Arm64Emitter: Make use of std::optional
Allows eliminating some out variables in favor of optional, which allows narrowing visible scope of variables.
This commit is contained in:
parent
8a3b14d7dc
commit
d780ad1102
|
@ -6,6 +6,8 @@
|
|||
#include <array>
|
||||
#include <cinttypes>
|
||||
#include <cstring>
|
||||
#include <optional>
|
||||
#include <tuple>
|
||||
#include <vector>
|
||||
|
||||
#include "Common/Align.h"
|
||||
|
@ -32,30 +34,20 @@ uint64_t LargestPowerOf2Divisor(uint64_t value)
|
|||
}
|
||||
|
||||
// For ADD/SUB
|
||||
bool IsImmArithmetic(uint64_t input, u32* val, bool* shift)
|
||||
std::optional<std::pair<u32, bool>> IsImmArithmetic(uint64_t input)
|
||||
{
|
||||
if (input < 4096)
|
||||
{
|
||||
*val = input;
|
||||
*shift = false;
|
||||
return true;
|
||||
}
|
||||
else if ((input & 0xFFF000) == input)
|
||||
{
|
||||
*val = input >> 12;
|
||||
*shift = true;
|
||||
return true;
|
||||
}
|
||||
return false;
|
||||
return std::pair{static_cast<u32>(input), false};
|
||||
|
||||
if ((input & 0xFFF000) == input)
|
||||
return std::pair{static_cast<u32>(input >> 12), true};
|
||||
|
||||
return std::nullopt;
|
||||
}
|
||||
|
||||
// For AND/TST/ORR/EOR etc
|
||||
bool IsImmLogical(uint64_t value, unsigned int width, unsigned int* n, unsigned int* imm_s,
|
||||
unsigned int* imm_r)
|
||||
std::optional<std::tuple<u32, u32, u32>> IsImmLogical(u64 value, u32 width)
|
||||
{
|
||||
// DCHECK((n != NULL) && (imm_s != NULL) && (imm_r != NULL));
|
||||
// DCHECK((width == kWRegSizeInBits) || (width == kXRegSizeInBits));
|
||||
|
||||
bool negate = false;
|
||||
|
||||
// Logical immediates are encoded using parameters n, imm_s and imm_r using
|
||||
|
@ -160,7 +152,7 @@ bool IsImmLogical(uint64_t value, unsigned int width, unsigned int* n, unsigned
|
|||
// The input was zero (or all 1 bits, which will come to here too after we
|
||||
// inverted it at the start of the function), for which we just return
|
||||
// false.
|
||||
return false;
|
||||
return std::nullopt;
|
||||
}
|
||||
else
|
||||
{
|
||||
|
@ -177,12 +169,12 @@ bool IsImmLogical(uint64_t value, unsigned int width, unsigned int* n, unsigned
|
|||
|
||||
// If the repeat period d is not a power of two, it can't be encoded.
|
||||
if (!MathUtil::IsPow2<u64>(d))
|
||||
return false;
|
||||
return std::nullopt;
|
||||
|
||||
// If the bit stretch (b - a) does not fit within the mask derived from the
|
||||
// repeat period, then fail.
|
||||
if (((b - a) & ~mask) != 0)
|
||||
return false;
|
||||
return std::nullopt;
|
||||
|
||||
// The only possible option is b - a repeated every d bits. Now we're going to
|
||||
// actually construct the valid logical immediate derived from that
|
||||
|
@ -200,17 +192,17 @@ bool IsImmLogical(uint64_t value, unsigned int width, unsigned int* n, unsigned
|
|||
0x5555555555555555UL,
|
||||
}};
|
||||
|
||||
int multiplier_idx = Common::CountLeadingZeros((u64)d) - 57;
|
||||
const int multiplier_idx = Common::CountLeadingZeros((u64)d) - 57;
|
||||
|
||||
// Ensure that the index to the multipliers array is within bounds.
|
||||
DEBUG_ASSERT((multiplier_idx >= 0) && (static_cast<size_t>(multiplier_idx) < multipliers.size()));
|
||||
|
||||
uint64_t multiplier = multipliers[multiplier_idx];
|
||||
uint64_t candidate = (b - a) * multiplier;
|
||||
const u64 multiplier = multipliers[multiplier_idx];
|
||||
const u64 candidate = (b - a) * multiplier;
|
||||
|
||||
// The candidate pattern doesn't match our input value, so fail.
|
||||
if (value != candidate)
|
||||
return false;
|
||||
return std::nullopt;
|
||||
|
||||
// We have a match! This is a valid logical immediate, so now we have to
|
||||
// construct the bits and pieces of the instruction encoding that generates
|
||||
|
@ -219,7 +211,7 @@ bool IsImmLogical(uint64_t value, unsigned int width, unsigned int* n, unsigned
|
|||
// Count the set bits in our basic stretch. The special case of clz(0) == -1
|
||||
// makes the answer come out right for stretches that reach the very top of
|
||||
// the word (e.g. numbers like 0xffffc00000000000).
|
||||
int clz_b = (b == 0) ? -1 : Common::CountLeadingZeros(b);
|
||||
const int clz_b = (b == 0) ? -1 : Common::CountLeadingZeros(b);
|
||||
int s = clz_a - clz_b;
|
||||
|
||||
// Decide how many bits to rotate right by, to put the low bit of that basic
|
||||
|
@ -252,11 +244,11 @@ bool IsImmLogical(uint64_t value, unsigned int width, unsigned int* n, unsigned
|
|||
// 11110s 2 UInt(s)
|
||||
//
|
||||
// So we 'or' (-d << 1) with our computed s to form imms.
|
||||
*n = out_n;
|
||||
*imm_s = ((-d << 1) | (s - 1)) & 0x3f;
|
||||
*imm_r = r;
|
||||
|
||||
return true;
|
||||
return std::tuple{
|
||||
static_cast<u32>(out_n),
|
||||
static_cast<u32>(((-d << 1) | (s - 1)) & 0x3f),
|
||||
static_cast<u32>(r),
|
||||
};
|
||||
}
|
||||
|
||||
float FPImm8ToFloat(u8 bits)
|
||||
|
@ -270,7 +262,7 @@ float FPImm8ToFloat(u8 bits)
|
|||
return Common::BitCast<float>(f);
|
||||
}
|
||||
|
||||
bool FPImm8FromFloat(float value, u8* imm_out)
|
||||
std::optional<u8> FPImm8FromFloat(float value)
|
||||
{
|
||||
const u32 f = Common::BitCast<u32>(value);
|
||||
const u32 mantissa4 = (f & 0x7FFFFF) >> 19;
|
||||
|
@ -278,16 +270,15 @@ bool FPImm8FromFloat(float value, u8* imm_out)
|
|||
const u32 sign = f >> 31;
|
||||
|
||||
if ((exponent >> 7) == ((exponent >> 6) & 1))
|
||||
return false;
|
||||
return std::nullopt;
|
||||
|
||||
const u8 imm8 = (sign << 7) | ((!(exponent >> 7)) << 6) | ((exponent & 3) << 4) | mantissa4;
|
||||
const float new_float = FPImm8ToFloat(imm8);
|
||||
if (new_float == value)
|
||||
*imm_out = imm8;
|
||||
else
|
||||
return false;
|
||||
|
||||
return true;
|
||||
if (new_float != value)
|
||||
return std::nullopt;
|
||||
|
||||
return imm8;
|
||||
}
|
||||
} // Anonymous namespace
|
||||
|
||||
|
@ -4085,11 +4076,12 @@ void ARM64FloatEmitter::ABI_PopRegisters(BitSet32 registers, ARM64Reg tmp)
|
|||
|
||||
void ARM64XEmitter::ANDI2R(ARM64Reg Rd, ARM64Reg Rn, u64 imm, ARM64Reg scratch)
|
||||
{
|
||||
unsigned int n, imm_s, imm_r;
|
||||
if (!Is64Bit(Rn))
|
||||
imm &= 0xFFFFFFFF;
|
||||
if (IsImmLogical(imm, Is64Bit(Rn) ? 64 : 32, &n, &imm_s, &imm_r))
|
||||
|
||||
if (const auto result = IsImmLogical(imm, Is64Bit(Rn) ? 64 : 32))
|
||||
{
|
||||
const auto& [n, imm_s, imm_r] = *result;
|
||||
AND(Rd, Rn, imm_r, imm_s, n != 0);
|
||||
}
|
||||
else
|
||||
|
@ -4104,9 +4096,9 @@ void ARM64XEmitter::ANDI2R(ARM64Reg Rd, ARM64Reg Rn, u64 imm, ARM64Reg scratch)
|
|||
|
||||
void ARM64XEmitter::ORRI2R(ARM64Reg Rd, ARM64Reg Rn, u64 imm, ARM64Reg scratch)
|
||||
{
|
||||
unsigned int n, imm_s, imm_r;
|
||||
if (IsImmLogical(imm, Is64Bit(Rn) ? 64 : 32, &n, &imm_s, &imm_r))
|
||||
if (const auto result = IsImmLogical(imm, Is64Bit(Rn) ? 64 : 32))
|
||||
{
|
||||
const auto& [n, imm_s, imm_r] = *result;
|
||||
ORR(Rd, Rn, imm_r, imm_s, n != 0);
|
||||
}
|
||||
else
|
||||
|
@ -4121,9 +4113,9 @@ void ARM64XEmitter::ORRI2R(ARM64Reg Rd, ARM64Reg Rn, u64 imm, ARM64Reg scratch)
|
|||
|
||||
void ARM64XEmitter::EORI2R(ARM64Reg Rd, ARM64Reg Rn, u64 imm, ARM64Reg scratch)
|
||||
{
|
||||
unsigned int n, imm_s, imm_r;
|
||||
if (IsImmLogical(imm, Is64Bit(Rn) ? 64 : 32, &n, &imm_s, &imm_r))
|
||||
if (const auto result = IsImmLogical(imm, Is64Bit(Rn) ? 64 : 32))
|
||||
{
|
||||
const auto& [n, imm_s, imm_r] = *result;
|
||||
EOR(Rd, Rn, imm_r, imm_s, n != 0);
|
||||
}
|
||||
else
|
||||
|
@ -4138,9 +4130,9 @@ void ARM64XEmitter::EORI2R(ARM64Reg Rd, ARM64Reg Rn, u64 imm, ARM64Reg scratch)
|
|||
|
||||
void ARM64XEmitter::ANDSI2R(ARM64Reg Rd, ARM64Reg Rn, u64 imm, ARM64Reg scratch)
|
||||
{
|
||||
unsigned int n, imm_s, imm_r;
|
||||
if (IsImmLogical(imm, Is64Bit(Rn) ? 64 : 32, &n, &imm_s, &imm_r))
|
||||
if (const auto result = IsImmLogical(imm, Is64Bit(Rn) ? 64 : 32))
|
||||
{
|
||||
const auto& [n, imm_s, imm_r] = *result;
|
||||
ANDS(Rd, Rn, imm_r, imm_s, n != 0);
|
||||
}
|
||||
else
|
||||
|
@ -4266,76 +4258,79 @@ void ARM64XEmitter::CMPI2R(ARM64Reg Rn, u64 imm, ARM64Reg scratch)
|
|||
|
||||
bool ARM64XEmitter::TryADDI2R(ARM64Reg Rd, ARM64Reg Rn, u32 imm)
|
||||
{
|
||||
u32 val;
|
||||
bool shift;
|
||||
if (IsImmArithmetic(imm, &val, &shift))
|
||||
if (const auto result = IsImmArithmetic(imm))
|
||||
{
|
||||
const auto [val, shift] = *result;
|
||||
ADD(Rd, Rn, val, shift);
|
||||
else
|
||||
return false;
|
||||
return true;
|
||||
}
|
||||
|
||||
return true;
|
||||
return false;
|
||||
}
|
||||
|
||||
bool ARM64XEmitter::TrySUBI2R(ARM64Reg Rd, ARM64Reg Rn, u32 imm)
|
||||
{
|
||||
u32 val;
|
||||
bool shift;
|
||||
if (IsImmArithmetic(imm, &val, &shift))
|
||||
if (const auto result = IsImmArithmetic(imm))
|
||||
{
|
||||
const auto [val, shift] = *result;
|
||||
SUB(Rd, Rn, val, shift);
|
||||
else
|
||||
return false;
|
||||
return true;
|
||||
}
|
||||
|
||||
return true;
|
||||
return false;
|
||||
}
|
||||
|
||||
bool ARM64XEmitter::TryCMPI2R(ARM64Reg Rn, u32 imm)
|
||||
{
|
||||
u32 val;
|
||||
bool shift;
|
||||
if (IsImmArithmetic(imm, &val, &shift))
|
||||
if (const auto result = IsImmArithmetic(imm))
|
||||
{
|
||||
const auto [val, shift] = *result;
|
||||
CMP(Rn, val, shift);
|
||||
else
|
||||
return false;
|
||||
return true;
|
||||
}
|
||||
|
||||
return true;
|
||||
return false;
|
||||
}
|
||||
|
||||
bool ARM64XEmitter::TryANDI2R(ARM64Reg Rd, ARM64Reg Rn, u32 imm)
|
||||
{
|
||||
u32 n, imm_r, imm_s;
|
||||
if (IsImmLogical(imm, 32, &n, &imm_s, &imm_r))
|
||||
if (const auto result = IsImmLogical(imm, 32))
|
||||
{
|
||||
const auto& [n, imm_s, imm_r] = *result;
|
||||
AND(Rd, Rn, imm_r, imm_s, n != 0);
|
||||
else
|
||||
return false;
|
||||
return true;
|
||||
}
|
||||
|
||||
return true;
|
||||
return false;
|
||||
}
|
||||
bool ARM64XEmitter::TryORRI2R(ARM64Reg Rd, ARM64Reg Rn, u32 imm)
|
||||
{
|
||||
u32 n, imm_r, imm_s;
|
||||
if (IsImmLogical(imm, 32, &n, &imm_s, &imm_r))
|
||||
if (const auto result = IsImmLogical(imm, 32))
|
||||
{
|
||||
const auto& [n, imm_s, imm_r] = *result;
|
||||
ORR(Rd, Rn, imm_r, imm_s, n != 0);
|
||||
else
|
||||
return false;
|
||||
return true;
|
||||
}
|
||||
|
||||
return true;
|
||||
return false;
|
||||
}
|
||||
bool ARM64XEmitter::TryEORI2R(ARM64Reg Rd, ARM64Reg Rn, u32 imm)
|
||||
{
|
||||
u32 n, imm_r, imm_s;
|
||||
if (IsImmLogical(imm, 32, &n, &imm_s, &imm_r))
|
||||
if (const auto result = IsImmLogical(imm, 32))
|
||||
{
|
||||
const auto& [n, imm_s, imm_r] = *result;
|
||||
EOR(Rd, Rn, imm_r, imm_s, n != 0);
|
||||
else
|
||||
return false;
|
||||
return true;
|
||||
}
|
||||
|
||||
return true;
|
||||
return false;
|
||||
}
|
||||
|
||||
void ARM64FloatEmitter::MOVI2F(ARM64Reg Rd, float value, ARM64Reg scratch, bool negate)
|
||||
{
|
||||
ASSERT_MSG(DYNA_REC, !IsDouble(Rd), "MOVI2F does not yet support double precision");
|
||||
uint8_t imm8;
|
||||
if (value == 0.0)
|
||||
|
||||
if (value == 0.0f)
|
||||
{
|
||||
FMOV(Rd, IsDouble(Rd) ? ZR : WZR);
|
||||
if (negate)
|
||||
|
@ -4343,9 +4338,9 @@ void ARM64FloatEmitter::MOVI2F(ARM64Reg Rd, float value, ARM64Reg scratch, bool
|
|||
// TODO: There are some other values we could generate with the float-imm instruction, like
|
||||
// 1.0...
|
||||
}
|
||||
else if (FPImm8FromFloat(value, &imm8))
|
||||
else if (const auto imm = FPImm8FromFloat(value))
|
||||
{
|
||||
FMOV(Rd, imm8);
|
||||
FMOV(Rd, *imm);
|
||||
}
|
||||
else
|
||||
{
|
||||
|
|
Loading…
Reference in New Issue