dolphin/Source/Plugins/Plugin_Wiimote/Src/FillReport.cpp

1175 lines
32 KiB
C++

// Copyright (C) 2003-2008 Dolphin Project.
// This program is free software: you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation, version 2.0.
// This program is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU General Public License 2.0 for more details.
// A copy of the GPL 2.0 should have been included with the program.
// If not, see http://www.gnu.org/licenses/
// Official SVN repository and contact information can be found at
// http://code.google.com/p/dolphin-emu/
//////////////////////////////////////////////////////////////////////////////////////////
// Includes
// ¯¯¯¯¯¯¯¯¯¯¯¯¯
#include <wx/msgdlg.h>
#include <vector>
#include <string>
#include "Common.h" // Common
#include "pluginspecs_wiimote.h"
#include "StringUtil.h" // For ArrayToString
#include "wiimote_hid.h"
#include "main.h"
#include "EmuMain.h"
#include "EmuSubroutines.h"
#include "EmuDefinitions.h"
#include "Logging.h" // For startConsoleWin, Console::Print, GetConsoleHwnd
#include "Config.h" // For g_Config
//////////////////////////////////
extern SWiimoteInitialize g_WiimoteInitialize;
namespace WiiMoteEmu
{
//**************************************************************************************
// Recorded movements
//**************************************************************************************
// ------------------------------------------
// Variables: 0 = Wiimote, 1 = Nunchuck
// ----------------
int g_RecordingPlaying[3]; //g_RecordingPlaying[0] = -1; g_RecordingPlaying[1] = -1;
int g_RecordingCounter[3]; //g_RecordingCounter[0] = 0; g_RecordingCounter[1] = 0;
int g_RecordingPoint[3]; //g_RecordingPoint[0] = 0; g_RecordingPoint[1] = 0;
double g_RecordingStart[3]; //g_RecordingStart[0] = 0; g_RecordingStart[1] = 0;
double g_RecordingCurrentTime[3]; //g_RecordingCurrentTime[0] = 0; g_RecordingCurrentTime[1] = 0;
// --------------------------
template<class IRReportType>
bool RecordingPlayAccIR(u8 &_x, u8 &_y, u8 &_z, IRReportType &_IR, int Wm)
{
// Return if the list is empty
if(VRecording.at(g_RecordingPlaying[Wm]).Recording.size() == 0)
{
g_RecordingPlaying[Wm] = -1;
Console::Print("Empty\n\n");
return false;
}
// Return if the playback speed is unset
if(VRecording.at(g_RecordingPlaying[Wm]).PlaybackSpeed < 0)
{
Console::Print("PlaybackSpeed empty: %i\n\n", g_RecordingPlaying[Wm]);
g_RecordingPlaying[Wm] = -1;
return false;
}
// Get IR bytes
int IRBytes = VRecording.at(g_RecordingPlaying[Wm]).IRBytes;
// Return if the IR mode is wrong
if (Wm == WM_RECORDING_IR
&& ( (IRBytes == 12 && !(g_ReportingMode == 0x33))
|| (IRBytes == 10 && !(g_ReportingMode == 0x36 || g_ReportingMode == 0x37))
)
)
{
Console::Print("Wrong IR mode: %i\n\n", g_RecordingPlaying[Wm]);
g_RecordingPlaying[Wm] = -1;
return false;
}
// Get starting time
if(g_RecordingCounter[Wm] == 0)
{
Console::Print("\n\nBegin\n");
g_RecordingStart[Wm] = GetDoubleTime();
}
// Get current time
g_RecordingCurrentTime[Wm] = GetDoubleTime() - g_RecordingStart[Wm];
// Modify the current time
g_RecordingCurrentTime[Wm] *= ((25.0 + (double)VRecording.at(g_RecordingPlaying[Wm]).PlaybackSpeed * 25.0) / 100.0);
// Select reading
for (int i = 0; i < VRecording.at(g_RecordingPlaying[Wm]).Recording.size(); i++)
if (VRecording.at(g_RecordingPlaying[Wm]).Recording.at(i).Time > g_RecordingCurrentTime[Wm])
{
g_RecordingPoint[Wm] = i;
break; // Break loop
}
// Return if we are at the end of the list
if(g_RecordingCurrentTime[Wm] >=
VRecording.at(g_RecordingPlaying[Wm]).Recording.at(
VRecording.at(g_RecordingPlaying[Wm]).Recording.size() - 1).Time)
// Or if we are playing back all observations regardless of time
//g_RecordingPoint[Wm] = g_RecordingCounter[Wm];
//if (g_RecordingPoint[Wm] >= VRecording.at(g_RecordingPlaying[Wm]).Recording.size())
{
g_RecordingCounter[Wm] = 0;
g_RecordingPlaying[Wm] = -1;
g_RecordingStart[Wm] = 0;
g_RecordingCurrentTime[Wm] = 0;
Console::Print("End\n\n");
return false;
}
// Update accelerometer values
_x = VRecording.at(g_RecordingPlaying[Wm]).Recording.at(g_RecordingPoint[Wm]).x;
_y = VRecording.at(g_RecordingPlaying[Wm]).Recording.at(g_RecordingPoint[Wm]).y;
_z = VRecording.at(g_RecordingPlaying[Wm]).Recording.at(g_RecordingPoint[Wm]).z;
// Update IR values
if(Wm == WM_RECORDING_IR) memcpy(&_IR, VRecording.at(g_RecordingPlaying[Wm]).Recording.at(g_RecordingPoint[Wm]).IR, IRBytes);
if (g_DebugAccelerometer)
{
//Console::ClearScreen();
Console::Print("Current time: [%i / %i] %f %f\n",
g_RecordingPoint[Wm], VRecording.at(g_RecordingPlaying[Wm]).Recording.size(),
VRecording.at(g_RecordingPlaying[Wm]).Recording.at(g_RecordingPoint[Wm]).Time, g_RecordingCurrentTime[Wm]
);
Console::Print("Accel x, y, z: %03u %03u %03u\n", _x, _y, _z);
}
//Console::Print("Accel x, y, z: %03u %03u %03u\n", _x, _y, _z);
g_RecordingCounter[Wm]++;
return true;
}
/* Because the playback is neatly controlled by RecordingPlayAccIR() we use these functions to be able to
use RecordingPlayAccIR() for both accelerometer and IR recordings */
bool RecordingPlay(u8 &_x, u8 &_y, u8 &_z, int Wm)
{
wm_ir_basic IR;
return RecordingPlayAccIR(_x, _y, _z, IR, Wm);
}
template<class IRReportType>
bool RecordingPlayIR(IRReportType &_IR)
{
u8 x, y, z;
return RecordingPlayAccIR(x, y, z, _IR, 2);
}
// Check if we should start the playback of a recording. Once it has been started it can not currently
// be stopped, it will always run to the end of the recording.
int RecordingCheckKeys(int Wiimote)
{
#ifdef _WIN32
//Console::Print("RecordingCheckKeys: %i\n", Wiimote);
// ------------------------------------
// Don't allow multiple action keys
// --------------
// Return if we have both a Shift, Ctrl, and Alt
if ( GetAsyncKeyState(VK_SHIFT) && GetAsyncKeyState(VK_CONTROL) && GetAsyncKeyState(VK_MENU) ) return -1;
// Return if we have both a Shift and Ctrl
if ( (GetAsyncKeyState(VK_SHIFT) && GetAsyncKeyState(VK_CONTROL)) ) return -1;
// Return if we have both a Ctrl and Alt
if ( (GetAsyncKeyState(VK_CONTROL) && GetAsyncKeyState(VK_MENU)) ) return -1;
// Return if we have both a Shift and Alt
if ( (GetAsyncKeyState(VK_SHIFT) && GetAsyncKeyState(VK_MENU)) ) return -1;
// ---------------------
// Return if we don't have both a Wiimote and Shift
if ( Wiimote == 0 && !GetAsyncKeyState(VK_SHIFT) ) return -1;
// Return if we don't have both a Nunchuck and Ctrl
if ( Wiimote == 1 && !GetAsyncKeyState(VK_CONTROL) ) return -1;
// Return if we don't have both a IR call and Alt
if ( Wiimote == 2 && !GetAsyncKeyState(VK_MENU) ) return -1;
// Check if we have exactly one numerical key
int Keys = 0;
for(int i = 0; i < 10; i++)
{
std::string Key = StringFromFormat("%i", i);
if(GetAsyncKeyState(Key[0])) Keys++;
}
//Console::Print("RecordingCheckKeys: %i\n", Keys);
// Return if we have less than or more than one
if (Keys != 1) return -1;
// Check which key it is
int Key;
for(int i = 0; i < 10; i++)
{
std::string TmpKey = StringFromFormat("%i", i);
if(GetAsyncKeyState(TmpKey[0])) { Key = i; break; }
}
// Check if we have a HotKey match
bool Match = false;
for(int i = 0; i < RECORDING_ROWS; i++)
{
if (VRecording.at(i).HotKey == Key)
{
//Console::Print("Match: %i %i\n", i, Key);
Match = true;
Key = i;
break;
}
}
// Return nothing if we don't have a match
if (!Match) return -1;
// Return the match
return Key;
#else
return -1;
#endif
}
// check if we have any recording playback key combination
bool CheckKeyCombination()
{
if (RecordingCheckKeys(0) == -1 && RecordingCheckKeys(1) == -1 && RecordingCheckKeys(2) == -1)
return false;
else
return true; // This will also start a recording
}
//******************************************************************************
// Subroutines
//******************************************************************************
////////////////////////////////////////////////////////////
// Wiimote core buttons
// ---------------
void FillReportInfo(wm_core& _core)
{
/* This has to be filled with zeroes (and not for example 0xff) because when no buttons are pressed the
value is 00 00 */
memset(&_core, 0x00, sizeof(wm_core));
#ifdef _WIN32
// Check that Dolphin is in focus
if (!IsFocus()) return;
// Don't interrupt a recording
if (CheckKeyCombination()) return;
// Check the mouse position. Don't allow mouse clicks from outside the window.
float x, y; GetMousePos(x, y);
bool InsideScreen = !(x < 0 || x > 1 || y < 0 || y > 1);
// Allow both mouse buttons and keyboard to press a and b
if((GetAsyncKeyState(VK_LBUTTON) && InsideScreen) || GetAsyncKeyState('A') ? 1 : 0)
_core.a = 1;
if((GetAsyncKeyState(VK_RBUTTON) && InsideScreen) || GetAsyncKeyState('B') ? 1 : 0)
_core.b = 1;
_core.one = GetAsyncKeyState('1') ? 1 : 0;
_core.two = GetAsyncKeyState('2') ? 1 : 0;
_core.plus = GetAsyncKeyState('P') ? 1 : 0;
_core.minus = GetAsyncKeyState('M') ? 1 : 0;
_core.home = GetAsyncKeyState('H') ? 1 : 0;
/* Sideways controls (for example for Wario Land) if the Wiimote is intended to be held sideways */
if(g_Config.bSidewaysDPad)
{
_core.left = GetAsyncKeyState(VK_DOWN) ? 1 : 0;
_core.up = GetAsyncKeyState(VK_LEFT) ? 1 : 0;
_core.right = GetAsyncKeyState(VK_UP) ? 1 : 0;
_core.down = GetAsyncKeyState(VK_RIGHT) ? 1 : 0;
}
else
{
_core.left = GetAsyncKeyState(VK_LEFT) ? 1 : 0;
_core.up = GetAsyncKeyState(VK_UP) ? 1 : 0;
_core.right = GetAsyncKeyState(VK_RIGHT) ? 1 : 0;
_core.down = GetAsyncKeyState(VK_DOWN) ? 1 : 0;
}
#else
// TODO: fill in
#endif
}
//////////////////////////
///////////////////////////////////////////////////////////////////
// Wiimote accelerometer
// ---------------
/* The accelerometer x, y and z values range from 0x00 to 0xff with the default netural values
being [y = 0x84, x = 0x84, z = 0x9f] according to a source. The extremes are 0x00 for (-)
and 0xff for (+). It's important that all values are not 0x80, the mouse pointer can disappear
from the screen permanently then, until z is adjusted back. */
// ----------
// Global declarations for FillReportAcc: These variables are global so they can be changed during debugging
//int A = 0, B = 128, C = 64; // for debugging
//int a = 1, b = 1, c = 2, d = -2; // for debugging
//int consoleDisplay = 0;
// For all functions
u8 g_x, g_y, g_z, g_X, g_Y, g_Z;
// For the shake function, 0 = Wiimote, 1 = Nunchuck
int Shake[] = {-1, -1};
// For the tilt function, the size of this list determines how fast Y returns to its neutral value
std::vector<u8> yhist(15, 0); float KbDegree;
// ------------------------------------------
// Single shake of Wiimote while holding it sideways (Wario Land pound ground)
// ---------------
void SingleShake(u8 &_y, u8 &_z, int i)
{
#ifdef _WIN32
// Shake Wiimote with S, Nunchuck with D
if((i == 0 && GetAsyncKeyState('S')) || (i == 1 && GetAsyncKeyState('D')))
{
_z = 0;
_y = 0;
Shake[i] = 2;
}
else if(Shake[i] == 2)
{
// This works regardless of calibration, in Wario Land
_z = g_accel.cal_zero.z - 2;
_y = 0;
Shake[i] = 1;
}
else if(Shake[i] == 1)
{
Shake[i] = -1;
}
#endif
//if (Shake[i] > -1) Console::Print("Shake: %i\n", Shake[i]);
}
// ------------------------------------------
/* Tilting Wiimote with gamepad. We can guess that the game will calculate a Wiimote pitch and use it as a
measure of the tilting of the Wiimote. We are interested in this tilting range
90° to -90° */
// ---------------
void TiltWiimoteGamepad(float &Roll, float &Pitch)
{
// Return if we have no pads
if (NumGoodPads == 0) return;
// Update the pad state
const int Page = 0;
WiiMoteEmu::GetJoyState(PadState[Page], PadMapping[Page], Page, joyinfo[PadMapping[Page].ID].NumButtons);
// Check if we should make adjustments
if(PadMapping[Page].bCircle2Square)
{
std::vector<int> main_xy = InputCommon::Square2Circle(PadState[Page].Axis.Lx, PadState[Page].Axis.Ly, Page, PadMapping[Page].SDiagonal, true);
PadState[Page].Axis.Lx = main_xy.at(0);
PadState[Page].Axis.Ly = main_xy.at(1);
}
// Check dead zone
float DeadZoneLeft = (float)PadMapping[Page].DeadZoneL / 100.0;
float DeadZoneRight = (float)PadMapping[Page].DeadZoneR / 100.0;
if (InputCommon::IsDeadZone(DeadZoneLeft, PadState[Page].Axis.Lx, PadState[Page].Axis.Ly))
{
PadState[Page].Axis.Lx = 0;
PadState[Page].Axis.Ly = 0;
}
if (InputCommon::IsDeadZone(DeadZoneRight, PadState[Page].Axis.Rx, PadState[Page].Axis.Ry))
{
PadState[Page].Axis.Rx = 0;
PadState[Page].Axis.Ry = 0;
}
// Convert the big values
float Lx = (float)InputCommon::Pad_Convert(PadState[Page].Axis.Lx);
float Ly = (float)InputCommon::Pad_Convert(PadState[Page].Axis.Ly);
float Rx = (float)InputCommon::Pad_Convert(PadState[Page].Axis.Rx);
float Ry = (float)InputCommon::Pad_Convert(PadState[Page].Axis.Ry);
float Tl, Tr;
if (PadMapping[Page].triggertype == InputCommon::CTL_TRIGGER_SDL)
{
Tl = (float)InputCommon::Pad_Convert(PadState[Page].Axis.Tl);
Tr = (float)InputCommon::Pad_Convert(PadState[Page].Axis.Tr);
}
else
{
Tl = (float)PadState[Page].Axis.Tl;
Tr = (float)PadState[Page].Axis.Tr;
}
// Save the Range in degrees, 45° and 90° are good values in some games
float RollRange = (float)g_Config.Trigger.Range.Roll;
float PitchRange = (float)g_Config.Trigger.Range.Pitch;
// The trigger currently only controls pitch
if (g_Config.Trigger.Type == g_Config.TRIGGER)
{
// Make the range the same dimension as the analog stick
Tl = Tl / 2;
Tr = Tr / 2;
// Invert
if (PadMapping[Page].bPitchInvert) { Tl = -Tl; Tr = -Tr; }
// The final value
Pitch = Tl * (PitchRange / 128)
- Tr * (PitchRange / 128);
}
/* For the analog stick roll us by default set to the X-axis, pitch is by default set to the Y-axis.
By changing the axis mapping and the invert options this can be altered in any way */
else if (g_Config.Trigger.Type == g_Config.ANALOG1)
{
// Adjust the trigger to go between negative and positive values
Lx = Lx - 128;
Ly = Ly - 128;
// Invert
if (PadMapping[Page].bRollInvert) Lx = -Lx; // else Tr = -Tr;
if (PadMapping[Page].bPitchInvert) Ly = -Ly; // else Tr = -Tr;
// Produce the final value
Roll = Lx * (RollRange / 128);
Pitch = Ly * (PitchRange / 128);
}
// Otherwise we are using ANALOG2
else
{
// Adjust the trigger to go between negative and positive values
Rx = Rx - 128;
Ry = Ry - 128;
// Invert
if (PadMapping[Page].bRollInvert) Rx = -Rx; // else Tr = -Tr;
if (PadMapping[Page].bPitchInvert) Ry = -Ry; // else Tr = -Tr;
// Produce the final value
Roll = Rx * (RollRange / 128);
Pitch = Ry * (PitchRange / 128);
}
// Adjustment to prevent a slightly to high angle
if (Pitch >= PitchRange) Pitch = PitchRange - 0.1;
if (Roll >= RollRange) Roll = RollRange - 0.1;
}
// ------------------------------------------
// Tilting Wiimote with keyboard
// ---------------
void TiltWiimoteKeyboard(float &Roll, float &Pitch)
{
#ifdef _WIN32
if(GetAsyncKeyState('3'))
{
// Stop at the upper end of the range
if(KbDegree < g_Config.Trigger.Range.Roll)
KbDegree += 3; // aim left
}
else if(GetAsyncKeyState('4'))
{
// Stop at the lower end of the range
if(KbDegree > -g_Config.Trigger.Range.Roll)
KbDegree -= 3; // aim right
}
// -----------------------------------
// Check for inactivity in the tilting, the Y value will be reset after ten inactive updates
// ----------
// Check for activity
yhist[yhist.size() - 1] = (
GetAsyncKeyState('3')
|| GetAsyncKeyState('4')
);
// Move all items back, and check if any of them are true
bool ypressed = false;
for (int i = 1; i < (int)yhist.size(); i++)
{
yhist[i-1] = yhist[i];
if(yhist[i]) ypressed = true;
}
// Tilting was not used a single time, reset the angle to zero
if(!ypressed)
{
KbDegree = 0;
}
else
{
Pitch = KbDegree;
//Console::Print("Degree: %2.1f\n", KbDegree);
}
// --------------------
#endif
}
// ------------------------------------------
// Tilting Wiimote (Wario Land aiming, Mario Kart steering and other things)
// ---------------
void Tilt(u8 &_x, u8 &_y, u8 &_z)
{
// Ceck if it's on
if (g_Config.Trigger.Type == g_Config.TRIGGER_OFF) return;
// Set to zero
float Roll = 0, Pitch = 0;
// Select input method and return the x, y, x values
if (g_Config.Trigger.Type == g_Config.KEYBOARD)
TiltWiimoteKeyboard(Roll, Pitch);
else if (g_Config.Trigger.Type == g_Config.TRIGGER || g_Config.Trigger.Type == g_Config.ANALOG1 || g_Config.Trigger.Type == g_Config.ANALOG2)
TiltWiimoteGamepad(Roll, Pitch);
// Adjust angles, it's only needed if both roll and pitch is used together
if (g_Config.Trigger.Range.Roll != 0 && g_Config.Trigger.Range.Pitch != 0) AdjustAngles(Roll, Pitch);
// Calculate the accelerometer value from this tilt angle
//PitchDegreeToAccelerometer(Roll, Pitch, _x, _y, _z, g_Config.Trigger.Roll, g_Config.Trigger.Pitch);
PitchDegreeToAccelerometer(Roll, Pitch, _x, _y, _z);
if (g_DebugData)
{
//Console::ClearScreen();
/*Console::Print("L:%2.1f R:%2.1f Lx:%2.1f Range:%2.1f Degree:%2.1f L:%i R:%i\n",
Tl, Tr, Lx, Range, Degree, PadState[Page].Axis.Tl, PadState[Page].Axis.Tr);*/
/*Console::Print("Roll:%2.1f Pitch:%2.1f\n", Roll, Pitch);*/
}
}
void FillReportAcc(wm_accel& _acc)
{
// ------------------------------------
// Recorded movements
// --------------
// Check for a playback command
if(g_RecordingPlaying[0] < 0)
{
g_RecordingPlaying[0] = RecordingCheckKeys(0);
}
else
{
// If the recording reached the end or failed somehow we will not return
if (RecordingPlay(_acc.x, _acc.y, _acc.z, 0)) return;
//Console::Print("X, Y, Z: %u %u %u\n", _acc.x, _acc.y, _acc.z);
}
// ---------------------
// The default values can change so we need to update them all the time
g_X = g_accel.cal_zero.x;
g_Y = g_accel.cal_zero.y;
g_Z = g_accel.cal_zero.z + g_accel.cal_g.z;
// Check that Dolphin is in focus
if (!IsFocus())
{
_acc.x = g_X;
_acc.y = g_y;
_acc.z = g_z;
return;
}
// ------------------------------------------------
// Wiimote to Gamepad translations
// ------------
// The following functions may or may not update these values
g_x = g_X;
g_y = g_Y;
g_z = g_Z;
// Shake the Wiimote
SingleShake(g_y, g_z, 0);
// Tilt Wiimote, allow the shake function to interrupt it
if (Shake[0] == -1) Tilt(g_x, g_y, g_z);
// Write final values
_acc.x = g_x;
_acc.y = g_y;
_acc.z = g_z;
// ----------------------------
// Debugging for translating Wiimote to Keyboard (or Gamepad)
// ----------
/*
// Toogle console display
if(GetAsyncKeyState('U'))
{
if(consoleDisplay < 2)
consoleDisplay ++;
else
consoleDisplay = 0;
}
if(GetAsyncKeyState('5'))
A-=1;
else if(GetAsyncKeyState('6'))
A+=1;
if(GetAsyncKeyState('7'))
B-=1;
else if(GetAsyncKeyState('8'))
B+=1;
if(GetAsyncKeyState('9'))
C-=1;
else if(GetAsyncKeyState('0'))
C+=1;
else if(GetAsyncKeyState(VK_NUMPAD3))
d-=1;
else if(GetAsyncKeyState(VK_NUMPAD6))
d+=1;
else if(GetAsyncKeyState(VK_ADD))
yhistsize-=1;
else if(GetAsyncKeyState(VK_SUBTRACT))
yhistsize+=1;
if(GetAsyncKeyState(VK_INSERT))
AX-=1;
else if(GetAsyncKeyState(VK_DELETE))
AX+=1;
else if(GetAsyncKeyState(VK_HOME))
AY-=1;
else if(GetAsyncKeyState(VK_END))
AY+=1;
else if(GetAsyncKeyState(VK_SHIFT))
AZ-=1;
else if(GetAsyncKeyState(VK_CONTROL))
AZ+=1;
if(GetAsyncKeyState(VK_NUMPAD1))
X+=1;
else if(GetAsyncKeyState(VK_NUMPAD2))
X-=1;
if(GetAsyncKeyState(VK_NUMPAD4))
Y+=1;
else if(GetAsyncKeyState(VK_NUMPAD5))
Y-=1;
if(GetAsyncKeyState(VK_NUMPAD7))
Z+=1;
else if(GetAsyncKeyState(VK_NUMPAD8))
Z-=1;
//if(consoleDisplay == 0)
Console::Print("x: %03i | y: %03i | z: %03i | A:%i B:%i C:%i a:%i b:%i c:%i d:%i X:%i Y:%i Z:%i\n",
_acc.x, _acc.y, _acc.z,
A, B, C,
a, b, c, d,
X, Y, Z
);
Console::Print("x: %03i | y: %03i | z: %03i | X:%i Y:%i Z:%i | AX:%i AY:%i AZ:%i \n",
_acc.x, _acc.y, _acc.z,
X, Y, Z,
AX, AY, AZ
);*/
}
/////////////////////////
///////////////////////////////////////////////////////////////////
// The extended 12 byte (3 byte per object) reporting
// ---------------
void FillReportIR(wm_ir_extended& _ir0, wm_ir_extended& _ir1)
{
// ------------------------------------
// Recorded movements
// --------------
// Check for a playback command
if(g_RecordingPlaying[2] < 0)
{
g_RecordingPlaying[2] = RecordingCheckKeys(2);
}
else
{
//Console::Print("X, Y, Z: %u %u %u\n", _acc.x, _acc.y, _acc.z);
if (RecordingPlayIR(_ir0)) return;
}
// ---------------------
// --------------------------------------
/* The calibration is controlled by these values, their absolute value and
the relative distance between between them control the calibration. WideScreen mode
has its own settings. */
// ----------
int Top, Left, Right, Bottom, SensorBarRadius;
if(g_Config.bWideScreen)
{
Top = wTOP; Left = wLEFT; Right = wRIGHT;
Bottom = wBOTTOM; SensorBarRadius = wSENSOR_BAR_RADIUS;
}
else
{
Top = TOP; Left = LEFT; Right = RIGHT;
Bottom = BOTTOM; SensorBarRadius = SENSOR_BAR_RADIUS;
}
// ------------------
/* Fill with 0xff if empty. The real Wiimote seems to use 0xff when it doesn't see a certain point,
at least from how WiiMoteReal::SendEvent() works. */
memset(&_ir0, 0xff, sizeof(wm_ir_extended));
memset(&_ir1, 0xff, sizeof(wm_ir_extended));
float MouseX, MouseY;
GetMousePos(MouseX, MouseY);
// If we are outside the screen leave the values at 0xff
if(MouseX > 1 || MouseX < 0 || MouseY > 1 || MouseY < 0) return;
// --------------------------------------
// Actual position calculation
// ----------
int y0 = Top + (MouseY * (Bottom - Top));
int y1 = Top + (MouseY * (Bottom - Top));
int x0 = Left + (MouseX * (Right - Left)) - SensorBarRadius;
int x1 = Left + (MouseX * (Right - Left)) + SensorBarRadius;
x0 = 1023 - x0;
_ir0.x = x0 & 0xFF;
_ir0.y = y0 & 0xFF;
_ir0.size = 10;
_ir0.xHi = x0 >> 8;
_ir0.yHi = y0 >> 8;
x1 = 1023 - x1;
_ir1.x = x1 & 0xFF;
_ir1.y = y1 & 0xFF;
_ir1.size = 10;
_ir1.xHi = x1 >> 8;
_ir1.yHi = y1 >> 8;
// ------------------
// ----------------------------
// Debugging for calibration
// ----------
/*
if(GetAsyncKeyState(VK_NUMPAD1))
Right +=1;
else if(GetAsyncKeyState(VK_NUMPAD2))
Right -=1;
if(GetAsyncKeyState(VK_NUMPAD4))
Left +=1;
else if(GetAsyncKeyState(VK_NUMPAD5))
Left -=1;
if(GetAsyncKeyState(VK_NUMPAD7))
Top += 1;
else if(GetAsyncKeyState(VK_NUMPAD8))
Top -= 1;
if(GetAsyncKeyState(VK_NUMPAD6))
Bottom += 1;
else if(GetAsyncKeyState(VK_NUMPAD3))
Bottom -= 1;
if(GetAsyncKeyState(VK_INSERT))
SensorBarRadius += 1;
else if(GetAsyncKeyState(VK_DELETE))
SensorBarRadius -= 1;
//ClearScreen();
//if(consoleDisplay == 1)
Console::Print("x0:%03i x1:%03i y0:%03i y1:%03i irx0:%03i y0:%03i x1:%03i y1:%03i | T:%i L:%i R:%i B:%i S:%i\n",
x0, x1, y0, y1, _ir0.x, _ir0.y, _ir1.x, _ir1.y, Top, Left, Right, Bottom, SensorBarRadius
);
Console::Print("\n");
Console::Print("ir0.x:%02x xHi:%02x ir1.x:%02x xHi:%02x | ir0.y:%02x yHi:%02x ir1.y:%02x yHi:%02x | 1.s:%02x 2:%02x\n",
_ir0.x, _ir0.xHi, _ir1.x, _ir1.xHi,
_ir0.y, _ir0.yHi, _ir1.y, _ir1.yHi,
_ir0.size, _ir1.size
);*/
// ------------------
}
///////////////////////////////////////////////////////////////////
// The 10 byte reporting used when an extension is connected
// ---------------
void FillReportIRBasic(wm_ir_basic& _ir0, wm_ir_basic& _ir1)
{
// ------------------------------------
// Recorded movements
// --------------
// Check for a playback command
if(g_RecordingPlaying[2] < 0)
{
g_RecordingPlaying[2] = RecordingCheckKeys(2);
}
// We are playing back a recording, we don't accept any manual input this time
else
{
//Console::Print("X, Y, Z: %u %u %u\n", _acc.x, _acc.y, _acc.z);
if (RecordingPlayIR(_ir0)) return;
}
// ---------------------
// --------------------------------------
/* See calibration description above */
// ----------
int Top, Left, Right, Bottom, SensorBarRadius;
if(g_Config.bWideScreen)
{
Top = wTOP; Left = wLEFT; Right = wRIGHT;
Bottom = wBOTTOM; SensorBarRadius = wSENSOR_BAR_RADIUS;
}
else
{
Top = TOP; Left = LEFT; Right = RIGHT;
Bottom = BOTTOM; SensorBarRadius = SENSOR_BAR_RADIUS;
}
// ------------------
// Fill with 0xff if empty
memset(&_ir0, 0xff, sizeof(wm_ir_basic));
memset(&_ir1, 0xff, sizeof(wm_ir_basic));
float MouseX, MouseY;
GetMousePos(MouseX, MouseY);
// If we are outside the screen leave the values at 0xff
if(MouseX > 1 || MouseX < 0 || MouseY > 1 || MouseY < 0) return;
int y1 = Top + (MouseY * (Bottom - Top));
int y2 = Top + (MouseY * (Bottom - Top));
int x1 = Left + (MouseX * (Right - Left)) - SensorBarRadius;
int x2 = Left + (MouseX * (Right - Left)) + SensorBarRadius;
/* As with the extented report we settle with emulating two out of four possible objects */
x1 = 1023 - x1;
_ir0.x1 = x1 & 0xff;
_ir0.y1 = y1 & 0xff;
_ir0.x1Hi = (x1 >> 8); // we are dealing with 2 bit values here
_ir0.y1Hi = (y1 >> 8);
x2 = 1023 - x2;
_ir0.x2 = x2 & 0xff;
_ir0.y2 = y2 & 0xff;
_ir0.x2Hi = (x2 >> 8);
_ir0.y2Hi = (y2 >> 8);
// I don't understand't the & 0x03, should we do that?
//_ir1.x1Hi = (x1 >> 8) & 0x3;
//_ir1.y1Hi = (y1 >> 8) & 0x3;
// ------------------------------------
// Debugging for calibration
// ----------
/*
if(GetAsyncKeyState(VK_NUMPAD1))
Right +=1;
else if(GetAsyncKeyState(VK_NUMPAD2))
Right -=1;
if(GetAsyncKeyState(VK_NUMPAD4))
Left +=1;
else if(GetAsyncKeyState(VK_NUMPAD5))
Left -=1;
if(GetAsyncKeyState(VK_NUMPAD7))
Top += 1;
else if(GetAsyncKeyState(VK_NUMPAD8))
Top -= 1;
if(GetAsyncKeyState(VK_NUMPAD6))
Bottom += 1;
else if(GetAsyncKeyState(VK_NUMPAD3))
Bottom -= 1;
if(GetAsyncKeyState(VK_INSERT))
SensorBarRadius += 1;
else if(GetAsyncKeyState(VK_DELETE))
SensorBarRadius -= 1;
//ClearScreen();
//if(consoleDisplay == 1)
Console::Print("x1:%03i x2:%03i y1:%03i y2:%03i irx1:%02x y1:%02x x2:%02x y2:%02x | T:%i L:%i R:%i B:%i S:%i\n",
x1, x2, y1, y2, _ir0.x1, _ir0.y1, _ir1.x2, _ir1.y2, Top, Left, Right, Bottom, SensorBarRadius
);
Console::Print("\n");
Console::Print("ir0.x1:%02x x1h:%02x x2:%02x x2h:%02x | ir0.y1:%02x y1h:%02x y2:%02x y2h:%02x | ir1.x1:%02x x1h:%02x x2:%02x x2h:%02x | ir1.y1:%02x y1h:%02x y2:%02x y2h:%02x\n",
_ir0.x1, _ir0.x1Hi, _ir0.x2, _ir0.x2Hi,
_ir0.y1, _ir0.y1Hi, _ir0.y2, _ir0.y2Hi,
_ir1.x1, _ir1.x1Hi, _ir1.x2, _ir1.x2Hi,
_ir1.y1, _ir1.y1Hi, _ir1.y2, _ir1.y2Hi
);*/
// ------------------
}
//**************************************************************************************
// Extensions
//**************************************************************************************
// ===================================================
/* Generate the 6 byte extension report for the Nunchuck, encrypted. The bytes are JX JY AX AY AZ BT. */
// ----------------
void FillReportExtension(wm_extension& _ext)
{
// ------------------------------------
// Recorded movements
// --------------
// Check for a playback command
if(g_RecordingPlaying[1] < 0) g_RecordingPlaying[1] = RecordingCheckKeys(1);
// We should not play back the accelerometer values
if (!(g_RecordingPlaying[1] >= 0 && RecordingPlay(_ext.ax, _ext.ay, _ext.az, 1)))
{
/* These are the default neutral values for the nunchuck accelerometer according to the calibration
data we have in nunchuck_calibration[] */
_ext.ax = 0x80;
_ext.ay = 0x80;
_ext.az = 0xb3;
}
// ---------------------
// Shake the Wiimote
SingleShake(_ext.ay, _ext.az, 1);
// ------------------------------------
// The default joystick and button values unless we use them
// --------------
_ext.jx = g_nu.jx.center;
_ext.jy = g_nu.jy.center;
_ext.bt = 0x03; // 0x03 means no button pressed, the button is zero active
// ---------------------
#ifdef _WIN32
// Set the max values to the current calibration values
if(GetAsyncKeyState(VK_NUMPAD4)) // x
_ext.jx = g_nu.jx.min;
if(GetAsyncKeyState(VK_NUMPAD6))
_ext.jx = g_nu.jx.max;
if(GetAsyncKeyState(VK_NUMPAD5)) // y
_ext.jy = g_nu.jy.min;
if(GetAsyncKeyState(VK_NUMPAD8))
_ext.jy = g_nu.jy.max;
if(GetAsyncKeyState('C'))
_ext.bt = 0x01;
if(GetAsyncKeyState('Z'))
_ext.bt = 0x02;
if(GetAsyncKeyState('C') && GetAsyncKeyState('Z'))
_ext.bt = 0x00;
#else
// TODO linux port
#endif
/* Here we encrypt the report */
// Create a temporary storage for the data
u8 Tmp[sizeof(_ext)];
// Clear the array by copying zeroes to it
memset(Tmp, 0, sizeof(_ext));
// Copy the data to it
memcpy(Tmp, &_ext, sizeof(_ext));
// Encrypt it
wiimote_encrypt(&g_ExtKey, Tmp, 0x00, sizeof(_ext));
// Write it back to the struct
memcpy(&_ext, Tmp, sizeof(_ext));
}
// =======================
// ===================================================
/* Generate the 6 byte extension report for the Classic Controller, encrypted.
The bytes are ... */
// ----------------
void FillReportClassicExtension(wm_classic_extension& _ext)
{
/* These are the default neutral values for the analog triggers and sticks */
u8 Rx = 0x80, Ry = 0x80, Lx = 0x80, Ly = 0x80, lT = 0x80, rT = 0x80;
_ext.b1.padding = 0x01; // 0x01 means not pressed
_ext.b1.bRT = 0x01;
_ext.b1.bP = 0x01;
_ext.b1.bH = 0x01;
_ext.b1.bM = 0x01;
_ext.b1.bLT = 0x01;
_ext.b1.bdD = 0x01;
_ext.b1.bdR = 0x01;
_ext.b2.bdU = 0x01;
_ext.b2.bdL = 0x01;
_ext.b2.bZR = 0x01;
_ext.b2.bX = 0x01;
_ext.b2.bA = 0x01;
_ext.b2.bY = 0x01;
_ext.b2.bB = 0x01;
_ext.b2.bZL = 0x01;
// --------------------------------------
// Check that Dolphin is in focus
if (!IsFocus()) return;
// --------------------------------------
// --------------------------------------
/* Left and right analog sticks
u8 Lx : 6; // byte 0
u8 Rx : 2;
u8 Ly : 6; // byte 1
u8 Rx2 : 2;
u8 Ry : 5; // byte 2
u8 lT : 2;
u8 Rx3 : 1;
u8 rT : 5; // byte 3
u8 lT2 : 3;
*/
#ifdef _WIN32
/* We use a 200 range (28 to 228) for the left analog stick and a 176 range
(40 to 216) for the right analog stick to match our calibration values
in classic_calibration */
if(GetAsyncKeyState('J')) // left analog left
Lx = 0x1c;
if(GetAsyncKeyState('I')) // up
Ly = 0xe4;
if(GetAsyncKeyState('L')) // right
Lx = 0xe4;
if(GetAsyncKeyState('K')) // down
Ly = 0x1c;
if(GetAsyncKeyState('D')) // right analog left
Rx = 0x28;
if(GetAsyncKeyState('R')) // up
Ry = 0xd8;
if(GetAsyncKeyState('G')) // right
Rx = 0xd8;
if(GetAsyncKeyState('F')) // down
Ry = 0x28;
#endif
_ext.Lx = (Lx >> 2);
_ext.Ly = (Ly >> 2);
_ext.Rx = (Rx >> 3); // this may be wrong
_ext.Rx2 = (Rx >> 5);
_ext.Rx3 = (Rx >> 7);
_ext.Ry = (Ry >> 2);
_ext.lT = (Ry >> 2);
_ext.lT2 = (Ry >> 3);
_ext.rT = (Ry >> 4);
// --------------
#ifdef _WIN32
// --------------------------------------
/* D-Pad
u8 b1;
0:
6: bdD
7: bdR
u8 b2;
0: bdU
1: bdL
*/
if(GetAsyncKeyState(VK_NUMPAD4)) // left
_ext.b2.bdL = 0x00;
if(GetAsyncKeyState(VK_NUMPAD8)) // up
_ext.b2.bdU = 0x00;
if(GetAsyncKeyState(VK_NUMPAD6)) // right
_ext.b1.bdR = 0x00;
if(GetAsyncKeyState(VK_NUMPAD5)) // down
_ext.b1.bdD = 0x00;
// --------------
// --------------------------------------
/* Buttons
u8 b1;
0:
6: -
7: -
u8 b2;
0: -
1: -
2: bZr
3: bX
4: bA
5: bY
6: bB
7: bZl
*/
if(GetAsyncKeyState('Z'))
_ext.b2.bA = 0x00;
if(GetAsyncKeyState('C'))
_ext.b2.bB = 0x00;
if(GetAsyncKeyState('Y'))
_ext.b2.bY = 0x00;
if(GetAsyncKeyState('X'))
_ext.b2.bX = 0x00;
if(GetAsyncKeyState('O')) // O instead of P
_ext.b1.bP = 0x00;
if(GetAsyncKeyState('N')) // N instead of M
_ext.b1.bM = 0x00;
if(GetAsyncKeyState('U')) // Home button
_ext.b1.bH = 0x00;
if(GetAsyncKeyState('7')) // digital left trigger
_ext.b1.bLT = 0x00;
if(GetAsyncKeyState('8'))
_ext.b2.bZL = 0x00;
if(GetAsyncKeyState('9'))
_ext.b2.bZR = 0x00;
if(GetAsyncKeyState('0')) // digital right trigger
_ext.b1.bRT = 0x00;
// All buttons pressed
//if(GetAsyncKeyState('C') && GetAsyncKeyState('Z'))
// { _ext.b2.bA = 0x01; _ext.b2.bB = 0x01; }
// --------------
#else
// TODO linux port
#endif
/* Here we encrypt the report */
// Create a temporary storage for the data
u8 Tmp[sizeof(_ext)];
// Clear the array by copying zeroes to it
memset(Tmp, 0, sizeof(_ext));
// Copy the data to it
memcpy(Tmp, &_ext, sizeof(_ext));
// Encrypt it
wiimote_encrypt(&g_ExtKey, Tmp, 0x00, sizeof(_ext));
// Write it back to the struct
memcpy(&_ext, Tmp, sizeof(_ext));
}
// =======================
} // end of namespace