2013-01-11 03:03:09 +00:00
|
|
|
// Copyright (C) 2003 Dolphin Project.
|
|
|
|
|
|
|
|
// This program is free software: you can redistribute it and/or modify
|
|
|
|
// it under the terms of the GNU General Public License as published by
|
|
|
|
// the Free Software Foundation, version 2.0.
|
|
|
|
|
|
|
|
// This program is distributed in the hope that it will be useful,
|
|
|
|
// but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
|
|
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
|
|
// GNU General Public License 2.0 for more details.
|
|
|
|
|
|
|
|
// A copy of the GPL 2.0 should have been included with the program.
|
|
|
|
// If not, see http://www.gnu.org/licenses/
|
|
|
|
|
|
|
|
// Official SVN repository and contact information can be found at
|
|
|
|
// http://code.google.com/p/dolphin-emu/
|
|
|
|
|
|
|
|
// Dolby Pro Logic 2 decoder from ffdshow-tryout
|
|
|
|
// * Copyright 2001 Anders Johansson ajh@atri.curtin.edu.au
|
|
|
|
// * Copyright (c) 2004-2006 Milan Cutka
|
|
|
|
// * based on mplayer HRTF plugin by ylai
|
|
|
|
|
|
|
|
#include <functional>
|
|
|
|
#include <vector>
|
2013-01-11 03:20:22 +00:00
|
|
|
#include <math.h>
|
|
|
|
#include <stdlib.h>
|
|
|
|
#include <string.h>
|
2013-01-11 03:03:09 +00:00
|
|
|
#include "DPL2Decoder.h"
|
|
|
|
|
|
|
|
#define M_PI 3.14159265358979323846
|
|
|
|
#define M_SQRT1_2 0.70710678118654752440
|
|
|
|
|
|
|
|
int olddelay = -1;
|
|
|
|
unsigned int oldfreq = 0;
|
|
|
|
unsigned int dlbuflen;
|
|
|
|
int cyc_pos;
|
|
|
|
float l_fwr, r_fwr, lpr_fwr, lmr_fwr;
|
|
|
|
std::vector<float> fwrbuf_l, fwrbuf_r;
|
|
|
|
float adapt_l_gain, adapt_r_gain, adapt_lpr_gain, adapt_lmr_gain;
|
|
|
|
std::vector<float> lf, rf, lr, rr, cf, cr;
|
|
|
|
float LFE_buf[256];
|
|
|
|
unsigned int lfe_pos;
|
|
|
|
float *filter_coefs_lfe;
|
|
|
|
unsigned int len125;
|
|
|
|
|
|
|
|
template<class T,class _ftype_t> static _ftype_t dotproduct(int count,const T *buf,const _ftype_t *coefficients)
|
|
|
|
{
|
|
|
|
float sum0=0,sum1=0,sum2=0,sum3=0;
|
|
|
|
for (;count>=4;buf+=4,coefficients+=4,count-=4)
|
|
|
|
{
|
|
|
|
sum0+=buf[0]*coefficients[0];
|
|
|
|
sum1+=buf[1]*coefficients[1];
|
|
|
|
sum2+=buf[2]*coefficients[2];
|
|
|
|
sum3+=buf[3]*coefficients[3];
|
|
|
|
}
|
|
|
|
while (count--) sum0+= *buf++ * *coefficients++;
|
|
|
|
return sum0+sum1+sum2+sum3;
|
|
|
|
}
|
|
|
|
|
|
|
|
template<class T> static T firfilter(const T *buf, int pos, int len, int count, const float *coefficients)
|
|
|
|
{
|
|
|
|
int count1, count2;
|
|
|
|
|
|
|
|
if (pos >= count)
|
|
|
|
{
|
|
|
|
pos -= count;
|
|
|
|
count1 = count; count2 = 0;
|
|
|
|
}
|
|
|
|
else
|
|
|
|
{
|
|
|
|
count2 = pos;
|
|
|
|
count1 = count - pos;
|
|
|
|
pos = len - count1;
|
|
|
|
}
|
|
|
|
|
|
|
|
// high part of window
|
|
|
|
const T *ptr = &buf[pos];
|
|
|
|
|
|
|
|
float r1=dotproduct(count1,ptr,coefficients);coefficients+=count1;
|
|
|
|
float r2=dotproduct(count2,buf,coefficients);
|
|
|
|
return T(r1+r2);
|
|
|
|
}
|
|
|
|
|
|
|
|
template<class T> inline const T& limit(const T& val, const T& min, const T& max)
|
|
|
|
{
|
|
|
|
if (val < min) {
|
|
|
|
return min;
|
|
|
|
} else if (val > max) {
|
|
|
|
return max;
|
|
|
|
} else {
|
|
|
|
return val;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
/*
|
|
|
|
// Hamming
|
|
|
|
// 2*pi*k
|
|
|
|
// w(k) = 0.54 - 0.46*cos(------), where 0 <= k < N
|
|
|
|
// N-1
|
|
|
|
//
|
|
|
|
// n window length
|
|
|
|
// w buffer for the window parameters
|
|
|
|
*/
|
|
|
|
void hamming(int n, float* w)
|
|
|
|
{
|
|
|
|
int i;
|
|
|
|
float k = float(2*M_PI/((float)(n-1))); // 2*pi/(N-1)
|
|
|
|
|
|
|
|
// Calculate window coefficients
|
|
|
|
for (i=0; i<n; i++)
|
|
|
|
*w++ = float(0.54 - 0.46*cos(k*(float)i));
|
|
|
|
}
|
|
|
|
|
|
|
|
/******************************************************************************
|
|
|
|
* FIR filter design
|
|
|
|
******************************************************************************/
|
|
|
|
|
|
|
|
/* Design FIR filter using the Window method
|
|
|
|
|
|
|
|
n filter length must be odd for HP and BS filters
|
|
|
|
w buffer for the filter taps (must be n long)
|
|
|
|
fc cutoff frequencies (1 for LP and HP, 2 for BP and BS)
|
|
|
|
0 < fc < 1 where 1 <=> Fs/2
|
|
|
|
flags window and filter type as defined in filter.h
|
|
|
|
variables are ored together: i.e. LP|HAMMING will give a
|
|
|
|
low pass filter designed using a hamming window
|
|
|
|
opt beta constant used only when designing using kaiser windows
|
|
|
|
|
|
|
|
returns 0 if OK, -1 if fail
|
|
|
|
*/
|
|
|
|
float* design_fir(unsigned int *n, float* fc, float opt)
|
|
|
|
{
|
|
|
|
unsigned int o = *n & 1; // Indicator for odd filter length
|
|
|
|
unsigned int end = ((*n + 1) >> 1) - o; // Loop end
|
|
|
|
unsigned int i; // Loop index
|
|
|
|
|
|
|
|
float k1 = 2 * float(M_PI); // 2*pi*fc1
|
|
|
|
float k2 = 0.5f * (float)(1 - o);// Constant used if the filter has even length
|
|
|
|
float g = 0.0f; // Gain
|
|
|
|
float t1; // Temporary variables
|
|
|
|
float fc1; // Cutoff frequencies
|
|
|
|
|
|
|
|
// Sanity check
|
|
|
|
if(*n==0) return NULL;
|
|
|
|
fc[0]=limit(fc[0],float(0.001),float(1));
|
|
|
|
|
|
|
|
float *w=(float*)calloc(sizeof(float),*n);
|
|
|
|
|
|
|
|
// Get window coefficients
|
|
|
|
hamming(*n,w);
|
|
|
|
|
|
|
|
fc1=*fc;
|
|
|
|
// Cutoff frequency must be < 0.5 where 0.5 <=> Fs/2
|
|
|
|
fc1 = ((fc1 <= 1.0) && (fc1 > 0.0)) ? fc1/2 : 0.25f;
|
|
|
|
k1 *= fc1;
|
|
|
|
|
|
|
|
// Low pass filter
|
|
|
|
|
|
|
|
// If the filter length is odd, there is one point which is exactly
|
|
|
|
// in the middle. The value at this point is 2*fCutoff*sin(x)/x,
|
|
|
|
// where x is zero. To make sure nothing strange happens, we set this
|
|
|
|
// value separately.
|
|
|
|
if (o)
|
|
|
|
{
|
|
|
|
w[end] = fc1 * w[end] * 2.0f;
|
|
|
|
g=w[end];
|
|
|
|
}
|
|
|
|
|
|
|
|
// Create filter
|
|
|
|
for (i=0 ; i<end ; i++)
|
|
|
|
{
|
|
|
|
t1 = (float)(i+1) - k2;
|
|
|
|
w[end-i-1] = w[*n-end+i] = float(w[end-i-1] * sin(k1 * t1)/(M_PI * t1)); // Sinc
|
|
|
|
g += 2*w[end-i-1]; // Total gain in filter
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
// Normalize gain
|
|
|
|
g=1/g;
|
|
|
|
for (i=0; i<*n; i++)
|
|
|
|
w[i] *= g;
|
|
|
|
|
|
|
|
return w;
|
|
|
|
}
|
|
|
|
|
|
|
|
void onSeek(void)
|
|
|
|
{
|
|
|
|
l_fwr = r_fwr = lpr_fwr = lmr_fwr = 0;
|
|
|
|
std::fill(fwrbuf_l.begin(), fwrbuf_l.end(), 0.0f);
|
|
|
|
std::fill(fwrbuf_r.begin(), fwrbuf_r.end(), 0.0f);
|
|
|
|
adapt_l_gain = adapt_r_gain = adapt_lpr_gain = adapt_lmr_gain = 0;
|
|
|
|
std::fill(lf.begin(), lf.end(), 0.0f);
|
|
|
|
std::fill(rf.begin(), rf.end(), 0.0f);
|
|
|
|
std::fill(lr.begin(), lr.end(), 0.0f);
|
|
|
|
std::fill(rr.begin(), rr.end(), 0.0f);
|
|
|
|
std::fill(cf.begin(), cf.end(), 0.0f);
|
|
|
|
std::fill(cr.begin(), cr.end(), 0.0f);
|
|
|
|
lfe_pos = 0;
|
|
|
|
memset(LFE_buf, 0, sizeof(LFE_buf));
|
|
|
|
}
|
|
|
|
|
|
|
|
void done(void)
|
|
|
|
{
|
|
|
|
onSeek();
|
|
|
|
if (filter_coefs_lfe)
|
|
|
|
{
|
|
|
|
free(filter_coefs_lfe);
|
|
|
|
}
|
|
|
|
filter_coefs_lfe = NULL;
|
|
|
|
}
|
|
|
|
|
|
|
|
float* calc_coefficients_125Hz_lowpass(int rate)
|
|
|
|
{
|
|
|
|
len125 = 256;
|
|
|
|
float f = 125.0f / (rate / 2);
|
|
|
|
float *coeffs = design_fir(&len125, &f, 0);
|
|
|
|
static const float M3_01DB = 0.7071067812f;
|
|
|
|
for (unsigned int i = 0; i < len125; i++)
|
|
|
|
{
|
|
|
|
coeffs[i] *= M3_01DB;
|
|
|
|
}
|
|
|
|
return coeffs;
|
|
|
|
}
|
|
|
|
|
|
|
|
float passive_lock(float x)
|
|
|
|
{
|
|
|
|
static const float MATAGCLOCK = 0.2f; /* AGC range (around 1) where the matrix behaves passively */
|
|
|
|
const float x1 = x - 1;
|
|
|
|
const float ax1s = fabs(x - 1) * (1.0f / MATAGCLOCK);
|
|
|
|
return x1 - x1 / (1 + ax1s * ax1s) + 1;
|
|
|
|
}
|
|
|
|
|
|
|
|
void matrix_decode(const float *in, const int k, const int il,
|
|
|
|
const int ir, bool decode_rear,
|
2013-01-30 05:24:51 +00:00
|
|
|
const int _dlbuflen,
|
|
|
|
float _l_fwr, float _r_fwr,
|
|
|
|
float _lpr_fwr, float _lmr_fwr,
|
|
|
|
float *_adapt_l_gain, float *_adapt_r_gain,
|
|
|
|
float *_adapt_lpr_gain, float *_adapt_lmr_gain,
|
|
|
|
float *_lf, float *_rf, float *_lr,
|
|
|
|
float *_rr, float *_cf)
|
2013-01-11 03:03:09 +00:00
|
|
|
{
|
|
|
|
static const float M9_03DB = 0.3535533906f;
|
|
|
|
static const float MATAGCTRIG = 8.0f; /* (Fuzzy) AGC trigger */
|
|
|
|
static const float MATAGCDECAY = 1.0f; /* AGC baseline decay rate (1/samp.) */
|
|
|
|
static const float MATCOMPGAIN = 0.37f; /* Cross talk compensation gain, 0.50 - 0.55 is full cancellation. */
|
|
|
|
|
2013-01-30 05:24:51 +00:00
|
|
|
const int kr = (k + olddelay) % _dlbuflen;
|
|
|
|
float l_gain = (_l_fwr + _r_fwr) / (1 + _l_fwr + _l_fwr);
|
|
|
|
float r_gain = (_l_fwr + _r_fwr) / (1 + _r_fwr + _r_fwr);
|
2013-01-11 03:03:09 +00:00
|
|
|
/* The 2nd axis has strong gain fluctuations, and therefore require
|
|
|
|
limits. The factor corresponds to the 1 / amplification of (Lt
|
|
|
|
- Rt) when (Lt, Rt) is strongly correlated. (e.g. during
|
|
|
|
dialogues). It should be bigger than -12 dB to prevent
|
|
|
|
distortion. */
|
2013-01-30 05:24:51 +00:00
|
|
|
float lmr_lim_fwr = _lmr_fwr > M9_03DB * _lpr_fwr ? _lmr_fwr : M9_03DB * _lpr_fwr;
|
|
|
|
float lpr_gain = (_lpr_fwr + lmr_lim_fwr) / (1 + _lpr_fwr + _lpr_fwr);
|
|
|
|
float lmr_gain = (_lpr_fwr + lmr_lim_fwr) / (1 + lmr_lim_fwr + lmr_lim_fwr);
|
|
|
|
float lmr_unlim_gain = (_lpr_fwr + _lmr_fwr) / (1 + _lmr_fwr + _lmr_fwr);
|
2013-01-11 03:03:09 +00:00
|
|
|
float lpr, lmr;
|
|
|
|
float l_agc, r_agc, lpr_agc, lmr_agc;
|
|
|
|
float f, d_gain, c_gain, c_agc_cfk;
|
|
|
|
|
|
|
|
/*** AXIS NO. 1: (Lt, Rt) -> (C, Ls, Rs) ***/
|
|
|
|
/* AGC adaption */
|
2013-01-30 05:24:51 +00:00
|
|
|
d_gain = (fabs(l_gain - *_adapt_l_gain) + fabs(r_gain - *_adapt_r_gain)) * 0.5f;
|
2013-01-11 03:03:09 +00:00
|
|
|
f = d_gain * (1.0f / MATAGCTRIG);
|
|
|
|
f = MATAGCDECAY - MATAGCDECAY / (1 + f * f);
|
2013-01-30 05:24:51 +00:00
|
|
|
*_adapt_l_gain = (1 - f) * *_adapt_l_gain + f * l_gain;
|
|
|
|
*_adapt_r_gain = (1 - f) * *_adapt_r_gain + f * r_gain;
|
2013-01-11 03:03:09 +00:00
|
|
|
/* Matrix */
|
2013-01-30 05:24:51 +00:00
|
|
|
l_agc = in[il] * passive_lock(*_adapt_l_gain);
|
|
|
|
r_agc = in[ir] * passive_lock(*_adapt_r_gain);
|
|
|
|
_cf[k] = (l_agc + r_agc) * (float)M_SQRT1_2;
|
2013-01-11 03:03:09 +00:00
|
|
|
if (decode_rear)
|
|
|
|
{
|
2013-01-30 05:24:51 +00:00
|
|
|
_lr[kr] = _rr[kr] = (l_agc - r_agc) * (float)M_SQRT1_2;
|
2013-01-11 03:03:09 +00:00
|
|
|
/* Stereo rear channel is steered with the same AGC steering as
|
|
|
|
the decoding matrix. Note this requires a fast updating AGC
|
|
|
|
at the order of 20 ms (which is the case here). */
|
2013-01-30 05:24:51 +00:00
|
|
|
_lr[kr] *= (_l_fwr + _l_fwr) / (1 + _l_fwr + _r_fwr);
|
|
|
|
_rr[kr] *= (_r_fwr + _r_fwr) / (1 + _l_fwr + _r_fwr);
|
2013-01-11 03:03:09 +00:00
|
|
|
}
|
|
|
|
|
|
|
|
/*** AXIS NO. 2: (Lt + Rt, Lt - Rt) -> (L, R) ***/
|
|
|
|
lpr = (in[il] + in[ir]) * (float)M_SQRT1_2;
|
|
|
|
lmr = (in[il] - in[ir]) * (float)M_SQRT1_2;
|
|
|
|
/* AGC adaption */
|
2013-01-30 05:24:51 +00:00
|
|
|
d_gain = fabs(lmr_unlim_gain - *_adapt_lmr_gain);
|
2013-01-11 03:03:09 +00:00
|
|
|
f = d_gain * (1.0f / MATAGCTRIG);
|
|
|
|
f = MATAGCDECAY - MATAGCDECAY / (1 + f * f);
|
2013-01-30 05:24:51 +00:00
|
|
|
*_adapt_lpr_gain = (1 - f) * *_adapt_lpr_gain + f * lpr_gain;
|
|
|
|
*_adapt_lmr_gain = (1 - f) * *_adapt_lmr_gain + f * lmr_gain;
|
2013-01-11 03:03:09 +00:00
|
|
|
/* Matrix */
|
2013-01-30 05:24:51 +00:00
|
|
|
lpr_agc = lpr * passive_lock(*_adapt_lpr_gain);
|
|
|
|
lmr_agc = lmr * passive_lock(*_adapt_lmr_gain);
|
|
|
|
_lf[k] = (lpr_agc + lmr_agc) * (float)M_SQRT1_2;
|
|
|
|
_rf[k] = (lpr_agc - lmr_agc) * (float)M_SQRT1_2;
|
2013-01-11 03:03:09 +00:00
|
|
|
|
|
|
|
/*** CENTER FRONT CANCELLATION ***/
|
|
|
|
/* A heuristic approach exploits that Lt + Rt gain contains the
|
|
|
|
information about Lt, Rt correlation. This effectively reshapes
|
|
|
|
the front and rear "cones" to concentrate Lt + Rt to C and
|
|
|
|
introduce Lt - Rt in L, R. */
|
|
|
|
/* 0.67677 is the empirical lower bound for lpr_gain. */
|
2013-01-30 05:24:51 +00:00
|
|
|
c_gain = 8 * (*_adapt_lpr_gain - 0.67677f);
|
2013-01-11 03:03:09 +00:00
|
|
|
c_gain = c_gain > 0 ? c_gain : 0;
|
|
|
|
/* c_gain should not be too high, not even reaching full
|
|
|
|
cancellation (~ 0.50 - 0.55 at current AGC implementation), or
|
|
|
|
the center will sound too narrow. */
|
|
|
|
c_gain = MATCOMPGAIN / (1 + c_gain * c_gain);
|
2013-01-30 05:24:51 +00:00
|
|
|
c_agc_cfk = c_gain * _cf[k];
|
|
|
|
_lf[k] -= c_agc_cfk;
|
|
|
|
_rf[k] -= c_agc_cfk;
|
|
|
|
_cf[k] += c_agc_cfk + c_agc_cfk;
|
2013-01-11 03:03:09 +00:00
|
|
|
}
|
|
|
|
|
|
|
|
void dpl2decode(float *samples, int numsamples, float *out)
|
|
|
|
{
|
|
|
|
static const unsigned int FWRDURATION = 240; /* FWR average duration (samples) */
|
2013-01-11 03:20:22 +00:00
|
|
|
static const int cfg_delay = 0;
|
2013-01-11 03:03:09 +00:00
|
|
|
static const unsigned int fmt_freq = 48000;
|
|
|
|
static const unsigned int fmt_nchannels = 2; // input channels
|
|
|
|
|
|
|
|
int cur = 0;
|
|
|
|
|
|
|
|
if (olddelay != cfg_delay || oldfreq != fmt_freq)
|
|
|
|
{
|
|
|
|
done();
|
|
|
|
olddelay = cfg_delay;
|
|
|
|
oldfreq = fmt_freq;
|
|
|
|
dlbuflen = std::max(FWRDURATION, (fmt_freq * cfg_delay / 1000)); //+(len7000-1);
|
|
|
|
cyc_pos = dlbuflen - 1;
|
|
|
|
fwrbuf_l.resize(dlbuflen);
|
|
|
|
fwrbuf_r.resize(dlbuflen);
|
|
|
|
lf.resize(dlbuflen);
|
|
|
|
rf.resize(dlbuflen);
|
|
|
|
lr.resize(dlbuflen);
|
|
|
|
rr.resize(dlbuflen);
|
|
|
|
cf.resize(dlbuflen);
|
|
|
|
cr.resize(dlbuflen);
|
|
|
|
filter_coefs_lfe = calc_coefficients_125Hz_lowpass(fmt_freq);
|
|
|
|
lfe_pos = 0;
|
|
|
|
memset(LFE_buf, 0, sizeof(LFE_buf));
|
|
|
|
}
|
|
|
|
|
|
|
|
float *in = samples; // Input audio data
|
|
|
|
float *end = in + numsamples * fmt_nchannels; // Loop end
|
|
|
|
|
|
|
|
while (in < end)
|
|
|
|
{
|
|
|
|
const int k = cyc_pos;
|
|
|
|
|
|
|
|
const int fwr_pos = (k + FWRDURATION) % dlbuflen;
|
|
|
|
/* Update the full wave rectified total amplitude */
|
|
|
|
/* Input matrix decoder */
|
|
|
|
l_fwr += fabs(in[0]) - fabs(fwrbuf_l[fwr_pos]);
|
|
|
|
r_fwr += fabs(in[1]) - fabs(fwrbuf_r[fwr_pos]);
|
|
|
|
lpr_fwr += fabs(in[0] + in[1]) - fabs(fwrbuf_l[fwr_pos] + fwrbuf_r[fwr_pos]);
|
|
|
|
lmr_fwr += fabs(in[0] - in[1]) - fabs(fwrbuf_l[fwr_pos] - fwrbuf_r[fwr_pos]);
|
|
|
|
|
|
|
|
/* Matrix encoded 2 channel sources */
|
|
|
|
fwrbuf_l[k] = in[0];
|
|
|
|
fwrbuf_r[k] = in[1];
|
|
|
|
matrix_decode(in, k, 0, 1, true, dlbuflen,
|
|
|
|
l_fwr, r_fwr,
|
|
|
|
lpr_fwr, lmr_fwr,
|
|
|
|
&adapt_l_gain, &adapt_r_gain,
|
|
|
|
&adapt_lpr_gain, &adapt_lmr_gain,
|
|
|
|
&lf[0], &rf[0], &lr[0], &rr[0], &cf[0]);
|
|
|
|
|
|
|
|
out[cur + 0] = lf[k];
|
|
|
|
out[cur + 1] = rf[k];
|
|
|
|
out[cur + 2] = cf[k];
|
|
|
|
LFE_buf[lfe_pos] = (out[0] + out[1]) / 2;
|
|
|
|
out[cur + 3] = firfilter(LFE_buf, lfe_pos, len125, len125, filter_coefs_lfe);
|
|
|
|
lfe_pos++;
|
|
|
|
if (lfe_pos == len125)
|
|
|
|
{
|
|
|
|
lfe_pos = 0;
|
|
|
|
}
|
|
|
|
out[cur + 4] = lr[k];
|
|
|
|
out[cur + 5] = rr[k];
|
|
|
|
// Next sample...
|
|
|
|
in += 2;
|
|
|
|
cur += 6;
|
|
|
|
cyc_pos--;
|
|
|
|
if (cyc_pos < 0)
|
|
|
|
{
|
|
|
|
cyc_pos += dlbuflen;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
void dpl2reset()
|
|
|
|
{
|
|
|
|
olddelay = -1;
|
|
|
|
oldfreq = 0;
|
|
|
|
filter_coefs_lfe = NULL;
|
|
|
|
}
|