dolphin/Source/Core/VideoCommon/BPFunctions.cpp

325 lines
10 KiB
C++
Raw Normal View History

// Copyright 2009 Dolphin Emulator Project
2015-05-17 23:08:10 +00:00
// Licensed under GPLv2+
// Refer to the license.txt file included.
#include <algorithm>
#include "Common/CommonTypes.h"
#include "Common/Logging/Log.h"
#include "VideoCommon/AbstractFramebuffer.h"
#include "VideoCommon/BPFunctions.h"
#include "VideoCommon/BPMemory.h"
#include "VideoCommon/FramebufferManager.h"
#include "VideoCommon/RenderBase.h"
#include "VideoCommon/RenderState.h"
#include "VideoCommon/VertexManagerBase.h"
#include "VideoCommon/VideoCommon.h"
#include "VideoCommon/VideoConfig.h"
#include "VideoCommon/XFMemory.h"
namespace BPFunctions
{
// ----------------------------------------------
// State translation lookup tables
// Reference: Yet Another GameCube Documentation
// ----------------------------------------------
void FlushPipeline()
{
g_vertex_manager->Flush();
}
void SetGenerationMode()
{
2018-02-24 15:15:35 +00:00
g_vertex_manager->SetRasterizationStateChanged();
}
void SetScissor()
{
/* NOTE: the minimum value here for the scissor rect and offset is -342.
* GX internally adds on an offset of 342 to both the offset and scissor
* coords to ensure that the register was always unsigned.
*
* The code that was here before tried to "undo" this offset, but
* since we always take the difference, the +342 added to both
* sides cancels out. */
/* The scissor offset is always even, so to save space, the scissor offset
* register is scaled down by 2. So, if somebody calls
* GX_SetScissorBoxOffset(20, 20); the registers will be set to 10, 10. */
const int xoff = bpmem.scissorOffset.x * 2;
const int yoff = bpmem.scissorOffset.y * 2;
MathUtil::Rectangle<int> native_rc(bpmem.scissorTL.x - xoff, bpmem.scissorTL.y - yoff,
bpmem.scissorBR.x - xoff + 1, bpmem.scissorBR.y - yoff + 1);
native_rc.ClampUL(0, 0, EFB_WIDTH, EFB_HEIGHT);
auto target_rc = g_renderer->ConvertEFBRectangle(native_rc);
auto converted_rc =
g_renderer->ConvertFramebufferRectangle(target_rc, g_renderer->GetCurrentFramebuffer());
g_renderer->SetScissorRect(converted_rc);
}
void SetViewport()
{
int scissor_x_off = bpmem.scissorOffset.x * 2;
int scissor_y_off = bpmem.scissorOffset.y * 2;
float x = g_renderer->EFBToScaledXf(xfmem.viewport.xOrig - xfmem.viewport.wd - scissor_x_off);
float y = g_renderer->EFBToScaledYf(xfmem.viewport.yOrig + xfmem.viewport.ht - scissor_y_off);
float width = g_renderer->EFBToScaledXf(2.0f * xfmem.viewport.wd);
float height = g_renderer->EFBToScaledYf(-2.0f * xfmem.viewport.ht);
float min_depth = (xfmem.viewport.farZ - xfmem.viewport.zRange) / 16777216.0f;
float max_depth = xfmem.viewport.farZ / 16777216.0f;
if (width < 0.f)
{
x += width;
width *= -1;
}
if (height < 0.f)
{
y += height;
height *= -1;
}
// The maximum depth that is written to the depth buffer should never exceed this value.
// This is necessary because we use a 2^24 divisor for all our depth values to prevent
// floating-point round-trip errors. However the console GPU doesn't ever write a value
// to the depth buffer that exceeds 2^24 - 1.
constexpr float GX_MAX_DEPTH = 16777215.0f / 16777216.0f;
if (!g_ActiveConfig.backend_info.bSupportsDepthClamp)
{
// There's no way to support oversized depth ranges in this situation. Let's just clamp the
// range to the maximum value supported by the console GPU and hope for the best.
min_depth = std::clamp(min_depth, 0.0f, GX_MAX_DEPTH);
max_depth = std::clamp(max_depth, 0.0f, GX_MAX_DEPTH);
}
if (g_renderer->UseVertexDepthRange())
{
// We need to ensure depth values are clamped the maximum value supported by the console GPU.
// Taking into account whether the depth range is inverted or not.
if (xfmem.viewport.zRange < 0.0f && g_ActiveConfig.backend_info.bSupportsReversedDepthRange)
{
min_depth = GX_MAX_DEPTH;
max_depth = 0.0f;
}
else
{
min_depth = 0.0f;
max_depth = GX_MAX_DEPTH;
}
}
float near_depth, far_depth;
if (g_ActiveConfig.backend_info.bSupportsReversedDepthRange)
{
// Set the reversed depth range.
near_depth = max_depth;
far_depth = min_depth;
}
else
{
// We use an inverted depth range here to apply the Reverse Z trick.
// This trick makes sure we match the precision provided by the 1:0
// clipping depth range on the hardware.
near_depth = 1.0f - max_depth;
far_depth = 1.0f - min_depth;
}
// Clamp to size if oversized not supported. Required for D3D.
if (!g_ActiveConfig.backend_info.bSupportsOversizedViewports)
{
const float max_width = static_cast<float>(g_renderer->GetCurrentFramebuffer()->GetWidth());
const float max_height = static_cast<float>(g_renderer->GetCurrentFramebuffer()->GetHeight());
x = std::clamp(x, 0.0f, max_width - 1.0f);
y = std::clamp(y, 0.0f, max_height - 1.0f);
width = std::clamp(width, 1.0f, max_width - x);
height = std::clamp(height, 1.0f, max_height - y);
}
// Lower-left flip.
if (g_ActiveConfig.backend_info.bUsesLowerLeftOrigin)
y = static_cast<float>(g_renderer->GetCurrentFramebuffer()->GetHeight()) - y - height;
g_renderer->SetViewport(x, y, width, height, near_depth, far_depth);
}
void SetDepthMode()
{
2018-02-24 15:15:35 +00:00
g_vertex_manager->SetDepthStateChanged();
}
void SetBlendMode()
{
2018-02-24 15:15:35 +00:00
g_vertex_manager->SetBlendingStateChanged();
}
/* Explanation of the magic behind ClearScreen:
There's numerous possible formats for the pixel data in the EFB.
However, in the HW accelerated backends we're always using RGBA8
for the EFB format, which causes some problems:
- We're using an alpha channel although the game doesn't
- If the actual EFB format is RGBA6_Z24 or R5G6B5_Z16, we are using more bits per channel than the
native HW
To properly emulate the above points, we're doing the following:
(1)
- disable alpha channel writing of any kind of rendering if the actual EFB format doesn't use an
alpha channel
- NOTE: Always make sure that the EFB has been cleared to an alpha value of 0xFF in this case!
- Same for color channels, these need to be cleared to 0x00 though.
(2)
- convert the RGBA8 color to RGBA6/RGB8/RGB565 and convert it to RGBA8 again
- convert the Z24 depth value to Z16 and back to Z24
*/
void ClearScreen(const MathUtil::Rectangle<int>& rc)
{
bool colorEnable = (bpmem.blendmode.colorupdate != 0);
bool alphaEnable = (bpmem.blendmode.alphaupdate != 0);
bool zEnable = (bpmem.zmode.updateenable != 0);
auto pixel_format = bpmem.zcontrol.pixel_format;
// (1): Disable unused color channels
if (pixel_format == PEControl::RGB8_Z24 || pixel_format == PEControl::RGB565_Z16 ||
pixel_format == PEControl::Z24)
{
alphaEnable = false;
}
if (colorEnable || alphaEnable || zEnable)
{
u32 color = (bpmem.clearcolorAR << 16) | bpmem.clearcolorGB;
u32 z = bpmem.clearZValue;
// (2) drop additional accuracy
if (pixel_format == PEControl::RGBA6_Z24)
{
color = RGBA8ToRGBA6ToRGBA8(color);
}
else if (pixel_format == PEControl::RGB565_Z16)
{
color = RGBA8ToRGB565ToRGBA8(color);
z = Z24ToZ16ToZ24(z);
}
g_renderer->ClearScreen(rc, colorEnable, alphaEnable, zEnable, color, z);
}
}
void OnPixelFormatChange()
{
// TODO : Check for Z compression format change
// When using 16bit Z, the game may enable a special compression format which we need to handle
// If we don't, Z values will be completely screwed up, currently only Star Wars:RS2 uses that.
/*
* When changing the EFB format, the pixel data won't get converted to the new format but stays
* the same.
* Since we are always using an RGBA8 buffer though, this causes issues in some games.
* Thus, we reinterpret the old EFB data with the new format here.
*/
if (!g_ActiveConfig.bEFBEmulateFormatChanges)
return;
auto old_format = g_renderer->GetPrevPixelFormat();
auto new_format = bpmem.zcontrol.pixel_format;
g_renderer->StorePixelFormat(new_format);
DEBUG_LOG(VIDEO, "pixelfmt: pixel=%d, zc=%d", static_cast<int>(new_format),
static_cast<int>(bpmem.zcontrol.zformat));
// no need to reinterpret pixel data in these cases
if (new_format == old_format || old_format == PEControl::INVALID_FMT)
return;
// Check for pixel format changes
switch (old_format)
{
case PEControl::RGB8_Z24:
case PEControl::Z24:
{
// Z24 and RGB8_Z24 are treated equal, so just return in this case
if (new_format == PEControl::RGB8_Z24 || new_format == PEControl::Z24)
return;
if (new_format == PEControl::RGBA6_Z24)
{
g_renderer->ReinterpretPixelData(EFBReinterpretType::RGB8ToRGBA6);
return;
}
else if (new_format == PEControl::RGB565_Z16)
{
g_renderer->ReinterpretPixelData(EFBReinterpretType::RGB8ToRGB565);
return;
}
}
break;
case PEControl::RGBA6_Z24:
{
if (new_format == PEControl::RGB8_Z24 || new_format == PEControl::Z24)
{
g_renderer->ReinterpretPixelData(EFBReinterpretType::RGBA6ToRGB8);
return;
}
else if (new_format == PEControl::RGB565_Z16)
{
g_renderer->ReinterpretPixelData(EFBReinterpretType::RGBA6ToRGB565);
return;
}
}
break;
case PEControl::RGB565_Z16:
{
if (new_format == PEControl::RGB8_Z24 || new_format == PEControl::Z24)
{
g_renderer->ReinterpretPixelData(EFBReinterpretType::RGB565ToRGB8);
return;
}
else if (new_format == PEControl::RGBA6_Z24)
{
g_renderer->ReinterpretPixelData(EFBReinterpretType::RGB565ToRGBA6);
return;
}
}
break;
default:
break;
}
ERROR_LOG(VIDEO, "Unhandled EFB format change: %d to %d", static_cast<int>(old_format),
static_cast<int>(new_format));
}
void SetInterlacingMode(const BPCmd& bp)
{
// TODO
switch (bp.address)
{
case BPMEM_FIELDMODE:
{
// SDK always sets bpmem.lineptwidth.lineaspect via BPMEM_LINEPTWIDTH
// just before this cmd
const char* action[] = {"don't adjust", "adjust"};
DEBUG_LOG(VIDEO, "BPMEM_FIELDMODE texLOD:%s lineaspect:%s", action[bpmem.fieldmode.texLOD],
action[bpmem.lineptwidth.lineaspect]);
}
break;
case BPMEM_FIELDMASK:
{
// Determines if fields will be written to EFB (always computed)
const char* action[] = {"skip", "write"};
DEBUG_LOG(VIDEO, "BPMEM_FIELDMASK even:%s odd:%s", action[bpmem.fieldmask.even],
action[bpmem.fieldmask.odd]);
}
break;
default:
ERROR_LOG(VIDEO, "SetInterlacingMode default");
break;
}
}
}; // namespace BPFunctions