0x80;
//Regs.ATTR &= ~0x30;
DmaStarted = false;
#endif
}