Not initializing until the filesystem is used is good when
a filesystem is constructed and then never used, but nobody does that.
This simplifies the code a little and lets all methods be const.
Instead of using lots of small scattered reads to read the FST,
only one big read is used, which is more efficient.
This also means that the FST only allocates memory once and stores all
strings close to each other - good for the CPU cache. The file info
objects use pointers to this FST memory of containing data themselves.
Keeping around the big m_FileInfoVector containing objects with only
pointers is a bit unnecessary, but that will be fixed soon.
Instead of calling GetPathFromFSTOffset for every file info, FindFileInfo
now only looks at names in directories that are included in the path.
For the common case of searching for "opening.bnr", this means that
only root-level files and directories have to be searched through.
Some callers already have the file info, making the relatively slow
FindFileInfo calls unnecessary. Callers that didn't have the file info
will now need to call FindFileInfo on their own.
Some callers (i.e. ISOProperties) don't want the full path, so giving them
it is unnecessary. Those that do want it can use GetPathFromFSTOffset.
Not storing full paths everywhere also saves a small bit of RAM and is
necessary for a later commit. The code isn't especially pretty right now
(callers need to use FST offsets...) but it'll become better later.
GC/Wii filesystem internals shouldn't be exposed to other classes.
This change isn't especially useful by itself, but it opens up the
way for some neat stuff in the following commits.
This code hadn't been touched since 2010. Nowadays, the panic alert
setting is loaded by ConfigManager and applied in UICommon.
VideoConfig has no business messing with it.
This ioctlv is used to get an IOSC decrypt handle for a title.
It is known to be used internally by the WFS modules, but it can also
be used from the PPC under some conditions.
Brings us down to 2 essentially unimplementable ioctlvs (syscalls which
seem to return kernel thread priorities...), and 1 known but
unimplemented ioctlv (VerifySign).
In the future, NAND filesystem access will be limited to one IOS
instance, for safety reasons and to make it possible to consider
supporting NAND images. This means that any code accessing the NAND
filesystem must go through the FS device, both for code that is
external to IOS and internal.
Because we don't want to introduce any singleton, this requires
internal IOS code that needs NAND access to be part of an IOS device
class, so they can access the FS device easily.
Making some of the internal ES implementation functions member
functions also prevents them from being (mis)used outside of IOS,
since they cannot be called everywhere anymore.