Analytics:
- Incorporated fix to allow the full set of analytics that was recommended by
spotlightishere
BuildMacOSUniversalBinary:
- The x86_64 slice for a universal binary is now built for 10.12
- The universal binary build script now can be configured though command line
options instead of modifying the script itself.
- os.system calls were replaced with equivalent subprocess calls
- Formatting was reworked to be more PEP 8 compliant
- The script was refactored to make it more modular
- The com.apple.security.cs.disable-library-validation entitlement was removed
Memory Management:
- Changed the JITPageWrite*Execute*() functions to incorporate support for
nesting
Other:
- Fixed several small lint errors
- Fixed doc and formatting mistakes
- Several small refactors to make things clearer
This commit adds support for compiling Dolphin for ARM on MacOS so that it can
run natively on the M1 processors without running through Rosseta2 emulation
providing a 30-50% performance speedup and less hitches from Rosseta2.
It consists of several key changes:
- Adding support for W^X allocation(MAP_JIT) for the ARM JIT
- Adding the machine context and config info to identify the M1 processor
- Additions to the build system and docs to support building universal binaries
- Adding code signing entitlements to access the MAP_JIT functionality
- Updating the MoltenVK libvulkan.dylib to a newer version with M1 support
If we can prove that FCVT will provide a correct conversion,
we can use FCVT. This makes the common case a bit faster
and the less likely cases (unfortunately including zero,
which FCVT actually can convert correctly) a bit slower.
More or less a complete rewrite of the function which aims
to be equally good or better for each given input, without
relying on special cases like the old implementation did.
In particular, we now have more extensive support for
MOVN, as mentioned in a TODO comment.
I don't really see the use of this. (Maybe in the past it
was used for when we need a constant number of instructions
for backpatching? But we don't use MOVI2R for that now.)
Similar in nature to e28d063539 in which
this same change was applied to the x64 emitter.
There's no real requirement to make this const, and this should also
be decided by the calling code, considering we had places that would
simply cast away the const and carry on
Type punning like this is undefined behavior. Instead, we use std::memcpy to
copy the necessary data over, which is well defined (as it treats both
the source and destination as unsigned char).
Gets rid of the need to set up memcpy boilerplate to reinterpret between
floating-point and integers.
While we're at it, also do a minor bit of tidying.
This replaces usages of the non-standard __FUNCTION__ macro with the standard
mandated __func__ identifier.
__FUNCTION__ is a preprocessor definition that is provided as an
extension by compilers. This was the only convenient option to rely on
pre-C++11. However, C++11 and greater mandate the predefined identifier
__func__, which lets us accomplish the same thing.
The difference between the two, however, is that __func__ isn't a
preprocessor macro, it's an actual identifier that exists at function
scope. The C++17 draft standard (N4659) at section [dcl.fct.def.general]
paragraph 8 states:
"
The function-local predefined variable __func__ is defined as if a
definition of the form
static const char __func__[] = "function-name ";
had been provided, where function-name is an implementation-defined
string. It is unspecified whether such
a variable has an address distinct from that of any other object in the
program.
"
Thankfully, we don't do any macro or string concatenation with __FUNCTION__
that can't be modified to use __func__.