Some pieces of code are calling IsRunning because there's some
particular action that only makes sense when emulation is running, for
instance showing the state of the emulated CPU. IsRunning is appropriate
to use for this. Then there are pieces of code that are calling
IsRunning because there's some particular thing they must avoid doing
e.g. when the CPU thread is running or IOS is running. IsRunning isn't
quite appropriate for this. Such code should also be checking for the
states Starting and Stopping. Keep in mind that:
* When the state is Starting, the state can asynchronously change to
Running at any time.
* When we try to stop the core, the state gets set to Stopping before we
take any action to actually stop things.
This commit adds a new method Core::IsUninitialized, and changes all
callers of IsRunning and GetState that look to me like they should be
changed.
Core::GetState reads from four different pieces of state: s_is_stopping,
s_hardware_initialized, s_is_booting, and CPUManager::IsStepping.
I'm keeping that last one as is for now because there's code in Dolphin
that sets it directly, but we can unify the other three to make things
easier to reason about.
This commit also gets rid of s_is_started. This was previously used in
Core::IsRunningAndStarted to ensure true wouldn't be returned until the
CPU thread was started, but it wasn't used in Core::GetState, so
Core::GetState would happily return State::Running after we had
initialized the hardware but before we had initialized the CPU thread.
As far as I know, there are no callers that have any real need to know
whether the boot process is currently initializing the hardware or the
CPU thread. Perhaps once upon a time there was a desire to make the
apploader debuggable, but a long time has passed without anyone stepping
up to implement it, and the way CBoot::RunApploader is implemented makes
it rather difficult. So this commit makes all the functions in Core.cpp
consider the core to still be starting until the CPU thread is started.
If an icon is displayed on screen before it downloads, it was displaying a default icon but it would fail to load the actual icon even after it was downloaded. This fixes that.
This lets us reduce the number of USE_RETRO_ACHIEVEMENTS ifdefs in the
code base, reducing visual clutter. In particular, needing an ifdef for
each call to IsHardcodeModeActive was annoying to me. This also reduces
the risk that someone writes code that accidentally fails to compile
with USE_RETRO_ACHIEVEMENTS disabled.
We could cut down on ifdefs even further by making HardcodeWarningWidget
always exist, but that would result in non-trivial code ending up in the
binary even with USE_RETRO_ACHIEVEMENTS disabled, so I'm leaving it out
of this PR. It's not a lot of code though, so I might end up revisiting
it at some point.
Achievement badges/icons are refactored into the type CustomTextureData::ArraySlice::Level as that is the data type images loaded from the filesystem will be. This includes everything that uses the badges in the Qt UI and OnScreenDisplay, and similarly removes the OSD::Icon type because Level already contains that information.
Up to four leaderboards are displayed in a window in the bottom right of the screen (vertically above challenge icons, if there are any). As per RetroAchievements standards, the markers only display the current leaderboard values with no further context necessary.
To ensure memory safety, callers of GetPointer have to perform a bounds
check. But how is this bounds check supposed to be performed?
GetPointerForRange contained one implementation of a bounds check, but
it was cumbersome, and it also isn't obvious why it's correct.
To make doing the right thing easier, this commit changes GetPointer to
return a span that tells the caller how many bytes it's allowed to
access.
This fourth part of my series of patches to get rid of unsafe uses of
GetPointer takes care of the "easy" cases in VideoCommon. Three uses of
GetPointer now remain in Dolphin: VertexLoaderManager, TextureInfo, and
the software renderer's TextureSampler.
On all platforms, this would result in out of bounds accesses when getting the component sizes (which uses stuff from VertexLoader_Position.h/VertexLoader_TextCoord.h/VertexLoader_Normal.h). On platforms other than x64 and ARM64, this would also be out of bounds accesses when getting function pointers for the non-JIT vertex loader (in VertexLoader_Position.cpp etc.). Usually both of these would get data from other entries in the same multi-dimensional array, but the last few entries would be truly out of bounds. This does mean that an out of bounds function pointer can be called on platforms that don't have a JIT vertex loader, but it is limited to invalid component formats with values 5/6/7 due to the size of the bitfield the formats come from, so it seems unlikely that this could be exploited in practice.
This issue affects a few games; Def Jam: Fight for New York (https://bugs.dolphin-emu.org/issues/12719) and Fifa Street are known to be affected.
I have not done any hardware testing for this PR specifically, though I *think* I previously determined that at least a value of 5 behaves the same as float (4). That's what I implemented in any case. I did previously determine that both Def Jam: Fight for New York and Fifa Street use an invalid normal format, but don't actually have lighting enabled when that normal vector is used, so it doesn't change rendering in practice.
The color component format also has two invalid values, but VertexLoader_Color.h/.cpp do check for those invalid ones and return a default value instead of doing an out of bounds access.
This takes care of making the image clearer in some edge cases where the game was already running at near perfect
4:3 with no stretching, and the VI aspect ratio didn't match the XFB by one pixel, making the image stretched and blurry.
-Video: Fix `FindClosestIntegerResolution() using the window aspect ratio and not the draw aspect ratio, causing it to prefer
stretching over black bars in cases when it wasn't desirable.
Instead, we make the event take a reference to the system and then pass
it in when the event is triggered.
This does introduce two other accessors, but these are much easier to
refactor out over time, and without modification to the existing event
interface.
Makes the hash specialization a little less noisy. Also we mark it
noexcept, since hashes shouldn't be throwing exceptions (and this can be
optimized on).
Allows using keys that aren't directly std::string as the key. This lets
us use std::string_view for the incoming path name, making it more
flexible with other string types.