With this, situations where multiple arguments need to be moved
from multiple registers become easy to handle, and we also get
compile-time checking that the number of arguments is correct.
Previously these were required to be built into the executable so that
the JIT portion of the DSP code would build properly, as the
x86-64-specifics were tightly coupled to the DSP common code. As this is
no longer the case, this is no longer necessary.
Keeps all of the floating-point utility functions in their own file to
keep them all together. This also provides a place for other
general-purpose floating-point functions to be added in the future,
which will be necessary when improving the flag-setting within the
interpreter.
Everything that links in core doesn't need to see anything related to bochs, because it's only used internally.
Anything else that relies on bochs should be linking it in explicitly.
Since all queues are FIFO data structures, the name wasn't informative
as to why you'd use it over a normal queue. I originally thought it had
something to do with the hardware graphics FIFO.
This renames it using the common acronym SPSC, which stands for
single-producer single-consumer, and is most commonly used to talk about
lock-free data structures, both of which this is.
This moves all the byte swapping utilities into a header named Swap.h.
A dedicated header is much more preferable here due to the size of the
code itself. In general usage throughout the codebase, CommonFuncs.h was
generally only included for these functions anyway. These being in their
own header avoids dumping the lesser used utilities into scope. As well
as providing a localized area for more utilities related to byte
swapping in the future (should they be needed). This also makes it nicer
to identify which files depend on the byte swapping utilities in
particular.
Since this is a completely new header, moving the code uncovered a few
indirect includes, as well as making some other inclusions unnecessary.
This attempts to make some bit arithmetic more self-documenting and also
make it easier during review to identify potential off-by-one errors by
making it possible to just specify which bits are being extracted.
Functions both support the case where bits being extracted can vary and
fixed bit extraction. In the case the bits are fixed, compile-time asserts
are present to prevent accidental API usage at compile-time.
e.g. Instead of shifting and masking to get bits 10 to 15,
Common::ExtractBits<10, 15>(value) can just be done instead.